Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter December 13, 2018

Central pattern generators in the brainstem and spinal cord: an overview of basic principles, similarities and differences

  • Inge Steuer and Pierre A. Guertin EMAIL logo

Abstract

Central pattern generators (CPGs) are generally defined as networks of neurons capable of enabling the production of central commands, specifically controlling stereotyped, rhythmic motor behaviors. Several CPGs localized in brainstem and spinal cord areas have been shown to underlie the expression of complex behaviors such as deglutition, mastication, respiration, defecation, micturition, ejaculation, and locomotion. Their pivotal roles have clearly been demonstrated although their organization and cellular properties remain incompletely characterized. In recent years, insightful findings about CPGs have been made mainly because (1) several complementary animal models were developed; (2) these models enabled a wide variety of techniques to be used and, hence, a plethora of characteristics to be discovered; and (3) organizations, functions, and cell properties across all models and species studied thus far were generally found to be well-preserved phylogenetically. This article aims at providing an overview for non-experts of the most important findings made on CPGs in in vivo animal models, in vitro preparations from invertebrate and vertebrate species as well as in primates. Data about CPG functions, adaptation, organization, and cellular properties will be summarized with a special attention paid to the network for locomotion given its advanced level of characterization compared with some of the other CPGs. Similarities and differences between these networks will also be highlighted.

References

Abbinanti, M.D., Zhong, G., and Harris-Warrick, R.M. (2012). Postnatal emergence of serotonin-induced plateau potentials in commissural interneurons of the mouse spinal cord. J. Neurophysiol. 108, 2191–2202.10.1152/jn.00336.2012Search in Google Scholar PubMed PubMed Central

Abdel-Hamid, I.A., Elsaied, M.A., and Mostafa, T. (2016). The drug treatment of delayed ejaculation. Transl. Androl. Urol. 5, 576–591.10.21037/tau.2016.05.05Search in Google Scholar PubMed PubMed Central

Acevedo, J., Santana-Almansa, A., Matos-Vergara, N., Marrero-Cordero, L.R., Cabezas-Bous, E., and Diaz-Rios, M. (2016). Caffeine stimulates locomotor activity in the mammalian spinal cord via adenosine A1 receptor-dopamine D1 receptor interaction and PKA-dependent mechanisms. J. Neuropharmacol. 101, 490–505.10.1016/j.neuropharm.2015.10.020Search in Google Scholar PubMed PubMed Central

Afelt, Z. (1970). Reflex activity in chronic spinal cats. Acta Neurobiol. Exp. (Warsaw) 30, 129–144.Search in Google Scholar

Ahuja, C.S., Nori, S., Tetreault, L., Wilson, J., Kwon, B., Harrop, J., Choi, D., and Fehlings, M.G. (2017). Traumatic spinal cord injury-repair and regeneration. Neurosurgery 80, S9–S22.10.1093/neuros/nyw080Search in Google Scholar PubMed

Aida, S., Takeishi, R., Magara, J., Watanabe, M., Ito, K., Nakamura, Y., Tsujimura, T., Hayashi, H., and Inoue, M. (2015). Peripheral and central control of swallowing initiation in healthy humans. Physiol. Behav. 151, 404–411.10.1016/j.physbeh.2015.08.003Search in Google Scholar PubMed

Akay, T., Tourtellotte, W.G., Arber, S., and Jessell, T.M. (2014). Degradation of mouse locomotor pattern in the absence of proprioceptive sensory feedback. Proc. Natl. Acad. Sci. USA 111, 16877–16882.10.1073/pnas.1419045111Search in Google Scholar PubMed PubMed Central

Alford, S.T. and Alpert, M.H. (2014). A synaptic mechanism for network synchrony. Front. Cell. Neurosci. 8, 290.10.3389/fncel.2014.00290Search in Google Scholar PubMed PubMed Central

Alluin, O., Delivet-Mongrain, H., and Rossignol, S. (2015). Inducing hindlimb locomotor recovery in adult rat after complete thoracic spinal cord section using repeated treadmill training with perineal stimulation only. J. Neurophysiol. 114, 1931–1946.10.1152/jn.00416.2015Search in Google Scholar PubMed PubMed Central

Al-Zubaidy, Z.A., Erickson, R.L., and Greer, J.J. (1996). Serotonergic and noradrenergic effects on respiratory neural discharge in the medullary slice preparation of neonatal rats. Pflüger’s Arch. 431, 942–949.10.1007/s004240050089Search in Google Scholar PubMed

Anderson, T.M. and Ramirez, J.M. (2017). Respiratory rhythm generation: triple oscillator hypothesis. F1000Res. 6, 139.10.12688/f1000research.10193.1Search in Google Scholar PubMed PubMed Central

Anderson, T.M., Garcia, A.J. 3rd, Baertsch, N.A., Pollak, J., Bloom, J.C., Wei, A.D., Rai, K.G., and Ramirez, J.M. (2016). A novel excitatory network for the control of breathing. Nature 536, 76–80.10.1038/nature18944Search in Google Scholar PubMed PubMed Central

Andersson, K.E. (2016). potential future pharmacological treatment of bladder dysfunction. Basic Clin. Pharmacol. Toxicol. 119 (Suppl. 3), 75–85.10.1111/bcpt.12577Search in Google Scholar PubMed

Andersson, O. and Grillner, S. (1983). Peripheral control of the cat’s step cycle. II. Entrainment of the central pattern generators for locomotion by sinusoidal hip movements during ‘fictive locomotion. Acta Physiol. Scand. 118, 229–239.10.1111/j.1748-1716.1983.tb07267.xSearch in Google Scholar PubMed

Andersson, K.E. and Pehrson, R. (2003). CNS involvement in overactive bladder: pathophysiology and opportunities for pharmacological intervention. Drugs 63, 2595–2611.10.2165/00003495-200363230-00003Search in Google Scholar PubMed

Angel, M.J., Guertin, P., Jiménez, I., and McCrea, D.A. (1996). Group I extensor afferents evoke disynaptic EPSPs in cat hindlimb extensor motorneurones during fictive locomotion. J. Physiol. 494, 851–861.10.1113/jphysiol.1996.sp021538Search in Google Scholar PubMed PubMed Central

Angel, M.J., Jankowska, E., and McCrea, D.A. (2005). Candidate interneurones mediating group I disynaptic EPSPs in extensor motoneurones during fictive locomotion in the cat. J. Physiol. 563, 597–610.10.1113/jphysiol.2004.076034Search in Google Scholar PubMed PubMed Central

Angeli, C.A., Edgerton, V.R., Gerasimenko, Y.P., and Harkema, S.J. (2014). Altering spinal cord excitability enables voluntary movements after chronic complete paralysis in humans. Brain 137, 1394–1409.10.1093/brain/awu038Search in Google Scholar PubMed PubMed Central

Antri, M., Barthe, J.Y., Mouffle, C., and Orsal, D. (2005). Long-lasting recovery of locomotor function in chronic spinal rat following chronic combined pharmacological stimulation of serotonergic receptors with 8-OHDPAT and quipazine. Neurosci. Lett. 384, 162–167.10.1016/j.neulet.2005.04.062Search in Google Scholar PubMed

Arshavskii, Y.I., Gelfand, I.M., and Orlovskii, G.N. (1986). Cerebellum and Rhythmical Movements (Berlin: Springer-Verlag).10.1007/978-3-642-70828-2Search in Google Scholar

Baldissera, F., Cavallari, P., and Leocani, L. (1998). Cyclic modulation of the H-reflex in a wrist flexor during rhythmic flexion-extension movements of the ipsilateral foot. Exp. Brain Res. 118, 427–430.10.1007/s002210050297Search in Google Scholar PubMed

Barajon, I., Gossard, J.P., and Hultborn, H. (1992). Induction of fos expression by activity in the spinal rhythm generator for scratching. Brain Res. 588, 168–172.10.1016/0006-8993(92)91359-MSearch in Google Scholar PubMed

Barbeau, H. and Rossignol, S. (1987). Recovery of locomotion after chronic spinalization in the adult cat. Brain Res. 412, 84–95.10.1016/0006-8993(87)91442-9Search in Google Scholar PubMed

Barbeau, H. and Rossignol, S. (1990). The effects of serotonergic drugs on the locomotor pattern and on cutaneous reflexes of the adult chronic spinal cat. Brain Res. 514, 55–67.10.1016/0006-8993(90)90435-ESearch in Google Scholar PubMed

Barbeau, H. and Rossignol, S. (1991). Initiation and modulation of the locomotor pattern in the adult chronic spinal cat by noradrenergic, serotonergic and dopaminergic drugs. Brain Res. 546, 250–260.10.1016/0006-8993(91)91489-NSearch in Google Scholar PubMed

Barrière, G., Mellen, N., and Cazalets, J.R. (2004). Neuromodulation of the locomotor network by dopamine in the isolated spinal cord of newborn rat. Eur. J. Neurosci. 19, 1325–1335.10.1111/j.1460-9568.2004.03210.xSearch in Google Scholar PubMed

Barrington, F. (1925). The effect of lesions of the hind- and midbrain on micturition in the cat. J. Exp. Physiol. Cogn. Med. 15, 81–102.10.1113/expphysiol.1925.sp000345Search in Google Scholar

Barry, M.A. and O’Donovan, M.J. (1987). The effects of excitatory amino acids and their antagonists on the generation of motor activity in the isolated chick spinal cord. Dev. Brain Res. 36, 271–276.10.1016/0165-3806(87)90030-7Search in Google Scholar

Baruscotti, M., Bucchi, A., and Difrancesco, D. (2005). Physiology and pharmacology of the cardiac pacemaker (‘funny’) current. Pharmacol. Ther. 107, 59–79.10.1016/j.pharmthera.2005.01.005Search in Google Scholar PubMed

Bassi, M., Furuya, W.I., Zoccal, D.B., Menani, J.V., Colombari, D.S., Mulkey, D.K., and Colombari, E. (2016). Facilitation of breathing by leptin effects in the central nervous system. J. Physiol. 594, 1617–1625.10.1113/JP270308Search in Google Scholar PubMed PubMed Central

Beato, M., Bracci, E., and Nistri, A. (1997). Contribution of NMDA and non-NMDA glutamate receptors to locomotor pattern generation in the neonatal rat spinal cord. Proc. R. Soc. Lond. 264, 877–884.10.1098/rspb.1997.0122Search in Google Scholar PubMed PubMed Central

Beckel, J.M. and Holstege, G. (2011). Neurophysiology of the lower urinary tract. Handbook of Experimental Pharmacology. K.E. Andersson and M.C. Michel, eds. (Berlin/Heidelberg: Springer), pp. 149–169.10.1007/978-3-642-16499-6_8Search in Google Scholar PubMed

Bélanger, M., Drew, T., and Rossignol, S. (1988). Spinal locomotion: a comparison of the kinematics and the electromyographic activity in the same animal before and after spinalization. Acta Biol. Hung. 39, 151–154.Search in Google Scholar PubMed

Bélanger, M., Drew, T., Provencher, J., and Rossignol, S. (1996). A comparison of treadmill locomotion in adult cats before and after spinal transection. J. Neurophysiol. 76, 471–491.10.1152/jn.1996.76.1.471Search in Google Scholar PubMed

Bellardita, C. and Kiehn, O. (2015). Phenotypic characterization of speed-associated gait changes in mice reveals modular organization of locomotor networks. Curr. Biol. 25, 1426–1436.10.1016/j.cub.2015.04.005Search in Google Scholar PubMed

Bellen, H., Tong, C., and Tsuda, H. (2010). 100 years of Drosophila research and its impact on vertebrate neuroscience: a history lesson for the future. Nat. Rev. Neurosci. 11, 514–522.10.1038/nrn2839Search in Google Scholar PubMed

Ben, T., Orsal, D., and Cabelguen, J.M. (1993). Fictive locomotion in the adult thalamic rat. Exp. Brain Res. 97, 301–304.Search in Google Scholar PubMed

Berg, R.M. (2017). Neuronal population activity in spinal motor circuits: greater than the sum of its parts. Front. Neural Circuits 11, 103.10.3389/fncir.2017.00103Search in Google Scholar

Bergmans, J., Burke, R., and Lundberg, A. (1969). Inhibition of transmission in the recurrent inhibitory pathway to motoneurones. Brain Res. 13, 600–602.10.1016/0006-8993(69)90270-4Search in Google Scholar PubMed

Bernier, A.P., Arsenault, I., Lund, J.P., and Kolta, A. (2010). Effect of the stimulation of sensory inputs on the firing of neurons of the trigeminal main sensory nucleus in the rat. J. Neurophysiol. 103, 915–923.10.1152/jn.91109.2008Search in Google Scholar PubMed

Bieger, D., Giles, S.A., and Hockman, C.H. (1977). Dopaminergic influences on swallowing. Neuropharmacol. 16, 245–252.10.1016/0028-3908(77)90102-2Search in Google Scholar

Biering-Sorensen, F. and Sonksen, J. (2001). Sexual function in spinal cord lesioned men. Spinal Cord 39, 455–470.10.1038/sj.sc.3101198Search in Google Scholar PubMed

