Modeling the perception of concurrent vowels: vowels with different fundamental frequencies

J Acoust Soc Am. 1990 Aug;88(2):680-97. doi: 10.1121/1.399772.

Abstract

If two vowels with different fundamental frequencies (fo's) are presented simultaneously and monaurally, listeners often hear two talkers producing different vowels on different pitches. This paper describes the evaluation of four computational models of the auditory and perceptual processes which may underlie this ability. Each model involves four stages: (i) frequency analysis using an "auditory" filter bank, (ii) determination of the pitches present in the stimulus, (iii) segregation of the competing speech sources by grouping energy associated with each pitch to create two derived spectral patterns, and (iv) classification of the derived spectral patterns to predict the probabilities of listeners' vowel-identification responses. The "place" models carry out the operations of pitch determination and spectral segregation by analyzing the distribution of rms levels across the channels of the filter bank. The "place-time" models carry out these operations by analyzing the periodicities in the waveforms in each channel. In their "linear" versions, the place and place-time models operate directly on the waveforms emerging from the filters. In their "nonlinear" versions, analogous operations are applied to the output of an additional stage which applied a compressive nonlinearity to the filtered waveforms. Compared to the other three models, the nonlinear place-time model provides the most accurate estimates of the fo's of paris of concurrent synthetic vowels and comes closest to predicting the identification responses of listeners to such stimuli. Although the model has several limitations, the results are compatible with the idea that a place-time analysis is used to segregate competing sound sources.

MeSH terms

  • Attention*
  • Humans
  • Phonetics*
  • Pitch Discrimination*
  • Signal Processing, Computer-Assisted
  • Sound Localization
  • Sound Spectrography / instrumentation
  • Speech Acoustics
  • Speech Perception*