Presynaptic inhibition and antidromic discharges in crayfish primary afferents

J Physiol Paris. 1999 Sep-Oct;93(4):349-58. doi: 10.1016/s0928-4257(00)80062-5.

Abstract

The mechanisms of presynaptic inhibition have been studied in sensory afferents of a stretch receptor in an in vitro preparation of the crayfish. Axon terminals of these sensory afferents display primary afferent depolarisations (PADs) mediated by the activation of GABA receptors that open chloride channels. Intracellular labeling of sensory axons by Lucifer yellow combined with GABA immunohistochemistry revealed the presence of close appositions between GABA-immunoreactive boutons and sensory axons close to their first branching point within the ganglion. Electrophysiological studies showed that GABA inputs mediating PADs appear to occur around the first axonal branching point, which corresponds to the area of transition between active and passive propagation of spikes. Moreover, this study demonstrated that whilst shunting appeared to be the sole mechanism involved during small amplitude PADs, sodium channel inactivation occurred with larger amplitude PADs. However, when the largest PADs (>25 mV) are produced, the threshold for spike generation is reached and antidromic action potentials are elicited. The mechanisms involved in the initiation of antidromic discharges were analyzed by combining electrophysiological and simulation studies. Three mechanisms act together to ensure that PAD-mediated spikes are not conveyed distally: 1) the lack of active propagation in distal regions of the sensory axons; 2) the inactivation of the sodium channels around the site where PADs are produced; and 3) a massive shunting through the opening of chloride channels associated with the activation of GABA receptors. The centrally generated spikes are, however, conveyed antidromically in the sensory nerve up to the proprioceptive organ, where they inhibit the activity of the sensory neurons for several hundreds of milliseconds.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Astacoidea / physiology*
  • Electrophysiology
  • Evoked Potentials / physiology*
  • Locomotion / physiology
  • Neurons, Afferent / physiology*
  • Presynaptic Terminals / physiology*