Binienda, A., Storr, M., Fichna, J., and Salaga, M. (2018). Efficacy and safety of serotonin receptor ligands in the treatment of irritable bowel syndrome: a review. Curr. Drug Targets. 19, 1774–1781.10.2174/1389450119666171227225408Search in Google Scholar PubMed

Birder, L.A. and de Groat, W.C. (1993). Induction of c-fos expression in spinal neurons by nociceptive and nonnociceptive stimulation of LUT. Am. J. Physiol. 265, R326–333.10.1152/ajpregu.1993.265.2.R326Search in Google Scholar PubMed

Birder, L.A., Roppolo, J.R., Erickson, V.L., and de Groat, W.C. (1999). Increased c-fos expression in spinal lumbosacral projection neurons and preganglionic neurons after irritation of the lower urinary tract in the rat. Brain Res. 834, 55–65.10.1016/S0006-8993(99)01546-2Search in Google Scholar PubMed

Bizzi, E., Cheung, V.C., d’Avella, A., Saltiel, P., and Tresch, M. (2008). Combining modules for movement. Brain Res. Rev. 57, 25–33.10.1016/j.brainresrev.2007.08.004Search in Google Scholar

Blanchard-Dauphin, A., Rigot, J.M., and Thevenon, A. (2005). Treatment of ejaculation disorders by midodrine (Gutron) per os retrospective study of about 16 subjects. Ann. Readapt. Med. Phys. 48, 34–40.10.1016/j.annrmp.2004.09.004Search in Google Scholar PubMed

Bois, P., Guinamard, R., Chemaly, A.E., Faivre, J.P., and Bescond, J. (2007). Molecular regulation and pharmacology of pacemaker channels. Curr. Pharm. Des. 13, 2338–2349.10.2174/138161207781368729Search in Google Scholar PubMed

Bonnot, A., Whelan, P.J., Mentis, G.Z., and O’Donovan, M.J. (2002). Locomotor-like activity generated by the neonatal mouse spinal cord. Brain Res. Brain Res. Rev. 40, 141–151.10.1016/S0165-0173(02)00197-2Search in Google Scholar PubMed

Borgdorff, A.J., Bernabé, J., Denys, P., Alexandre, L., and Giuliano, F. (2008). Ejaculation elicited by microstimulation of lumbar spinothalamic neurons. Eur. Urol. 54, 449–456.10.1016/j.eururo.2008.03.043Search in Google Scholar PubMed

Borowska, J., Jones, C.T., Zhang, H., Blacklaws, J., Goulding, M., and Zhang, Y. (2013). Functional subpopulations of V3 interneurons in the mature mouse spinal cord. J. Neurosci. 33, 18553–18565.10.1523/JNEUROSCI.2005-13.2013Search in Google Scholar PubMed PubMed Central

Bosma, J.F. (1957). Deglutition: pharyngeal stage. Physiol. Rev. 37, 275–300.10.1152/physrev.1957.37.3.275Search in Google Scholar PubMed

Bourque, M.J. and Kolta, A. (2001). Properties and interconnections of trigeminal interneurons of the lateral pontine reticular formation in the rat. J. Neurophysiol. 86, 2583–2596.10.1152/jn.2001.86.5.2583Search in Google Scholar PubMed

Bouvier, J., Caggiano, V., Leiras, R., Caldeira, V., Bellardita, C., Balueva, K., Fuchs, A., and Kiehn, O. (2015). Descending command neurons in the brainstem that halt locomotion. Cell 163, 1191–1203.10.1016/j.cell.2015.10.074Search in Google Scholar PubMed PubMed Central

Bouyer, L. and Rossignol, S. (2003). Contributions of cutaneous inputs from the hindpaw to the control of locomotion. II. Spinal cats. J. Neurophysiol. 90, 3640–3653.10.1152/jn.00497.2003Search in Google Scholar PubMed

Boyce, V.S. and Mendell, L.M. (2014). Neurotrophins and spinal circuit function. Front. Neural Circuits 5, 8–59.10.3389/fncir.2014.00059Search in Google Scholar PubMed PubMed Central

Braitenberg, V. and Atwood, R.P. (1958). Morphological observations on the cerebellar cortex. J. Comp. Neurol. 109, 1–33.10.1002/cne.901090102Search in Google Scholar PubMed

Braune, W. and Fischer, O. (1895). Der Gang des Menschen. Abh Math Phys Kl Saechs Ges Wiss 21, 153–322.Search in Google Scholar

Bretzner, F. and Brownstone, R.M. (2013). Lhx3-Chx10 reticulospinal neurons in locomotor circuits. J. Neurosci. 33, 14681–14692.10.1523/JNEUROSCI.5231-12.2013Search in Google Scholar PubMed PubMed Central

Brocard, F., Verdier, D., Arsenault, I., Lund, J.P., and Kolta, A. (2006). Emergence of intrinsic bursting in trigeminal sensory neurons parallels the acquisition of mastication in weanling rats. J. Neurophysiol. 96, 2410–2424.10.1152/jn.00352.2006Search in Google Scholar PubMed

Brocard, F., Ryczko, D., Fénelon, K., Hatem, R., Gonzales, D., Auclair, F., and Dubuc, R. (2010a). The transformation of a unilateral locomotor command into a symmetrical bilateral activation in the brainstem. J. Neurosci. 30, 523–533.10.1523/JNEUROSCI.3433-09.2010Search in Google Scholar PubMed PubMed Central

Brocard, F., Tazerart, S., and Vinay, L. (2010b). Do pacemakers drive the central pattern generator for locomotion in mammals? Neuroscientist 16, 139–155.10.1177/1073858409346339Search in Google Scholar PubMed

Brocard, F., Shevtsova, N.A., Bouhadfane, M., Tazerart, S., Heinemann, U., Rybak, I.A., and Vinay, L. (2013). Activity-dependent changes in extracellular Ca2+ and K+ reveal pacemakers in the spinal locomotor-related network. Neuron 77, 1047–1054.10.1016/j.neuron.2013.01.026Search in Google Scholar PubMed PubMed Central

Brooks, V.B. and Wilson, V.J. (1959). Recurrent inhibition in the cat’s spinal cord. J. Physiol. 146, 380–391.10.1113/jphysiol.1959.sp006199Search in Google Scholar PubMed PubMed Central

Brownstone, R.M. and Wilson, J.M. (2008). Strategies for delineating spinal locomotor-rhythm generating networks and the possible role of Hb9 interneurones in rhythmogenesis. Brain Res. Rev. 57, 64–76.10.1016/j.brainresrev.2007.06.025Search in Google Scholar PubMed

Brustein, E. and Rossignol, S. (1998). Recovery of locomotion after ventral and ventrolateral spinal lesions in the cat. I. Deficits and adaptive mechanisms. J. Neurophysiol. 80, 1245–1267.10.1152/jn.1998.80.3.1245Search in Google Scholar

Bui, T.V., Stifani, N., Akay, T., and Brownstone, R.M. (2016). Spinal microcircuits comprising dI3 interneurons are necessary for motor functional recovery following spinal cord transection. Elife 5, e21715.10.7554/eLife.21715Search in Google Scholar PubMed

Buschges, A., Akay, T., Gabriel, J.P., and Schmidt, J. (2008). Organizing network action for locomotion: insights from studying insect walking. Brain Res. Rev. 57, 162–171.10.1016/j.brainresrev.2007.06.028Search in Google Scholar PubMed

Bussel, B., Roby-Brami, A., Azouvi, P., Biraben, A., Yakovleff, A., and Held, J.P. (1988a). Myoclonus in a patient with spinal cord transection. Possible involvement of the spinal stepping generator. Brain 111, 1235–1245.10.1093/brain/111.5.1235Search in Google Scholar

Bussel, B., Roby-Brami, A., Yakovleff, A., and Bennis, N. (1988b). Evidences for the presence of a spinal stepping generator inpatients with a spinal cord section. Posture and Gait: Development, Adaptation and Modulation. B. Amblard, A. Berthoz, and F. Clarac, eds. (Amsterdam, the Netherlands: Elsevier), pp. 273–278.Search in Google Scholar

Bussel, B., Roby-Brami, A., Yakovleff, A., Bennis, N. (1989). Late flexion reflex in paraplegic patients. Evidence for a spinal stepping generator. Brain Res. Bull. 22, 53–56.10.1016/0361-9230(89)90127-5Search in Google Scholar PubMed

Butt, S.J., Harris-Warrick, R.M., and Kiehn, O. (2002a). Firing properties of identified interneuron populations in the mammalian hindlimb central pattern generator. J. Neurosci. 22, 9961–9971.10.1523/JNEUROSCI.22-22-09961.2002Search in Google Scholar

Butt, S.J., Lebret, J.M., and Kiehn, O. (2002b). Organization of left-right coordination in the mammalian locomotor network. Brain Res. Brain Res. Rev. 40, 107–117.10.1016/S0165-0173(02)00194-7Search in Google Scholar

Cabaj, A.M., Majczyński, H., Couto, E., Gardiner, P.F., Stecina, K., Sławińska, U., and Jordan, L.M. (2017). Serotonin controls initiation of locomotion and afferent modulation of coordination via 5-HT7 receptors in adult rats. J. Physiol. 595, 301–320.10.1113/JP272271Search in Google Scholar PubMed PubMed Central

Calancie, B., Needham-Shropshire, B., Jacobs, P., Willer, K., Zych, G., and Green, B.A. (1994). Involuntary stepping after chronic spinal cord injury. Evidence for a central rhythm generator for locomotion in man. Brain 117, 1143–1159.10.1093/brain/117.5.1143Search in Google Scholar PubMed

Caldeira, V., Dougherty, K.J., Borgius, L., and Kiehn, O. (2017). Spinal Hb9: cre-derived excitatory interneurons contribute to rhythm generation in the mouse. Sci. Rep. 7, 41369.10.1038/srep41369Search in Google Scholar PubMed PubMed Central

Callaghan, B., Furness, J.B., and Pustovit, R.V. (2018). Neural pathways for colorectal control, relevance to spinal cord injury and treatment: a narrative review. Spinal Cord 56, 199–205.10.1038/s41393-017-0026-2Search in Google Scholar PubMed

Camacho, F.J., Castro, M., Hernandez, V., and Paredes, R.G. (2007). Facilitation of ejaculation induced by 8-OH-DPAT does not produce conditioned place preference in male rats. Behav. Neurosci. 121, 579–585.10.1037/0735-7044.121.3.579Search in Google Scholar PubMed

Car, A. and Roman, C. (1970). Deglutitions and oesophageal reflex contractions induced by electrical stimulation of the medulla oblongata. Exp. Brain Res. 11, 75–92.Search in Google Scholar PubMed

Car, A. and Amri, M. (1987). Activity of neurons located in the region of the hypoglossal motor nucleus during swallowing in sheep. Exp. Brain Res. 69, 175–182.10.1007/BF00247040Search in Google Scholar PubMed

Caudle, K.L., Atkinson, D.A., Brown, E.H., Donaldson, K., Seibt, E., Chea, T., Smith, E., Chung, K., Shum-Siu, A., Cron, C.C., et al. (2015). Hindlimb stretching alters locomotor function after spinal cord injury in the adult rat. Neurorehabil. Neural Repair 29, 268–277.10.1177/1545968314543500Search in Google Scholar PubMed PubMed Central

Cazalets, J.R. and Bertrand, S. (2000). Coupling between lumbar and sacral motor networks in the neonatal rat spinal cord. Eur. J. Neurosci. 12, 2993–3002.10.1046/j.1460-9568.2000.00169.xSearch in Google Scholar PubMed

Cazalets, J.R., Squalli-Houssaini, Y., and Clarac, F. (1992). Activation of the central pattern generators for locomotion by serotonin and excitatory amino acids in neonatal rat. J. Physiol. 455, 187–204.10.1113/jphysiol.1992.sp019296Search in Google Scholar PubMed PubMed Central

Cazalets, J.R., Sqalli-Houssaini, Y., and Clarac, F. (1994). GABAergic inactivation of the central pattern generators for locomotion in isolated neonatal rat spinal cord. J. Physiol. 474, 173–181.10.1113/jphysiol.1994.sp020011Search in Google Scholar PubMed PubMed Central

Cazalets, J.R., Borde, M., and Clarac, F. (1995). Localization and organization of the central pattern generator for hindlimb locomotion in newbord rat. J. Neurosci. 15, 4943–4951.10.1523/JNEUROSCI.15-07-04943.1995Search in Google Scholar

Chamberlin, N.L. and Saper, C.B. (1998). A brainstem network mediating apneic reflexes in the rat. J. Neurosci. 18, 6048–6056.10.1523/JNEUROSCI.18-15-06048.1998Search in Google Scholar PubMed

Champagnat, J., Jacquin, T., and Richter, D.W. (1986). Voltage-dependent currents in neurones of the nuclei of the solitary tract of rat brainstem slices. Pflüger’s Arch. 406, 372–379.10.1007/BF00590939Search in Google Scholar PubMed

