Somatic Ca2+ transients do not contribute to inspiratory drive in preBötzinger Complex neurons

J Physiol. 2008 Sep 15;586(18):4531-40. doi: 10.1113/jphysiol.2008.154765. Epub 2008 Jul 17.

Abstract

PreBötzinger Complex (preBötC) neurons are postulated to underlie respiratory rhythm generation. The inspiratory phase of the respiratory cycle in vitro results from preBötC neurons firing synchronous bursts of action potentials (APs) on top of 10-20 mV, 0.3-0.8 s inspiratory drive potentials. Is the inspiratory drive in individual neurons simply the result of the passive integration of inspiratory-modulated synaptic currents or do active processes modulate these currents? As somatic Ca(2+) is known to increase during inspiration, we hypothesized that it affects inspiratory drive. We combined whole cell recording in an in vitro slice preparation with Ca(2+) microfluorometry to detect single inspiratory neuron somatic Ca(2+) transients with high temporal resolution ( approximately mus). In neurons loaded with either Fluo-4 or Oregon Green BAPTA 5 N, we observed Ca(2+) transients associated with each AP. During inspiration, significant somatic Ca(2+) influx was a direct consequence of activation of voltage-gated Ca(2+) channels by APs. However, when we isolated the inspiratory drive potential in active preBötC neurons (by blocking APs with intracellular QX-314 or by hyperpolarization), we did not detect somatic Ca(2+) transients; yet, the parameters of inspiratory drive were the same with or without APs. We conclude that, in the absence of APs, somatic Ca(2+) transients do not shape the somatic inspiratory drive potential. This suggests that in preBötC neurons, substantial and widespread somatic Ca(2+) influx is a consequence of APs during the inspiratory phase and does not contribute substantively to the inspiratory drive potential. Given evidence that the Ca(2+) buffer BAPTA can significantly reduce inspiratory drive, we hypothesize that dendritic Ca(2+) transients amplify inspiratory-modulated synaptic currents.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Action Potentials / drug effects
  • Animals
  • Animals, Newborn
  • Brain Stem / metabolism*
  • Calcium / metabolism*
  • Calcium Channel Blockers / pharmacology
  • Evoked Potentials
  • Hypoglossal Nerve / physiology*
  • In Vitro Techniques
  • Inhalation*
  • Neurons / metabolism*
  • Rats

Substances

  • Calcium Channel Blockers
  • Calcium