High-amplitude positive spikes recorded extracellularly in cat visual cortex

J Neurophysiol. 2009 Dec;102(6):3340-51. doi: 10.1152/jn.91365.2008. Epub 2009 Sep 30.

Abstract

We simulated the shape and amplitude of extracellular action potentials (APs or "spikes") using biophysical models based on detailed reconstructions of single neurons from the cat's visual cortex. We compared these predictions with spikes recorded from the cat's primary visual cortex under a standard protocol. The experimental data were derived from a large number of neurons throughout all layers. The majority of spikes were biphasic, with a dominant negative peak (mean amplitude, -0.11 mV), whereas a minority of APs had a dominant positive peak of +0.54-mV mean amplitude, with a maximum of +1.5 mV. The largest positive amplitude spikes were recorded in layer 5. The simulations demonstrated that a pyramidal neuron under known biophysical conditions may generate a negative peak with amplitude up to -1.5 mV, but that the amplitude of the positive peak may be at most 0.5 mV. We confirmed that spikes with large positive peaks were not produced by juxtacellular patch recordings. We conclude that there is a significant gap in our present understanding of either the spike-generation process in pyramidal neurons, the biophysics of extracellular recording, or both.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Action Potentials / physiology*
  • Animals
  • Biophysics / methods
  • Cats
  • Computer Simulation
  • Models, Neurological*
  • Pyramidal Cells / cytology
  • Pyramidal Cells / physiology*
  • Visual Cortex / cytology*