Chang, H.Y., Cheng, C.L., Chen, J.J., and de Groat, W.C. (2006). Roles of glutamatergic and serotonergic mechanisms in reflex control of the external urethral sphincter in urethane-anesthetized female rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 291, 224–234.10.1152/ajpregu.00780.2005Search in Google Scholar PubMed PubMed Central

Chang, S.R., Nandor, M.J., Li, L., Kobetic, R., Foglyano, K.M., Schnellenberger, J.R., Audu, M.L., Pinault, G., Quinn, R.D., and Triolo, R.J. (2017). A muscle-driven approach to restore stepping with an exoskeleton for individuals with paraplegia. J. Neuroeng. Rehabil. 14, 48.10.1186/s12984-017-0258-6Search in Google Scholar PubMed PubMed Central

Chau, C., Barbeau, H., and Rossignol, S. (1998a). Effects of intrathecal α1- and α2-noradrenergic agonists and norepinephrine on locomotion in chronic spinal cats. J. Neurophysiol. 79, 2941–2963.10.1152/jn.1998.79.6.2941Search in Google Scholar PubMed

Chau, C., Barbeau, H., and Rossignol, S. (1998b). Early locomotor training with clonidine in spinal cats. J. Neurophysiol. 79, 392–409.10.1152/jn.1998.79.1.392Search in Google Scholar PubMed

Chéhensse, C., Bahrami, S., Denys, P., Clément, P., Bernabé, J., and Giuliano, F. (2013). The spinal control of ejaculation revisited: a systematic review and meta-analysis of anejaculation in spinal cord injured patients. Hum. Reprod. Update 19, 507–526.10.1093/humupd/dmt029Search in Google Scholar PubMed

Chéhensse, C., Clément, P., Joussain, C., Bernabé, J., and Giuliano, F. (2016). The spinal generator of ejaculation: Functional consequences of chronic spinalization and effect of substance P in anesthetized rats. Neuroscience 336, 12–19.10.1016/j.neuroscience.2016.08.044Search in Google Scholar PubMed

Chéhensse, C., Facchinetti, P., Bahrami, S., Andrey, P., Soler, J.M., Chrétien, F., Bernabé, J., Clément, P., Denys, P., and Giuliano, F. (2017). Human spinal ejaculation generator. Ann. Neurol. 81, 35–45.10.1002/ana.24819Search in Google Scholar PubMed

Chen, J., Gu, B., Wu, G., Tu, H., Si, J., Xu, Y., and Andersson, K.E. (2013a). The effect of the 5-HT2A/2C receptor agonist DOI on micturition in rats with chronic spinal cord injury. J. Urol. 189, 1982–1988.10.1016/j.juro.2012.11.049Search in Google Scholar PubMed

Chen, C.Y., Kuo, T.B., Hsieh, I.T., and Yang, C.C. (2013b). Electrical stimulation of the rostral ventrolateral medulla promotes wakefulness in rats. Sleep Med. 14, 1076–1084.10.1016/j.sleep.2013.06.011Search in Google Scholar PubMed

Cheng, L., Song, W., Looger, L., Jan, L., and Jan, Y. (2010). The role of the TRP channel NompC in Drosophila larval and adult locomotion. Neuron 67, 373–380.10.1016/j.neuron.2010.07.004Search in Google Scholar PubMed

Chervin, R.D., Consens, F.B., and Kutluay, E. (2003). Alternating leg muscle activation during sleep and arousals: a new sleep-related motor phenomenon? Mov. Disord. 18, 551–559.10.1002/mds.10397Search in Google Scholar

Chiao, G.Z., Larson, C.R., Yajima, Y., Ko, P., and Kahrilas, P.J. (1994). Neuronal activity in nucleus ambiguus during deglutition and vocalization in conscious monkeys. Exp. Brain Res. 100, 29–38.10.1007/BF00227276Search in Google Scholar PubMed

Cina, C. and Hochman, S. (2000). Diffuse distribution of sulforhodamine-labeled neurons during serotonin-evoked locomotion in the neonatal rat thoracolumbar spinal cord. J. Comp. Neurol. 423, 590–602.10.1002/1096-9861(20000807)423:4<590::AID-CNE5>3.0.CO;2-LSearch in Google Scholar PubMed

Clarac, F. (2008). Some historical reflections on the neural control of locomotion. Brain Res. Rev. 57, 13–21.10.1016/j.brainresrev.2007.07.015Search in Google Scholar PubMed

Clarac, F. and Pearlstein, E. (2007). Invertebrate preparations and their contribution to neurobiology in the second half of the 20th C. Brain Res. Rev. 54, 113–161.10.1016/j.brainresrev.2006.12.007Search in Google Scholar

Clement, P. and Giuliano, F. (2016). Physiology and Pharmacology of Ejaculation. Basic Clin. Pharmacol. Toxicol. 119, 18–25.10.1111/bcpt.12546Search in Google Scholar PubMed

Clemens, S., Rye, D., and Hochman, S. (2006). Restless legs syndrome: revisiting the dopamine hypothesis from the spinal cord perspective. Neurology 67, 125–130.10.1212/01.wnl.0000223316.53428.c9Search in Google Scholar PubMed

Cohen, A.H. and Wallen, P. (1980). The neuronal correlate of locomotion in fish. ‘Fictive swimming’ induced in an in vitro preparation of the lamprey spinal cord. Exp. Brain Res. 41, 11–18.Search in Google Scholar

Cohen, A.H., Holmes, P.J., and Rand, R.H. (1982). The nature of the coupling between segmental oscillators of the lamprey spinal generator for locomotion: a mathematical model. J. Math. Biol. 13, 345–369.10.1007/BF00276069Search in Google Scholar PubMed

Consentino, F.L., Iero, I., Lanuzza, B., Tripodi, M., and Ferri, R. (2006). The neurophysiology of the alternating leg muscle activation (ALMA) during sleep: study of one patient before and after treatment with pramipexole. Sleep Med. 7, 63–71.10.1016/j.sleep.2005.06.007Search in Google Scholar PubMed

Conway, B.A., Hultborn, H., and Kiehn, O. (1987). Proprioceptive input resets central locomotor rhythm in the spinal cat. Exp. Brain Res. 68, 643–656.10.1007/BF00249807Search in Google Scholar PubMed

Coolen, L.M., Veening, J.G., Wells, A.B., and Shirpley, M.T. (2003). Afferent connections of the parvocellular subparafascicular thalamic nucleus in the rat: evidence for functional subdivisions. J. Comp. Neurol. 463, 132–156.10.1002/cne.10739Search in Google Scholar PubMed

Courtine, G., van den Brand, R., and Musienko, P. (2011). Spinal cord injury: time to move. Lancet 377, 1896–1898.10.1016/S0140-6736(11)60711-3Search in Google Scholar PubMed

Courtois, F.J., Charvier, K.F., Leriche, A., Vezina, J.G., Côté, M., and Bélanger, M. (2008). Blood pressure changes during sexual stimulation, ejaculation and midodrine treatment in men with SCI. BJU Int. 101, 331–337.10.1111/j.1464-410X.2007.07254.xSearch in Google Scholar PubMed

Cowley, K.C. and Schmidt, B.J. (1994). A comparison of motor patterns induced by N-methyl-d, l-aspartate, acetylcholine and serotonin in the in vitro neonatal rat spinal cord. Neurosci. Lett. 171, 147–150.10.1016/0304-3940(94)90626-2Search in Google Scholar PubMed

Cowley, K.C., Zaporozhets, E., MacLean, J.N., and Schmidt, B.J. (2005). Is NMDA receptor activation essential for the production of locomotor-like activity in the neonatal rat spinal cord? J. Neurophysiol. 94, 3805–3814.10.1152/jn.00016.2005Search in Google Scholar PubMed

Cowley, K.C., MacNeil, B.J., Chopek, J.W., Sutherland, S., and Schmidt, B.J. (2015). Neurochemical excitation of thoracic propriospinal neurons improves hindlimb stepping in adult rats with spinal cord lesions. Exp. Neurol. 264, 174–187.10.1016/j.expneurol.2014.12.006Search in Google Scholar PubMed

Croll, N.A. and Smith, J.M. (1978). Integrated behavior in the feeding phase of Caenorhabditis elegans (Nematoda). J. Zool. 184, 507–517.10.1111/j.1469-7998.1978.tb03304.xSearch in Google Scholar

Crone, S.A., Quinlan, K.A., Zagoraiou, L., Droho, S., Restrepo, C.E., Lundfald, L., Endo, T., Setlak, J., Jessell, T.M., Kiehn, O., et al. (2008). Genetic ablation of V2a ipsilateral interneurons disrupts left-right locomotor coordination in mammalian spinal cord. Neuron 60, 70–83.10.1016/j.neuron.2008.08.009Search in Google Scholar PubMed

Daghfous, G., Green, W.W., Alford, S.T., Zielinski, B.S., and Dubuc, R. (2016). Sensory activation of command cells for locomotion and modulatory mechanisms: Lessons from lampreys. Front. Neural Circuits 10, 18.10.3389/fncir.2016.00018Search in Google Scholar PubMed PubMed Central

Dai, Y. and Jordan, L.M. (2010a). Multiple effects of serotonin and acetylcholine on hyperpolarization-activated inward current in locomotor activity-related neurons in Cfos-EGFP mice. J. Neurophysiol. 104, 366–381.10.1152/jn.01110.2009Search in Google Scholar PubMed

Dai, Y. and Jordan, L.M. (2010b). Multiple patterns and components of persistent inward current with serotonergic modulation in locomotor activity-related neurons in Cfos-EGFP mice. J. Neurophysiol. 103, 1712–1727.10.1152/jn.01111.2009Search in Google Scholar PubMed

David, I., Holmes, P., and Ayali, A. (2016). Endogenous rhythm and pattern-generating circuit interactions in cockroach motor centres. Biol. Open 5, 1229–1240.10.1242/bio.018705Search in Google Scholar PubMed PubMed Central

Deeh Defo, P.B., Asongu, E., Wankeu, M.N., Ngadjui, E., Bonsou Fazin, G.R., Kemka, F.X., Carro-Juarez, M., Kamanyi, A., Kamtchouing, P., and Watcho, P. (2017). Guibourtia tessmannii-induced fictive ejaculation in spinal male rat: involvement of D1, D2-like receptors. Pharm. Biol. 55, 1138–1143.10.1080/13880209.2017.1291692Search in Google Scholar PubMed PubMed Central

de Groat, W.C. and Yoshimura, N. (2001). Pharmacology of the lower urinary tract. Ann. Rev. Pharmacol. Toxicol. 41, 691–721.10.1146/annurev.pharmtox.41.1.691Search in Google Scholar PubMed

de Groat, W.C. and Yoshimura, N. (2015). Anatomy and physiology of the lower urinary tract. Handb. Clin. Neurol. 130, 61–108.10.1016/B978-0-444-63247-0.00005-5Search in Google Scholar PubMed

de Groat, W.C., Booth, A.M., and Yoshimura, N. (1993). Nervous Control of the Urogenital System (Autonomic Nervous System), Vol. 3, Ch. 8. Maggi, C.A. ed. (London: Harwood Academic Publishers), pp. 227–289.Search in Google Scholar

De Groat, W.C., Griffiths, D., and Yoshimura, N. (2015). Neural control of the lower urinary tract. Compr. Physiol. 5, 327–396.10.1002/cphy.c130056Search in Google Scholar PubMed PubMed Central

de Kam, D., Rijken, H., Manintveld, T., Nienhuis, B., Dietz, V., and Duysens, J. (2013). Arm movements can increase leg muscle activity during submaximal recumbent stepping in neurologically intact individuals. J. Appl. Physiol. 115, 34–42.10.1152/japplphysiol.00510.2012Search in Google Scholar PubMed

De Looze, D., Van Laere, M., De Muynck, M., Beke, R., and Elewaut, A. (1998). Constipation and other chronic gastrointestinal problems in spinal cord injury patients. Spinal Cord 36, 63–66.10.1038/sj.sc.3100531Search in Google Scholar PubMed

Delcomyn, F. (1977). Coordination of invertebrate locomotion. Mechanics and Energetics of Locomotion. R.M. Alexander and G. Gold Spink, eds. (London: Chapman and Hall), pp. 82–114.Search in Google Scholar

Del Negro, C.A., Morgado-Valle, C., Hayes, J.A., Mackay, D.D., Pace, R.W., Crowder, E.A., and Feldman, J.L. (2005). Sodium and calcium current-mediated pacemaker neurons and respiratory rhythm generation. J. Neurosci. 25, 446–453.10.1523/JNEUROSCI.2237-04.2005Search in Google Scholar PubMed PubMed Central

Dempsey, J.A., Smith, C.A., Blain, G.M., Xie, A., Gong, Y., and Teodorescu, M. (2012). Role of central/peripheral chemoreceptors and their interdependence in the pathophysiology of sleep apnea. Adv. Exp. Med. Biol. 758, 343–349.10.1007/978-94-007-4584-1_46Search in Google Scholar PubMed

