Retinofugal fibres change conduction velocity and diameter between the optic nerve and tract in ferrets

Nature. 1990 Mar 22;344(6264):342-5. doi: 10.1038/344342a0.

Abstract

In earlier studies of central nervous fibre tracts, it was tacitly assumed that individual axons are relatively uniform along their length. In the retinofugal pathway in particular, axon diameter, myelin thickness and correlated conduction properties have been treated as constant throughout the optic nerve, chiasm and tract. We report here that the conduction velocities of fibres contributing to the early components of the compound action potential are significantly greater in the optic tract than in the optic nerve of ferrets, and also that the diameters of the largest retinofugal fibres increase from nerve to tract. This observation raises significant questions about the developmental mechanisms in the central nervous system that relate the axons, their diameters, and the glia with which they are myelinated. In addition, it indicates that studies that have relied on the constancy of conduction velocity along the retinofugal course may require reappraisal.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Action Potentials
  • Animals
  • Ferrets
  • Neural Conduction
  • Optic Nerve / physiology
  • Visual Pathways / anatomy & histology
  • Visual Pathways / physiology*