Oscillatory synchrony and human visual cognition

J Physiol Paris. 2003 Mar-May;97(2-3):355-63. doi: 10.1016/j.jphysparis.2003.09.009.

Abstract

Oscillatory synchrony could be used to establish dynamic links between the various cortical areas participating in the same cognitive process. Is it possible to detect oscillatory synchrony in humans, and is it relevant to behavior? There is now converging evidence for the existence of a transient oscillatory activity in the gamma range (30-60 Hz), obtained in response to static visual objects, and having only a loose temporal relationship to stimulus onset. This so-called "induced" gamma response is much larger in response to coherent static or moving objects. However, functional variations of gamma and/or beta (15-20 Hz) oscillations are not restricted to perceptive, bottom-up mechanisms, but are also observed during visual imagery or short-term memory maintenance. Oscillations at the scalp level thus seem to reflect large-scale neural cooperativity in a variety of task-dependent networks. Human intra-cranial recordings in a short-term memory paradigm further reveal the existence and the task-dependency of oscillatory synchrony in the beta range, between focal sites separated by several centimeters and with a few milliseconds time-lag. These findings thus confirm experimentally the hypothesis of a functional role of synchronized oscillatory activity in the coordination of distributed neural activity in humans, and support Hebb's concept of short-term memory maintenance by reentrant activity within the activated network. In addition, the intra-cranial data obtained in humans and monkeys also help to better understand the neural mechanisms generating scalp-recorded oscillations.

Publication types

  • Review

MeSH terms

  • Animals
  • Biological Clocks / physiology*
  • Cognition / physiology*
  • Humans
  • Photic Stimulation / methods
  • Visual Perception / physiology*