Dergacheva, O., Yamanaka, A., Schwartz, A.R., Polotsky, V.Y., and Mendelowitz, D. (2016). Direct projections from hypothalamic orexin neurons to brainstem cardiac vagal neurons. Neuroscience 339, 47–53.10.1016/j.neuroscience.2016.09.038Search in Google Scholar PubMed

Derjean, D., Bertrand, S., Nagy, F., and Shefchyk, S.J. (2005). Plateau potentials and membrane oscillations in parasympathetic preganglionic neurones and intermediolateral neurones in the rat lumbosacral spinal cord. J. Physiol. 563, 583–596.10.1113/jphysiol.2004.076802Search in Google Scholar PubMed

Díaz-Ríos, M., Dombeck, D.A., Webb, W.W., and Harris-Warrick, R.M. (2007). Serotonin modulates dendritic calcium influx in commissural interneurons in the mouse spinal locomotor network. J. Neurophysiol. 98, 2157–2167.10.1152/jn.00430.2007Search in Google Scholar PubMed

Díaz-Ríos, M., Guertin, P.A., and Rivera-Oliver, M. (2017). Neuromodulation of spinal locomotor networks in rodents. Curr. Pharm. Des. 23, 1741–1752.10.2174/1381612823666170124111729Search in Google Scholar PubMed

Dietz, V. and Duysens, J. (2000). Significance of load receptor input during locomotion: a review. Gait Posture 11, 102–110.10.1016/S0966-6362(99)00052-1Search in Google Scholar PubMed

Dietz, V., Fouad, K., and Bastiaanse, C.M. (2001). Neuronal coordination of arm and leg movements during human locomotion. Eur. J. Neurosci. 14, 1906–1914.10.1046/j.0953-816x.2001.01813.xSearch in Google Scholar PubMed

Dietz, V., Müller, R., and Colombo, G. (2002). Locomotor activity in spinal man: significance of afferent input from joint and load receptors. Brain 125, 2626–2634.10.1093/brain/awf273Search in Google Scholar PubMed

Dimitrijevic, M.R., Gerasimenko, Y., and Pinter, M.M. (1998). Evidence for a spinal central pattern generator in humans. Ann. NY Acad. Sci. 860, 360–376.10.1111/j.1749-6632.1998.tb09062.xSearch in Google Scholar PubMed

Dimitropoulos, K. and Gravas, S. (2015). Solifenacin/tamsulosin fixed-dose combination therapy to treat lower urinary tract symptoms in patients with benign prostatic hyperplasia. Drug Des. Devel. Ther. 9, 1707–1716.10.2147/DDDT.S53184Search in Google Scholar PubMed PubMed Central

Dolber, P.C., Gu, B., Zhang, X., Fraser, M.O., Thor, K.B., and Reiter, J.P. (2007). Activation of the external urethral sphincter central pattern generator by a 5-HT(1A) receptor agonist in rats with chronic spinal cord injury. Am. J. Physiol. Regul. Integr. Comp. Physiol. 292, 1699–1706.10.1152/ajpregu.00142.2006Search in Google Scholar

Doty, R.W. and Bosma, J.F. (1956). An electromyographic analysis of reflex deglutition. J. Neurophysiol. 19, 44–60.10.1152/jn.1956.19.1.44Search in Google Scholar PubMed

Doty, R.W., Richmond, W.H., and Storey, A.T. (1967). Effect of medullary lesions on coordination of deglutition. Exp. Neurol. 17, 91–106.10.1016/0014-4886(67)90125-2Search in Google Scholar PubMed

Dougherty, K.J., Zagoraiou, L., Satoh, D., Rozani, I., Doobar, S., Arber, S., Jessell, T.M., and Kiehn, O. (2013). Locomotor rhythm generation linked to the output of spinal shox2 excitatory interneurons. Neuron 80, 920–933.10.1016/j.neuron.2013.08.015Search in Google Scholar PubMed

Drake, M.J., Fowler, C.J., Griffiths, D., Mayer, E., Paton, J.F., and Birder, L. (2010). Neural control of the lower urinary and gastrointestinal tracts: supraspinal CNS mechanisms. Neurourol. 29, 119–127.10.1002/nau.20841Search in Google Scholar PubMed

Drew, T. and Marigold, D.S. (2015). Taking the next step: cortical contributions to the control of locomotion. Curr. Opin. Neurobiol. 33, 25–33.10.1016/j.conb.2015.01.011Search in Google Scholar PubMed

Duran, I., Gil, L., and Cueva-Rolon, R. (2000). Masculine copulatory behavior is facilitated by intrathecally administered muscarine. Exp. Brain Res. 134, 490–496.10.1007/s002210000488Search in Google Scholar PubMed

Duysens, J. (1977). Reflex control locomotion as revealed by stimulation of cutaneous afferents in spontaneously walking premammillary cats. J. Neurophysiol. 40, 737–751.10.1152/jn.1977.40.4.737Search in Google Scholar PubMed

Duysens, J., De Groote, F., and Jonkers, I. (2013). The flexion synergy, mother of all synergies and father of new models of gait. Front. Comput. Neurosci. 7, 14.10.3389/fncom.2013.00014Search in Google Scholar PubMed PubMed Central

Eccles, R.M. and Lundberg, A. (1958). Integrative pattern of Ia synaptic actions on motoneurones of hip and knee muscles. J. Physiol. 144, 271–298.10.1113/jphysiol.1958.sp006101Search in Google Scholar PubMed PubMed Central

Edgerton, V.R., Grillner, S., Sjöström, A., and Zangger, P. (1976). Central generation of locomotion in vertebrates. Neural Control of Locomotion. Herman, Grillner, Stein and Stuart, eds. (New York, USA: Plenum Press), pp. 439–464.10.1007/978-1-4757-0964-3_18Search in Google Scholar

Edgerton, V.R., Leon, R.D., Harkema, S.J., Hodgson, J.A., London, N., Reinkensmeyer, D.J., Roy, R.R., Talmadge, R.J., Tillakaratne, N.J., Timoszyk, W., et al. (2001). Retraining the injured spinal cord. J. Physiol. 533, 15–22.10.1111/j.1469-7793.2001.0015b.xSearch in Google Scholar PubMed

Edgley, S.A. and Jankowska, E. (1987). An interneuronal relay for group I and II muscle afferents in the midlumbar segments of the cat spinal cord. J. Physiol. 389, 647–674.10.1113/jphysiol.1987.sp016676Search in Google Scholar

Eke-Okoro, S.T., Gregoric, M., and Larsson, L.E. (1997). Alterations in gait resulting from deliberate changes of arm-swing amplitude and phase. Clin Biomech 12, 516–521.10.1016/S0268-0033(97)00050-8Search in Google Scholar

Eken, T., Hultborn, H., and Kiehn, O. (1989). Possible functions of transmitter-controlled plateau potentials in alpha motoneurones. Prog. Brain Res. 80, 257–267.10.1016/S0079-6123(08)62219-0Search in Google Scholar PubMed

El Manira, A., Tegnér, J., and Grillner, S. (1994). Calcium-dependent potassium channels play a critical role for burst termination in the locomotor network in lamprey. J. Neurophysiol. 72, 1852–1861.10.1152/jn.1994.72.4.1852Search in Google Scholar PubMed

Endo, T. and Kiehn, O. (2008). Asymmetric operation of the locomotor central pattern generator in the neonatal mouse spinal cord. J. Neurophysiol. 100, 3043–3054.10.1152/jn.90729.2008Search in Google Scholar PubMed

Ertekin, C. and Aydogdu, I. (2003). Neurophysiology of swallowing. Clin. Neurophysiol. 114, 2226–2244.10.1016/S1388-2457(03)00237-2Search in Google Scholar PubMed

Ezure, K., Oku, Y., and Tanaka, I. (1993). Location and axonal projection of one type of swallowing interneurons in cat medulla. Brain Res. 632, 216–224.10.1016/0006-8993(93)91156-MSearch in Google Scholar PubMed

Facchinetti, P., Giuliano, F., Laurin, M., Barnabé, J., and Clément, P. (2014). Direct brain projections onto the spinal generator of ejaculation in the rat. Neurosci. 272, 207–216.10.1016/j.neuroscience.2014.04.064Search in Google Scholar PubMed

Fedirchuk, B., Nielsen, J., Petersen, N., and Hultborn, H. (1998). Pharmacologically evoked fictive motor patterns in the acutely spinalized marmoset monkey (Callithrix jacchus). Exp. Brain Res. 122, 351–361.10.1007/s002210050523Search in Google Scholar PubMed

Feldman, J.L. and Kam, K. (2015). Facing the challenge of mammalian neural microcircuits: taking a few breaths may help. J. Physiol. 593, 3–23.10.1113/jphysiol.2014.277632Search in Google Scholar PubMed

Feldman, J.L., Del Negro, C.A., and Gray, P.A. (2013). Understanding the rhythm of breathing: so near, yet so far. Annu. Rev. Physiol. 75, 423–452.10.1146/annurev-physiol-040510-130049Search in Google Scholar PubMed

Feng-Chen, K.C. and Wolpaw, J.R. (1996). Operant conditioning of H-reflex changes synaptic terminals on primate motoneurons. Proc. Natl. Acad. Sci. USA 93, 9206–9211.10.1073/pnas.93.17.9206Search in Google Scholar

Fernandez, J.M., Sadaba, F., Villaverde, F.J., Alvaro, L.C., and Cortina, C. (1995). Cataplexy associated with midbrain lesion. Neurology 45, 393–394.10.1212/WNL.45.2.393-aSearch in Google Scholar PubMed

Field-Fote, E., Ness, L.L., and Ionno, M. (2012). Vibration elicits involuntary, step-like behavior in individuals with spinal cord injury. Neurorehabil. Neural Repair 26, 861–869.10.1177/1545968311433603Search in Google Scholar PubMed

Flourens, M.J.P. (1924). Recherches Expérimentales Sur Les Propriétés Et Les Fonctions Du Système Nerveux, Dans Les Animaux Vertébrés (Paris: Chez Crevot), Vol. 26, p. 20.Search in Google Scholar

Forssberg, H. and Grillner, S. (1973). The locomotion of the acute spinal cat injected with clonidine i.v. Brain Res. 50, 184–186.10.1016/0006-8993(73)90606-9Search in Google Scholar PubMed

Forssberg, H. and Hirschfeld, H. (1988). Phasic modulation of postural activation patterns during human walking. Prog. Brain Res. 76, 221–227.10.1016/S0079-6123(08)64508-2Search in Google Scholar PubMed

Forssberg, H., Grillner, S., and Rossignol, S. (1975). Phase dependent reflex reversal during walking in chronic spinal cats. Brain Res. 85, 103–107.10.1016/0006-8993(75)91013-6Search in Google Scholar PubMed

Forster, H.V., Haouzi, P., and Dempsey, J.A. (2012). Control of breathing during exercise. Compr. Physiol. 2, 743–777.10.1002/cphy.c100045Search in Google Scholar PubMed

Fowler, C.J., Beck, R.O., Gerrard, S., Betts, C.D., and Fowler, C.G. (1994). Intravesical capsaicin for treatment of detrusor hyperreflexia. J. Neurol. Neurosurg. Psych. 57, 169–173.10.1136/jnnp.57.2.169Search in Google Scholar PubMed PubMed Central

Fowler, C.J., Griffiths, D., and de Groat, W.C. (2008). The neural control of micturition. Nat. Rev. Neurosci. 9, 453–466.10.1038/nrn2401Search in Google Scholar PubMed PubMed Central

Friedman, H., Nashold, B.S.J., and Senechal, P. (1972). Spinal cord stimulation and bladder function in normal and paraplegic animals. J. Neurosurgery 36, 430–437.10.3171/jns.1972.36.4.0430Search in Google Scholar PubMed

Frigon, A. (2017). The neural control of interlimb coordination during mammalian locomotion. J. Neurophysiol. 117, 2224–2241.10.1152/jn.00978.2016Search in Google Scholar PubMed PubMed Central

Frigon, A. and Rossignol, S. (2008). Adaptive changes of the locomotor pattern and cutaneous reflexes during locomotion studied in the same cats before and after spinalization. J. Physiol. 586, 2927–2945.10.1113/jphysiol.2008.152488Search in Google Scholar PubMed PubMed Central

Frigon, A., Thibaudier, Y., Johnson, M.D., Heckman, C.J., and Hurteau, M.F. (2012). Cutaneous inputs from the back abolish locomotor-like activity and reduce spastic-like activity in the adult cat following complete spinal cord injury. Exp. Neurol. 235, 588–598.10.1016/j.expneurol.2012.03.013Search in Google Scholar PubMed PubMed Central

Füllhase, C., Soler, R., Westerling-Andersson, K., and Andersson, K.E. (2011). Beta3-adrenoceptors in the rat sacral spinal cord and their functional relevance in micturition under normal conditions and in a model of partial urethral obstruction. Neurourol. Urodyn. 30, 1382–1387.10.1002/nau.21071Search in Google Scholar PubMed

