Harnessing plasticity to understand learning and treat disease

Trends Neurosci. 2012 Dec;35(12):715-22. doi: 10.1016/j.tins.2012.09.002. Epub 2012 Sep 27.

Abstract

A large body of evidence suggests that neural plasticity contributes to learning and disease. Recent studies suggest that cortical map plasticity is typically a transient phase that improves learning by increasing the pool of task-relevant responses. Here, I discuss a new perspective on neural plasticity and suggest how plasticity might be targeted to reset dysfunctional circuits. Specifically, a new model is proposed in which map expansion provides a form of replication with variation that supports a Darwinian mechanism to select the most behaviorally useful circuits. Precisely targeted neural plasticity provides a new avenue for the treatment of neurological and psychiatric disorders and is a powerful tool to test the neural mechanisms of learning and memory.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Brain / physiology*
  • Central Nervous System Diseases / physiopathology*
  • Humans
  • Learning / physiology*
  • Neuronal Plasticity / physiology*