Sound localization by human listeners

Annu Rev Psychol. 1991:42:135-59. doi: 10.1146/annurev.ps.42.020191.001031.

Abstract

In keeping with our promise earlier in this review, we summarize here the process by which we believe spatial cues are used for localizing a sound source in a free-field listening situation. We believe it entails two parallel processes: 1. The azimuth of the source is determined using differences in interaural time or interaural intensity, whichever is present. Wightman and colleagues (1989) believe the low-frequency temporal information is dominant if both are present. 2. The elevation of the source is determined from spectral shape cues. The received sound spectrum, as modified by the pinna, is in effect compared with a stored set of directional transfer functions. These are actually the spectra of a nearly flat source heard at various elevations. The elevation that corresponds to the best-matching transfer function is selected as the locus of the sound. Pinnae are similar enough between people that certain general rules (e.g. Blauert's boosted bands or Butler's covert peaks) can describe this process. Head motion is probably not a critical part of the localization process, except in cases where time permits a very detailed assessment of location, in which case one tries to localize the source by turning the head toward the putative location. Sound localization is only moderately more precise when the listener points directly toward the source. The process is not analogous to localizing a visual source on the fovea of the retina. Thus, head motion provides only a moderate increase in localization accuracy. Finally, current evidence does not support the view that auditory motion perception is anything more than detection of changes in static location over time.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.
  • Review

MeSH terms

  • Attention*
  • Humans
  • Orientation*
  • Psychoacoustics
  • Sound Localization*