Fushiki, A., Zwart, M.F., Kohsaka, H., Fetter, R.D., Cardona, A., and Nose, A. (2016). A circuit mechanism for the propagation of waves of muscle contraction in Drosophila. Elife 15, e13253.10.7554/eLife.13253Search in Google Scholar PubMed PubMed Central

Gad, P.N., Roy, R.R., Zhong, H., Lu, D.C., Gerasimenko, Y.P., and Edgerton, V.R. (2014). Initiation of bladder voiding with epidural stimulation in paralyzed, step trained rats. PLoS One 9, e108184.10.1371/journal.pone.0108184Search in Google Scholar PubMed PubMed Central

Gad, P.N., Gerasimenko, Y.P., Zdunowski, S., Sayenko, D., Haakana, P., Turner, A., Lu, D., Roy, R.R., and Edgerton, V.R. (2015). Iron ’ElectriRx’ man: Overground stepping in an exoskeleton combined with noninvasive spinal cord stimulation after paralysis. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2015, 1124–1127.10.1109/EMBC.2015.7318563Search in Google Scholar PubMed PubMed Central

Gang, W., Hongjian, T., Jasheng, C., Jiemin, S., Zhong, C., Yuemin, X., Baojun, G., and Andersson, K.E. (2014). The effect of the 5-HT7 serotonin receptor agonist, LP44, on micturition in rats with chronic spinal cord injury. Neurourol. Urodyn. 33, 1165–1170.10.1002/nau.22463Search in Google Scholar PubMed

Garcia-Bravo, A.M., Suarez-Hernandez, D., Ruiz-Fernandez, M.A., Silva Gonzalez, O., Barbara-Bataller, E., and Méndez Suarez, J.L. (2006). Determination of changes in blood pressure during administration of Viagra in patients with SCI and erectile dysfunction. Spinal Cord 44, 301–308.10.1038/sj.sc.3101846Search in Google Scholar PubMed

Gargaglioni, L.H., Bícegoa, K.C., and Branco, L.G. (2008). Brain monoaminergic neurons and ventilatory control in vertebrates. Respir. Physiol. Neurobiol. 164, 112–122.10.1016/j.resp.2008.04.017Search in Google Scholar PubMed

Gariépy, J.F., Missaghi, K., and Dubuc, R. (2010). The interactions between locomotion and respiration. Prog. Brain Res. 187, 173–188.10.1016/B978-0-444-53613-6.00012-5Search in Google Scholar PubMed

Gaunt, R.A. and Prochazka, A. (2006). Control of urinary bladder function with devices: successes and failures. Prog. Brain Res. 152, 163–194.10.1016/S0079-6123(05)52011-9Search in Google Scholar PubMed

Gerasimenko, Y., Roy, R.R., and Edgerton, V.R. (2008). Epidural stimulation: comparison of the spinal circuits that generate and control locomotion in rats, cats and humans. Exp. Neurol. 209, 417–425.10.1016/j.expneurol.2007.07.015Search in Google Scholar PubMed

Gerstenberg, T.C, Levin, R.J., and Wagner, G. (1990). Erection and ejaculation in man – assessment of the electromyographic activity of the bulbocavernosus and ischiocavernosus muscles. Br. J. Urol. 65, 395–402.10.1111/j.1464-410X.1990.tb14764.xSearch in Google Scholar PubMed

Gerstner, G., Madhavan, S., and Crane, E. (2011). Mammalian oral rhythms and motor control. Biomechanics in applications - Chapter 12. V. Kliva, ed. (Croatia: InTech Open Access publisher), pp. 275–299.10.5772/19501Search in Google Scholar

Getting, P.A. (1977). Neuronal organization of escape swimming in Tritonia. J. Comp. Physiol. 121, 325–342.10.1007/BF00613012Search in Google Scholar

Ginty, D.D., Bading, H., and Greenberg, M.E. (1992). Trans-synaptic regulation of gene expression. Curr. Opin. Neurobiol. 2, 312–316.10.1016/0959-4388(92)90121-ZSearch in Google Scholar PubMed

Giroux, N., Brustein, E., Chau, C., Barbeau, H., Reader, T.A., and Rossignol, S. (1998). Differential effects of the noradrenergic agonist clonidine on the locomotion of intact, partially and completely spinalized adult cats. Ann. NY Acad. Sci. 860, 517–520.10.1111/j.1749-6632.1998.tb09092.xSearch in Google Scholar

Giroux, N., Rossignol, S., and Reader, T.A. (1999). Autoradiographic study of alpha1- and alpha2-noradrenergic and serotonin1A receptors in the spinal cord of normal and chronically transected cats. J. Comp. Neurol. 406, 402–414.10.1002/(SICI)1096-9861(19990412)406:3<402::AID-CNE8>3.0.CO;2-FSearch in Google Scholar PubMed

Giroux, N., Chau, C., Barbeau, H., Reader, T.A., and Rossignol, S. (2003). Effects of intrathecal glutamatergic drugs on locomotion. II. NMDA and AP-5 in intact and late spinal cats. J. Neurophysiol. 90, 1027–1045.10.1152/jn.00758.2002Search in Google Scholar PubMed

Giszter, S., Patil, V., and Hart, C. (2007). Primitives, premotor drives, and pattern generation: a combined computational and neuroethological perspective. Prog. Brain Res. 165, 323–346.10.1016/S0079-6123(06)65020-6Search in Google Scholar PubMed

Giuliano, F. and Clement, P. (2005). Physiology of ejaculation: emphasis on serotonergic control. Eur. Urol. 48, 408–417.10.1016/j.eururo.2005.05.017Search in Google Scholar PubMed

Glendinning, D.S., Cooper, B.Y., Vierck, C.J. Jr., and Leonard, C.M. (1992). Altered precision grasping in stumptail macaques after fasciculus cuneatus lesions. Somatosens. Mot. Res. 9, 61–73.10.3109/08990229209144763Search in Google Scholar PubMed

Goltz, F. and Freusberg, A. (1874). Uber die Funktionen des Lendenmarkes des Hundes. Pflüger’s Physiol. 8, 460–498.Search in Google Scholar

Gomez-Pinilla, F., Ying, Z., Roy, R.R., Hodgson, J., and Edgerton, V.R. (2004). Afferent input modulates neurotrophins and synaptic plasticity in the spinal cord. J. Neurophysiol. 92, 3423–3432.10.1152/jn.00432.2004Search in Google Scholar PubMed

Gorczyca, D.A., Younger, S., Meltzer, S., Kim, S.E., Cheng, L., Song, W., Lee, H.Y., Jan, L.Y., and Jan, Y.N. (2014). Identification of Ppk26, a DEG/ENaC channel functioning with Ppk1 in a mutually dependent manner to guide locomotion behavior in Drosophila. Cell Rep. 9, 1446–1458.10.1016/j.celrep.2014.10.034Search in Google Scholar

Gordan, R., Gwathmey, J.K., and Xie, L.H. (2015). Autonomic and endocrine control of cardiovascular function. World J. Cardiol. 7, 204–214.10.4330/wjc.v7.i4.204Search in Google Scholar PubMed

Gorodnichev, R.M., Pivovarova, E.A., Pukhov, A., Moissev, S.A., Sovokhin, A.A., Moshonkina, T.R., Shcherbakova, N.A., Kilimnik, V.A., Selionov, V.A., Kozlovskaia, I.B., et al. (2012). [Transcutaneous electrical stimulation of the spinal cord: non-invasive tool for activation of locomotor circuitry in human]. Fiziol. Cheloveka 38, 46–56.Search in Google Scholar PubMed

Gosgnach, S., Lanuza, G.M., Butt, S.J., Saueressig, H., Zhang, Y., Velasquez, T., Riethmacher, D., Callaway, E.M., Kiehn, O., and Goulding, M. (2006). V1 spinal neurons regulate the speed of vertebrate locomotor outputs. Nature 440, 215–219.10.1038/nature04545Search in Google Scholar PubMed

Gossard, J.P., Brownstone, R.M., Barajon, I., and Hultborn, H. (1994). Transmission in a locomotor-related group Ib pathway from hindlimb extensor muscles in the cat. Exp. Brain Res. 98, 213–228.10.1007/BF00228410Search in Google Scholar

Goulding, M. (2009). Circuits controlling vertebrate locomotion: moving in a new direction. Nat. Rev. Neurosci. 10, 507–518.10.1038/nrn2608Search in Google Scholar

Goulding, M., Bourane, S., Garcia-Campmany, L., Dalet, A., and Koch, S. (2014). Inhibition downunder: an update from the spinal cord. Curr. Opin. Neurobiol. 26, 161–166.10.1016/j.conb.2014.03.006Search in Google Scholar PubMed

Graham Brown, T. (1911). The intrinsic factors in the act of progresson in the mammal. Proc. R. Soc. Lond. 84, 309–319.Search in Google Scholar

Graham Brown, T. (1914). On the nature of the fundamental activity of the nervous centres; together with an analysis of the conditioning of rhythmic activity in progression, and a theory of the evolution of function in the nervous system. J. Physiol. 48, 18–46.10.1113/jphysiol.1914.sp001646Search in Google Scholar

Grey, M.J., Ladouceur, M., Andersen, J.B., Nielsen, J.B., and Sinkjær, T. (2001). Group II muscle afferents probably contribute to the medium latency soleus stretch reflex during walking in humans. J. Physiol. 534, 925–933.10.1111/j.1469-7793.2001.00925.xSearch in Google Scholar PubMed

Grey, M.J., Nielsen, J.B., Mazzaro, N., and Sinkjaer, T. (2007). Positive force feedback in human walking. J. Physiol. 581, 99–105.10.1113/jphysiol.2007.130088Search in Google Scholar PubMed

Grillner, S. (1981). Control of locomotion in bipeds, tetrapods, and fish. Handbook of Physiology – The Nervous System II. J.M. Brookhart and V.B. Mountcastle, eds. (Bethesda, USA: American Physiological Society), pp. 1179–1236.10.1002/cphy.cp010226Search in Google Scholar

Grillner, S. (1996). Neural networks for vertebrate locomotion. Sci Am 274, 64–69.10.1038/scientificamerican0196-64Search in Google Scholar PubMed

Grillner, S. (2006). Neuronal networks in motion from ion channels to behaviour. An. R. Acad. Nac. Med. (Madr) 123, 297–298.Search in Google Scholar PubMed

Grillner, S. and Rossignol, S. (1978). On the initiation of the swing phase of locomotion in chronic spinal cats. Brain Res. 146, 269–277.10.1016/0006-8993(78)90973-3Search in Google Scholar PubMed

Grillner, S. and Zangger, P. (1979). On the central generation of locomotion in the low spinal cat. Exp. Brain Res. 34, 241–261.10.1007/BF00235671Search in Google Scholar PubMed

Grillner, S. and Wallen, P. (1985). The ionic mechanisms underlying N-methyl-D-aspartate receptor-induced, tetrodotoxin-resistant membrane potential oscillations in lamprey neurons active during locomotion. Neurosci. Lett. 60, 289–294.10.1016/0304-3940(85)90592-0Search in Google Scholar PubMed

Grillner, S. and Matsushima, T. (1991). The neural network underlying locomotion in lamprey – synaptic and cellular mechanisms. Neuron 7, 1–15.10.1016/0896-6273(91)90069-CSearch in Google Scholar PubMed

Grob, M. and Guertin, P.A. (2007). Role of Ca(2+) in the pacemaker-like property of spinal motoneurons. Med. Sci. 23, 64–66.Search in Google Scholar

Gu, B., Wu, G., Si, J., Xu, Y., and Andersson, K.E. (2012). Improving voiding efficiency in the diabetic rat by a 5-HT1A serotonin receptor agonist. Neurourol. Urodyn. 31, 168–173.10.1002/nau.21182Search in Google Scholar PubMed

Guertin, P.A. (2004). Role of NMDA receptor activation in serotonin agonist-induced air-stepping in paraplegic mice. Spinal Cord 42, 185–190.10.1038/sj.sc.3101580Search in Google Scholar PubMed

Guertin, P.A. (2005). Semiquantitative assessment of hindlimb movement recovery without intervention in adult paraplegic mice. Spinal Cord 43, 162–166.10.1038/sj.sc.3101701Search in Google Scholar PubMed

Guertin, P.A. (2009). The mammalian central pattern generator for locomotion. Brain Res. Rev. 62, 45–56.10.1016/j.brainresrev.2009.08.002Search in Google Scholar PubMed

Guertin, P.A. (2013). Central pattern generator for locomotion: anatomical, physiological, and pathophysiological considerations. Front. Neurol. 3, 183.10.3389/fneur.2012.00183Search in Google Scholar PubMed

Guertin, P.A. (2014). Preclinical evidence supporting the clinical development of central pattern generator-modulating therapies for chronic spinal cord-injured patients. Front. Hum. Neurosci. 8, 272.10.3389/fnhum.2014.00272Search in Google Scholar PubMed

Guertin, P.A. (2016). New pharmacological approaches against chronic bowel and bladder problems in paralytics. World J. Crit. Care Med. 5, 1–6.10.5492/wjccm.v5.i1.1Search in Google Scholar PubMed

Guertin, P.A. and Hounsgaard, J. (1998a). Chemical and electrical stimulation induce rhythmic motor activity in an in vitro preparation of the spinal cord from adult turtles. Neurosci. Lett. 245, 5–8.10.1016/S0304-3940(98)00164-5Search in Google Scholar

Guertin, P.A. and Hounsgaard, J. (1998b). NMDA-Induced intrinsic voltage oscillations depend on L-type calcium channels in spinal motoneurons of adult turtles. J. Neurophysiol. 80, 3380–3382.10.1152/jn.1998.80.6.3380Search in Google Scholar

Guertin, P.A. and Hounsgaard, J. (1999). L-type calcium channels but not N-methyl-D-aspartate receptor channels mediate rhythmic activity induced by cholinergic agonist in motoneurons from turtle spinal cord slices. Neurosci. Lett. 261, 81–84.10.1016/S0304-3940(99)00013-0Search in Google Scholar PubMed

Guertin, P.A. and Hounsgaard, J. (2005). Conditional intrinsic voltage oscillations in mature vertebrate neurons undergo specific changes in culture. J. Neurophysiol. 95, 2024–2027.10.1152/jn.00832.2005Search in Google Scholar PubMed

Guertin, P.A. and Steuer, I. (2005). Ionotropic 5-HT3 receptor agonist-induced motor responses in the hindlimbs of paraplegic mice. J. Neurophysiol. 94, 3397–3405.10.1152/jn.00587.2005Search in Google Scholar PubMed

Guertin, P.A. and Steuer, I. (2009). Key central pattern generators of the spinal cord. J. Neurosci. Res. 87, 2399–2405.10.1002/jnr.22067Search in Google Scholar PubMed

Guertin, P., Angel, M.J., Perreault, M.C., and McCrea, D.A. (1995). Ankle extensor group I afferents excite extensors throughout the hindlimb during fictive locomotion in the cat. J. Physiol. 487, 197–209.10.1113/jphysiol.1995.sp020871Search in Google Scholar PubMed PubMed Central

Guertin, P.A., Ung, R.V., and Rouleau, P. (2010). Oral administration of a tri-therapy for central pattern generator activation in paraplegic mice: proof-of-concept of efficacy. Biotechnol. J. 5, 421–426.10.1002/biot.200900278Search in Google Scholar PubMed

Guertin, P.A., Ung, R.V., Rouleau, P., and Steuer, I. (2011). Effects on locomotion, muscle, bone, and blood induced by a combination therapy eliciting weight-bearing stepping in nonassisted spinal cord-transected mice. Neurorehabil. Neural. Repair 25, 234–242.10.1177/1545968310378753Search in Google Scholar PubMed

Guevremont, L., Renzi, C.G., Norton, J.A., Kowalczewski, J., Saigal, R., and Mushahwar, V.K. (2006). Locomotor-related networks in the lumbosacral enlargement of the adult spinal cat: activation through intraspinal microstimulation. IEEE Trans. Neural Syst. Rehabil. Eng. 14, 266–272.10.1109/TNSRE.2006.881592Search in Google Scholar PubMed

Guo, Y., Wang, Y., Zhang, W., Meltzer, S., Zanini, D., Yu, Y., Li, J., Cheng, T., Guo, Z., Wang, Q., et al. (2016). Transmembrane channel-like (tmc) gene regulates Drosophila larval locomotion. Proc. Natl. Acad. Sci. USA 113, 7243–7248.10.1073/pnas.1606537113Search in Google Scholar PubMed PubMed Central

Gut, N.K. and Winn, P. (2015). Deep brain stimulation of different pedunculopontine targets in a novel rodent model of parkinsonism. J. Neurosci. 35, 4792–4803.10.1523/JNEUROSCI.3646-14.2015Search in Google Scholar

Guttman, L. and Walsh, J.J. (1971). Prostigmine assessment test of fertility in spinal man. Parapl. 9, 39–51.10.1038/sc.1971.7Search in Google Scholar

Guyenet, P.G. and Bayliss, D.A. (2015). Neural control of breathing and CO2 homeostasis. Neuron 87, 946–961.10.1016/j.neuron.2015.08.001Search in Google Scholar PubMed

Guyenet, P.G., Bayliss, D.A., Stornetta, R.L., Ludwig, M.G., Kumar, N.N., Shi, Y., Burke, P.G., Kanbar, R., Basting, T.M., Holloway, B.B., et al. (2016). Proton detection and breathing regulation by the retrotrapezoid nucleus. J. Physiol. 594, 1529–1551.10.1113/JP271480Search in Google Scholar PubMed

Hagg, T. and Oudega, M. (2006). Degenerative and spontaneous regenerative processes after spinal cord injury. J. Neurotrauma 23, 264–280.10.1089/neu.2006.23.263Search in Google Scholar PubMed

Hägglund, M., Borgius, L., Dougherty, K.J., and Kiehn, O. (2010). Activation of groups of excitatory neurons in the mammalian spinal cord or hindbrain evokes locomotion. Nat. Neurosci. 13, 246–252.10.1038/nn.2482Search in Google Scholar PubMed

Hägglund, M., Dougherty, K.J., Borgius, L., Itohara, S., Iwasato, T., and Kiehn, O. (2013). Optogenetic dissection reveals multiple rhythmogenic modules underlying locomotion. Proc. Natl. Acad. Sci. USA 110, 11589–11594.10.1073/pnas.1304365110Search in Google Scholar

Han, P., Nakanishi, S.T., Tran, M.A., and Whelan, P.J. (2007). Dopaminergic modulation of spinal neuronal excitability. J. Neurosci. 27, 13192–13204.10.1523/JNEUROSCI.1279-07.2007Search in Google Scholar PubMed

Harkema, S.J. (2008). Plasticity of interneuronal networks of the functionally isolated human spinal cord. Brain Res. Rev. 57, 255–264.10.1016/j.brainresrev.2007.07.012Search in Google Scholar PubMed

Harris-Warrick, R.M. (2002). Voltage-sensitive ion channels in rhythmic motor systems. Curr. Opin. Neurobiol. 12, 646–651.10.1016/S0959-4388(02)00377-XSearch in Google Scholar PubMed

Harris-Warrick, R.M. (2011). Neuromodulation and flexibility in central pattern generator networks. Curr. Opin. Neurobiol. 21, 685–692.10.1016/j.conb.2011.05.011Search in Google Scholar PubMed PubMed Central

Hartmann, P., Ramseir, A., Gudat, F., Mihatsch, M.J., and Polasek, W. (1994). Normal weight of the brain in adults in relation to age, sex, body height and weight. Pathologe 15, 165–170.10.1007/s002920050040Search in Google Scholar PubMed

Heckscher, E.S., Zarin, A.A., Faumont, S., Clark, M.Q., Manning, L., Fushiki, A., Schneider-Mizell, C.M., Fetter, R.D., Truman, J.W., Zwart, M.F., et al. (2015). Even-skipped(+) interneurons are core components of a sensorimotor circuit that maintains left-right symmetric muscle contraction amplitude. Neuron 88, 314–329.10.1016/j.neuron.2015.09.009Search in Google Scholar PubMed PubMed Central

Herculano-Houzel, S. (2009). The human brain in numbers: a linearly scaled-up primate brain. Front. Hum. Neurosci. 3, 1–11.10.3389/neuro.09.031.2009Search in Google Scholar PubMed PubMed Central

Hernández-Chan, N.G., Góngora-Alfaro, J.L., Álvarez-Cervera, F.J., Solís-Rodríguez, F.A., Heredia-López, F.J., and Arankowsky-Sandoval, G. (2011). Quinolinic acid lesions of the pedunculopontine nucleus impair sleep architecture, but not locomotion, exploration, emotionality or working memory in the rat. Behav. Brain Res. 225, 482–490.10.1016/j.bbr.2011.08.007Search in Google Scholar PubMed

Hiebert, G.W., Whelan, P.J., Prochazka, A., and Pearson, K.G. (1996). Contribution of hind limb flexor muscle afferents to the timing of phase transitions in the cat step cycle. J. Neurophysiol. 75, 1126–1137.10.1152/jn.1996.75.3.1126Search in Google Scholar PubMed

Higashijima, S., Schaefer, M., and Fetcho, J.R. (2004). Neurotransmitter properties of spinal interneurons in embryonic and larval zebrafish. J. Comp. Neurol. 480, 19–37.10.1002/cne.20279Search in Google Scholar PubMed

Hochman, S. (2015). Metabolic recruitment of spinal locomotion: intracellular neuromodulation by trace amines and their receptors. Neural Regen. Res. 10, 1940–1942.10.4103/1673-5374.169625Search in Google Scholar PubMed PubMed Central

Hochman, S., Jordan, L.M., and MacDonald, J.F. (1994). N-methyl-D-aspartate receptor-mediated voltage oscillations in neurons surrounding the central canal in slices of rat spinal cord. J. Neurophysiol. 72, 565–577.10.1152/jn.1994.72.2.565Search in Google Scholar PubMed

Hodgkin, A. and Huxley, A. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerves. J. Physiol. 117, 500–544.10.1113/jphysiol.1952.sp004764Search in Google Scholar PubMed PubMed Central

Hollis, J.B. and Castell, D.O. (1975). Effects of dry swallows and wet swallow of different volumes on esophageal peristalsis. J. Appl. Physiol. 38, 1161–1164.10.1152/jappl.1975.38.6.1161Search in Google Scholar

Holloway, B.B., Viar, K.E., Stornetta, R.L., and Guyenet, P.G. (2015). The retrotrapezoid nucleus stimulates breathing by releasing glutamate in adult conscious mice. Eur. J. Neurosci. 42, 2271–2282.10.1111/ejn.12996Search in Google Scholar PubMed

Holstege, G., Graveland, G., Bijker-Biemond, C., and Schuddeboom, I. (1983). Location of motoneurons innervating soft palate, pharynx and upper esophagus. Anatomical evidence for a possible swallowing center in the pontine reticular formation. Brain Behav. Evol. 23, 47–62.10.1159/000121488Search in Google Scholar PubMed

Hoover, J.E. and Durkovic, R.G. (1992). Retrograde labeling of lumbosacral interneurons following injections of red and green fluorescent microspheres into hindlimb motor nuclei of the cat. Somatosens Mot. Res. 9, 211–226.10.3109/08990229209144772Search in Google Scholar

Hotta, H. and Watanabe, N. (2015). Gentle mechanical skin stimulation inhibits micturition contractions via the spinal opioidergic system and by decreasing both ascending and descending transmissions of the micturition reflex in the spinal cord. PLoS One 10, e0135185.10.1371/journal.pone.0135185Search in Google Scholar PubMed

Hounsgaard, J., Hultborn, H., Jespersen, B., and Kiehn, O. (1984). Intrinsic membrane properties causing a bistable behaviour of alpha-motoneurones. Exp. Brain Res. 55, 391–394.10.1007/BF00237290Search in Google Scholar PubMed

Hounsgaard, J., Hultborn, H., and Kiehn, O. (1986). Transmitter-controlled properties of alpha-motoneurones causing long-lasting motor discharge to brief excitatory inputs. Prog. Brain Res. 64, 39–49.10.1016/S0079-6123(08)63398-1Search in Google Scholar PubMed

Huang, A., Noga, B.R., Carr, P.A., Fedirchuk, B., and Jordan, L.M. (2000). Spinal cholinergic neurons activated during locomotion: localization and electrophysiological characterization. J. Neurophysiol. 83, 3537–3547.10.1152/jn.2000.83.6.3537Search in Google Scholar PubMed

Hubscher, C.H. and Johnson, R.D. (1996). Responses of medullary reticular formation neurons to input from the male genitalia. J. Neurophysiol. 76, 2474–2482.10.1152/jn.1996.76.4.2474Search in Google Scholar PubMed

Hubscher, C.H. and Johnson, R.D. (2003). Responses of thalamic neurons to input from the male genitalia. J. Neurophysiol. 89, 2–11.10.1152/jn.00294.2002Search in Google Scholar PubMed

Hubscher, C.H., Montgomery, L.R., Fell, J.D., Armstrong, J.E., Poudyal, P., Herrity, A.N., and Harkema, S.J. (2016). Effects of exercise training on urinary tract function after spinal cord injury. Am. J. Physiol. Renal Physiol. 310, F1258–F1268.10.1152/ajprenal.00557.2015Search in Google Scholar

Huckstepp, R.T., Henderson, L.E., Cardoza, K.P., and Feldman, J.L. (2016). Interactions between respiratory oscillators in adult rats. Elife 5, e14203.10.7554/eLife.14203Search in Google Scholar PubMed

Hugues, G.M. and Wiersma, C.A.G. (1960). The coordination of swimmeret movements in the crayfish, Procambarus Clarkii (Girard). J. Exptl. Biol. 39, 657–670.10.1242/jeb.37.4.657Search in Google Scholar

Hultborn, H. (1976). Transmission in the pathway of reciprocal Ia inhibition to motoneurones and its control during the tonic stretch reflex. Prog. Brain Res. 44, 235–255.10.1016/S0079-6123(08)60736-0Search in Google Scholar PubMed

Hultborn, H. (2001). State-dependent modulation of sensory feedback. J. Physiol. 533, 5–13.10.1111/j.1469-7793.2001.0005b.xSearch in Google Scholar PubMed PubMed Central

Hultborn, H. (2006). Spinal reflexes, mechanisms and concepts: from Eccles to Lundberg and beyond. Prog. Neurobiol. 78, 215–232.10.1016/j.pneurobio.2006.04.001Search in Google Scholar PubMed

Hultborn, H. and Pierrot-Deseilligny, E. (1979). Input-output relations in the pathway of recurrent inhibition to motoneurones in the cat. J. Physiol. 297, 267–287.10.1113/jphysiol.1979.sp013039Search in Google Scholar PubMed PubMed Central

Husch, A., Dietz, S.B., Hong, D.N., and Harris-Warrick, R.M. (2015). Adult spinal V2a interneurons show increased excitability and serotonin-dependent bistability. J. Neurophysiol. 113, 1124–1134.10.1152/jn.00741.2014Search in Google Scholar PubMed PubMed Central

Huynh, H.K., Willemsen, A.T., Lovick, T.A., and Holstege, G. (2013). Pontine control of ejaculation and female orgasm. J. Sex. Med. 10, 3038–3048.10.1111/jsm.12300Search in Google Scholar PubMed

Ikeda, K., Kawakami, K., Onimaru, H., Okada, Y., Yokota, S., Koshiya, N., Oku, Y., Iizuka, M., and Koizumi, H. (2017). The respiratory control mechanisms in the brainstem and spinal cord: integrative views of the neuroanatomy and neurophysiology. J. Physiol. Sci. 67, 45–62.10.1007/s12576-016-0475-ySearch in Google Scholar PubMed PubMed Central

Inoue, M. (2015). The neural mechanisms underlying swallowing. Brain Nerve 67, 157–168.Search in Google Scholar PubMed

Inoue, E., Chandler, S.H., and Goldberg, L.J. (1994). Neuropharmacological mechanisms underlying rhythmical discharge in trigeminal interneurons during fictive mastication. J. Neurophysiol. 71, 2061–2073.10.1152/jn.1994.71.6.2061Search in Google Scholar PubMed

Ionavichute, V.I., Samonina, G.E., and Udel’nov, M.G. (1972). Localization and structural functional organization of the nuclear system of the vagus nerves comprising the (cardiac center) of the medulla oblongata. Usp. Fiziol. Nauk. 3, 3–23.Search in Google Scholar PubMed

Ivanenko, Y.P., Poppele, R.E., and Lacquaniti, F. (2006). Spinal cord maps of spatiotemporal alpha-motoneuron activation in humans walking at different speeds. J. Neurophysiol. 95, 602–618.10.1152/jn.00767.2005Search in Google Scholar PubMed

Ivanenko, Y.P., Gurfinkel, V.S., Selionov, V.A., Solopova, I.A., Sylos-Labini, F., Guertin, P.A., and Lacquaniti, F. (2017). Tonic and rhythmic spinal activity underlying locomotion. Curr. Pharm. Des. 23, 1753–1763.10.2174/1381612823666170125152246Search in Google Scholar PubMed

Iwagaki, N. and Miles, G.B. (2011). Activation of group I metabotropic glutamate receptors modulates locomotor-related motoneuron output in mice. J. Neurophysiol. 105, 2108–2120.10.1152/jn.01037.2010Search in Google Scholar

Jahn, K., Strupp, M., Schneider, E., Dieterich, M., and Brandt, T. (2000). Differential effects of vestibular stimulation on walking and running. Neuroreport 11, 1745–1748.10.1097/00001756-200006050-00029Search in Google Scholar PubMed

Jankowska, E. (1992). Interneuronal relay in spinal pathways from proprioceptors. Prog. Neurobiol. 38, 335–378.10.1016/0301-0082(92)90024-9Search in Google Scholar PubMed

Jankowska, E., Jukes, M.G., Lund, S., and Lundberg, A. (1967a). The effect of DOPA on the spinal cord. 5. Reciprocal organization of pathways transmitting excitatory action to alpha motoneurones of flexors and extensors. Acta Physiol. Scand. 70, 369–388.10.1111/j.1748-1716.1967.tb03636.xSearch in Google Scholar

Jankowska, E., Jukes, M.G., Lund, S., and Lundberg, A. (1967b). The effect of DOPA on the spinal cord. 6. Half-centre organization of interneurones transmitting effects from the flexor reflex afferents. Acta Physiol. Scand. 70, 389–402.10.1111/j.1748-1716.1967.tb03637.xSearch in Google Scholar

Jean, A. (1972). Localization and activity of medullary swallowing neurones. J. Physiol. 64, 227–268.Search in Google Scholar

Jean, A. (2001). Brainstem control of swallowing: neuronal network and cellular mechanisms. Physiol. Rev. 81, 929–969.10.1152/physrev.2001.81.2.929Search in Google Scholar PubMed

Jean, A. and Car, A. (1979). Inputs to the swallowing medullary neurons from the peripheral afferent fibers and the swallowing cortical area. Brain Res. 178, 567–572.10.1016/0006-8993(79)90715-7Search in Google Scholar PubMed

Jell, R.M., Elliott, C., and Jordan, L.M. (1985). Initiation of locomotion from the mesencephalic locomotor region: effects of selective brainstem lesions. Brain Res. 328, 121–128.10.1016/0006-8993(85)91330-7Search in Google Scholar PubMed

Jesionowska, H. and Hemmings, R. (1991). Good-quality semen recovered from a paraplegic man with physostigmine salicylate treatment: a case report. J. Reprod. Med. 36, 167–169.Search in Google Scholar PubMed

Jiang, Z., Carlin, K.P., and Brownstone, R.M. (1999). An in vitro functionally mature mouse spinal cord preparation for the study of spinal motor networks. Brain Res. 816, 493–499.10.1016/S0006-8993(98)01199-8Search in Google Scholar

Jonas, D., Linzbach, P., and Weber, W. (1979). The use of Midodrin in the treatment of ejaculation disorders following retroperitoneal lymphadenectomy. Eur. Urol. 5, 184–187.10.1159/000473102Search in Google Scholar PubMed

Jones, R. (2002). Not such as featherbrain. Nat. Rev. Neurosci. 3, 672.10.1038/nrn922Search in Google Scholar PubMed

Jordan, L.M., Liu, J., Hedlund, P.B., Akay, T., and Pearson, K.G. (2008). Descending command systems for the initiation of locomotion in mammals. Brain Res. Rev. 57, 183–191.10.1016/j.brainresrev.2007.07.019Search in Google Scholar PubMed

Jordan, L.M., McVagh, J.R., Noga, B.R., Cabaj, A.M., Majczyński, H., Sławińska, U., Provencher, J., Leblond, H., and Rossignol, S. (2014). Cholinergic mechanisms in spinal locomotion-potential target for rehabilitation approaches. Front. Neural Circuits 8, 132.10.3389/fncir.2014.00132Search in Google Scholar PubMed

Ju, G., Melander, T., Ceccatelli, S., Hökfelt, T., and Frey, P. (1987). Immunohistochemical evidence for a spinothalamic pathway co-containing CCK- and galanin-like immunoreactivities in the rat. Neurosci 20, 439–456.10.1016/0306-4522(87)90103-5Search in Google Scholar

Juvin, L., Simmers, J., and Morin, D. (2005). Propriospinal circuitry underlying interlimb coordination in mammalian quadrupedal locomotion. J. Neurosci. 25, 6025–6035.10.1523/JNEUROSCI.0696-05.2005Search in Google Scholar PubMed PubMed Central

Juvin, L., Gratsch, S., Trillaud-Doppia, E., Gariepy, J.F., Buschges, A., and Dubuc, R. (2016). A specific population of reticulospinal neurons controls the termination of locomotion. Cell Rep 15, 2377–2386.10.1016/j.celrep.2016.05.029Search in Google Scholar PubMed

Kadala, A., Verdier, D., Morquette, P., and Kolta, A. (2015). Ion homeostasis in rhythmogenesis: the interplay between neurons and astroglia. Physiology 30, 371–388.10.1152/physiol.00023.2014Search in Google Scholar PubMed

Kalat, J.W. (1998). Biological Psychology, 6th ed. (Pacific Grove, USA: Brooks/Cole Publishers), pp. 535.Search in Google Scholar

Kandel, E.R., Schwartz, J.H., Jessell, T.M., Siegelbaum, S.A., and Hudspeth, A.J. (2012). Principles of Neural Science, 5th ed. (New York, USA: McGraw-Hill), pp. 1709.Search in Google Scholar

Kandel, E.R., Dudai, Y., and Mayford, M.R. (2014). The molecular and systems biology of memory. Cell 157, 163–186.10.1016/j.cell.2014.03.001Search in Google Scholar PubMed

Kasumacic, N., Lambert, F.M., Coulon, P., Bras, H., Vinay, L., Perreault, M.C., and Glover, J.C. (2015). Segmental organization of vestibulospinal inputs to spinal interneurons mediating crossed activation of thoracolumbar motoneurons in the neonatal mouse. J. Neurosci. 35, 8158–8169.10.1523/JNEUROSCI.5188-14.2015Search in Google Scholar PubMed

Kawahara, K., Kumagai, S., Nakazono, Y., and Miyamoto, Y. (1989). Coupling between respiratory and stepping rhythms during locomotion in decerebrate cats. J. Appl. Physiol. 67, 110–115.10.1152/jappl.1989.67.1.110Search in Google Scholar PubMed

Kessler, J.P. and Jean, A. (1991). Evidence that activation of N-methyl-d-aspartate (NMDA) and non-NMDA receptors within the nucleus tractus solitarii triggers swallowing. Eur. J. Pharmacol. 201, 59–67.10.1016/0014-2999(91)90323-ISearch in Google Scholar PubMed

Kiehn, O. (2006). Locomotor circuits in the mammalian spinal cord. Ann. Rev. Neurosci. 29, 279–306.10.1146/annurev.neuro.29.051605.112910Search in Google Scholar

Kiehn, O. (2016). Decoding the organization of spinal circuits that control locomotion. Nat. Rev. Neurosci. 17, 224–238.10.1038/nrn.2016.9Search in Google Scholar PubMed

Kiehn, O. and Kjaerulff, O. (1996). Spatiotemporal characteristics of 5-HT and dopamine-induced rhythmic hindlimb activity in the in vitro neonatal rat. J. Neurophysiol. 75, 1472–1482.10.1152/jn.1996.75.4.1472Search in Google Scholar PubMed

Kiehn, O., Kjaerulff, O., Tresch, M.C., and Harris-Warrick, R.M. (2000). Contributions of intrinsic motor neuron properties to the production of rhythmic motor output in the mammalian spinal cord. Brain Res. Bull. 53, 649–659.10.1016/S0361-9230(00)00398-1Search in Google Scholar PubMed

Kiehn, O., Quinlan, K.A., Restrepo, C.E., Lundfald, L., Borgius, L., Talpalar, A.E., and Endo, T. (2008). Excitatory components of the mammalian locomotor CPG. Brain Res. Rev. 57, 56–63.10.1016/j.brainresrev.2007.07.002Search in Google Scholar PubMed

Kitrey, N.D., Clement, P., Bernabe, J., Alexandre, L., and Giuliano, F. (2007). Microinjection of the preferential dopamine receptor D3 agonist 7-OH-DPAT into the hypothalamic medial preoptic area induced ejaculation in anesthetized rats. Neuroscience 149, 636–641.10.1016/j.neuroscience.2007.06.051Search in Google Scholar PubMed

Kjaerulff, O. and Kiehn, O. (1996). Distribution of networks generating and coordinating locomotor activity in the neonatal rat spinal cord in vitro: a lesion study. J. Neurosci. 16, 5777–5794.10.1523/JNEUROSCI.16-18-05777.1996Search in Google Scholar PubMed

Kjaerulff, O., Barajon, I., and Kiehn, O. (1994). Sulphorhodamine-labelled cells in the neonatal rat spinal cord following chemically induced locomotor activity in vitro. J. Physiol. 478, 265–273.10.1113/jphysiol.1994.sp020248Search in Google Scholar PubMed

Knikou, M. (2010). Plantar cutaneous afferents normalize the reflex modulation patterns during stepping in chronic human spinal cord injury. J. Neurophysiol. 103, 1304–1314.10.1152/jn.00880.2009Search in Google Scholar PubMed

Knikou, M., Angeli, C.A., Ferreira, C.K., and Harkema, S.J. (2009). Flexion reflex modulation during stepping in human spinal cord injury. Exp. Brain Res. 196, 341–351.10.1007/s00221-009-1854-xSearch in Google Scholar PubMed

Kogo, M., Mori, A., Koizumi, H., Ishihama, K., Iida, S., Tanaka, S., and Matsuya, T. (2000). Effect of norepinephrine receptors on trigeminal rhythm generation in newborn rats. Brain Res. Bull. 53, 171–174.10.1016/S0361-9230(00)00322-1Search in Google Scholar PubMed

Kohsaka, H., Guertin, P.A., and Nose, A. (2017). Neural circuits underlying fly larval locomotion. Curr. Pharm. Des. 23, 1722–1733.10.2174/1381612822666161208120835Search in Google Scholar PubMed

Kolta, A., Westberg, K.G., and Lund, J.P. (2000). Identification of brainstem interneurons projecting to the trigeminal motor nucleus and adjacent structures in the rabbit. J. Chem. Neuroanat. 19, 175–195.10.1016/S0891-0618(00)00061-2Search in Google Scholar PubMed

Kozyrev, N. and Coolen, L.M. (2015). Activation of mu or delta opioid receptors in the lumbosacral spinal cord is essential for ejaculatory reflexes in male rats. PLoS One 10, e0121130.10.1371/journal.pone.0121130Search in Google Scholar PubMed PubMed Central

Kozyrev, N. and Coolen, L.M. (2017). Activation of galanin and cholecystokinin receptors in the lumbosacral spinal cord is required for ejaculation in male rats. Eur. J. Neurosci. 45, 846–858.10.1111/ejn.13515Search in Google Scholar PubMed

Kriellaars, D.J. (1992). Generation and peripheral control of locomotor rhythm. Manitoba, University of Manitoba, PhD thesis.Search in Google Scholar

Kriellaars, D.J., Brownstone, R.M., Noga, B.R., and Jordan, L.M. (1994). Mechanical entrainment of fictive locomotion in the decerebrate cat. J. Neurophysiol. 71, 2074–2086.10.1152/jn.1994.71.6.2074Search in Google Scholar PubMed

Kristan, W.B. and Weeks, J.C. (1983). Neurons Controlling the Initiation, Generation and Modulation of Leech Swimming. Neural Origin of Rhythmic Movements. A. Roberts and B. Roberts, eds. (Cambridge, UK: Cambridge University Press).Search in Google Scholar

Kullander, K., Butt, S.J., Lebret, J.M., Lundfald, L., Restrepo, C.E., Rydstrom, A., Klein, R., and Kiehn, O. (2003). Role of EphA4 and EphrinB3 in local neuronal circuits that control walking. Science 299, 1889–1892.10.1126/science.1079641Search in Google Scholar PubMed

Kuwana, S., Tsunekawa, N., Yanagawa, Y., Okada, Y., Kuribayashi, J., and Obata, K. (2006). Electrophysiological and morphological characteristics of GABAergic respiratory neurons in the mouse pre-Bötzinger complex. Eur. J. Neurosci. 23, 667–674.10.1111/j.1460-9568.2006.04591.xSearch in Google Scholar PubMed

Kwan, A.C., Dietz, S.B., Webb, W.W., and Harris-Warrick, R.M. (2009). Activity of Hb9 interneurons during fictive locomotion in mouse spinal cord. J. Neurosci. 29, 11601–11613.10.1523/JNEUROSCI.1612-09.2009Search in Google Scholar PubMed

Lafreniere-Roula, M. and McCrea, D.A. (2005). Deletions of rhythmic motoneuron activity during fictive locomotion and scratch provide clues to the organization of the mammalian central pattern generator. J. Neurophysiol. 94, 1120–1135.10.1152/jn.00216.2005Search in Google Scholar PubMed

Lalley, P.M. (2008). Opioidergic and dopaminergic modulation of respiration. Respir. Physiol. Neurobiol. 164, 160–167.10.1016/j.resp.2008.02.004Search in Google Scholar PubMed

Landry, E.S. and Guertin, P.A. (2004). Differential effects of 5-HT1 and 5-HT2 receptor agonists on hindlimb movements in paraplegic mice. Prog. Neuropsychopharmacol. Biol. Psychiatry 28, 1053–1060.10.1016/j.pnpbp.2004.05.001Search in Google Scholar PubMed

Landry, E.S., Lapointe, N.P., Rouillard, C., Levesque, D., Hedlund, P.B., and Guertin, P.A. (2006). Contribution of spinal 5-HT1A and 5-HT7 receptors to locomotor-like movement induced by 8-OH-DPAT in spinal cord-transected mice. Eur. J. Neurosci. 24, 535–546.10.1111/j.1460-9568.2006.04917.xSearch in Google Scholar PubMed

Lange, W. (1975). Cell number and cell density in the cerebellar cortex of man and some other mammals. Cell Tissue Res. 157, 115–125.10.1007/BF00223234Search in Google Scholar PubMed

Langlet, C., Leblond, H., and Rossignol, S. (2005). Mid-lumbar segments are needed for the expression of locomotion in chronic spinal cats. J. Neurophysiol. 93, 2474–2488.10.1152/jn.00909.2004Search in Google Scholar PubMed

Lanuza, G.M., Gosgnach, S., Pierani, A., Jessell, T.M., and Goulding, M. (2004). Genetic identification of spinal interneurons that coordinate left-right locomotor activity necessary for walking movements. Neuron 42, 375–386.10.1016/S0896-6273(04)00249-1Search in Google Scholar PubMed

Lapointe, N.P., Ung, R.V., and Guertin, P.A. (2007). Plasticity in sublesionally located neurons following spinal cord injury. J. Neurophysiol. 98, 2497–2500.10.1152/jn.00621.2007Search in Google Scholar PubMed

Lapointe, N.P., Ung, R.V., Rouleau, P., and Guertin, P.A. (2008). Effects of spinal alpha(2)-adrenoceptor and I(1)-imidazoline receptor activation on hindlimb movement induction in spinal cord-injured mice. J. Pharmacol. Exp. Ther. 325, 994–1006.10.1124/jpet.107.134874Search in Google Scholar PubMed

Lapointe, N.P., Rouleau, P., Ung, R.V., and Guertin, P.A. (2009). Specific role of dopamine D1 receptors in spinal network activation and rhythmic movement induction in vertebrates. J. Physiol. 587, 1499–1511.10.1113/jphysiol.2008.166314Search in Google Scholar PubMed PubMed Central

La Scaleia, V., Sylos-Labini, F., Hoellinger, T., Wang, L., Cheron, G., Lacquaniti, F., and Ivanenko, Y.P. (2014). Control of leg movements driven by EMG activity of shoulder muscles. Front. Hum. Neurosci. 8, 838.10.3389/fnhum.2014.00838Search in Google Scholar PubMed PubMed Central

Lavrov, I., Musienko, P.E., Selionov, V.A., Zdunowski, S., Roy, R.R., Edgerton, V.R., and Gerasimenko, Y. (2015). Activation of spinal locomotor circuits in the decerebrated cat by spinal epidural and/or intraspinal electrical stimulation. Brain Res. 1600, 84–92.10.1016/j.brainres.2014.11.003Search in Google Scholar PubMed

Leblond, H., Menard, A., and Gossard, J.P. (2000). Bulbospinal control of spinal cord pathways generating locomotor extensor activities in the cat. J. Physiol. 525, 225–240.10.1111/j.1469-7793.2000.t01-1-00225.xSearch in Google Scholar PubMed PubMed Central

Le Ray, D., Juvin, L., Ryczko, D., and Dubuc, R. (2011). Chapter 4-supraspinal control of locomotion: the mesencephalic locomotor region. Prog. Brain Res. 188, 51–70.10.1016/B978-0-444-53825-3.00009-7Search in Google Scholar PubMed

Lee, S.D., Nakano, H., and Farkas, G.A. (2005). Adenosinergic modulation of ventilation in obese zucker rats. Obes. Res. 13, 545–555.10.1038/oby.2005.58Search in Google Scholar PubMed

Li, X., Murray, K., Harvey, P.J., Ballou, E.W., and Bennett, D.J. (2007a). Serotonin facilitates a persistent calcium current in motoneurons of rats with and without chronic spinal cord injury. J. Neurophysiol. 97, 1236–1246.10.1152/jn.00995.2006Search in Google Scholar PubMed PubMed Central

Li, X.L., Zhang, W., Zhou, X., Wang, X.Y., Zhang, H.T., Qin, D.X., Zhang, H., Li, Q., Li, M., and Wang, T.H. (2007b). Temporal changes in the expression of some neurotrophins in spinal cord transected adult rats. Neuropeptides 41, 135–143.10.1016/j.npep.2007.02.001Search in Google Scholar PubMed

Liddell, E.G. and Sherrington, C.S. (1924). Reflexes in response to stretch (Myotatic reflexes). Proc. Roy. Soc. 96, 212–242.10.1098/rspb.1924.0023Search in Google Scholar

Liu, J. and Jordan, L.M. (2005). Stimulation of the parapyramidal region of the neonatal rat brain stem produces locomotor-like activity involving spinal 5-HT7 and 5-HT2A receptors. J. Neurophysiol. 94, 1392–1404.10.1152/jn.00136.2005Search in Google Scholar PubMed

Liu, Y., Harding, M., Pittman, A., Dore, J., Striessnig, J., Rajadhyaksha, A., and Chen, X. (2014). Cav1.2 and Cav1.3 L-type calcium channels regulate dopaminergic firing activity in the mouse ventral tegmental area. J. Neurophysiol. 112, 1119–1130.10.1152/jn.00757.2013Search in Google Scholar PubMed

Lo, Y.K., Kuan, Y.C., Culaclii, S., Kim, B., Wang, P.M., Chang, C.W., Massachi, J.A., Zhu, M., Chen, K., Gad, P., et al. (2017). a fully integrated wireless soc for motor function recovery after spinal cord injury. IEEE Trans. Biomed. Circuits Syst. 11, 497–509.10.1109/TBCAS.2017.2679441Search in Google Scholar PubMed

Lovely, R.G., Gregor, R.J., Roy, R.R., and Edgerton, V.R. (1986). Effects of training on the recovery of full-weight-bearing stepping in the adult spinal cat. Exp. Neurol. 92, 421–435.10.1016/0014-4886(86)90094-4Search in Google Scholar PubMed

Lu, W.Y., Zhang, M., Neumann, R.S., and Bieger, D. (1997). Fictive oesophageal peristalsis evoked by activation of muscarinic acetylcholine receptors in rat nucleus tractus solitarii. Neurogastroenterol. Motil. 9, 247–256.10.1046/j.1365-2982.1997.d01-60.xSearch in Google Scholar PubMed

Lu, J., Sherman, D., Devor, M., and Saper, C.B. (2006). A putative flip-flop switch for control of REM sleep. Nature 441, 589–594.10.1038/nature04767Search in Google Scholar PubMed

Luiten, P.G., ter Horst, G.J., Karst, H., and Steffens, A.B. (1985). The course of paraventricular hypothalamic efferents to autonomic structures in medulla and spinal cord. Brain Res. 329, 374–378.10.1016/0006-8993(85)90554-2Search in Google Scholar PubMed

Lund, J.P. (1991). Mastication and its control by the brain stem. Critical Rev. Oral Biol. Med. 2, 33–64.10.1177/10454411910020010401Search in Google Scholar

Lund, J.P., Kolta, A., Westberg, K.G., and Scott, G. (1998). Brainstem mechanism underlying feeding behaviors. Curr. Opin. Neurobiol. 8, 1718–1724.10.1016/S0959-4388(98)80113-XSearch in Google Scholar

Lundberg, A. (1967). The supraspinal control of transmission in spinal reflex pathways. Electroencephalogr. Clin. Neurophysiol. Suppl 25, 35–46.Search in Google Scholar

Lundfald, L., Restrepo, C.E., Butt, S.J., Peng, C.Y., Droho, S., Endo, T., Zeilhofer, H.U., Sharma, K., and Kiehn, O. (2007). Phenotype of V2-derived interneurons and their relationship to the axon guidance molecule EphA4 in the developing mouse spinal cord. Eur. J. Neurosci. 26, 2989–3002.10.1111/j.1460-9568.2007.05906.xSearch in Google Scholar PubMed

Ma, M., Basso, D.M., Walters, P., Stokes, B.T., and Jakeman, L.B. (2001). Behavioral and histological outcomes following graded spinal cord contusion injury in the C57Bl/6 mouse. Exp. Neurol. 169, 239–254.10.1006/exnr.2001.7679Search in Google Scholar PubMed

Machado, T.A., Pnevmatikakis, E., Paninski, L., Jessell, T.M., and Miri, M. (2015). Primacy of flexor locomotor pattern revealed by ancestral reversion of motor neuron identity. Cell 162, 338–350.10.1016/j.cell.2015.06.036Search in Google Scholar PubMed

MacLean, J.N., Schmidt, B.J., and Hochman, S. (1997). NMDA receptor activation triggers voltage oscillations, plateau potentials and bursting in neonatal rat lumbar motoneurons in vitro. Eur. J. Neurosci. 9, 2702–2711.10.1111/j.1460-9568.1997.tb01699.xSearch in Google Scholar PubMed

Madriaga, M.A., McPhee, L.C., Chersa, T., Christie, K.J., and Whelan, P.J. (2004). Modulation of locomotor activity by multiple 5-HT and dopaminergic receptor subtypes in the neonatal mouse spinal cord. J. Neurophysiol. 92, 1566–1576.10.1152/jn.01181.2003Search in Google Scholar PubMed

Maggi, C.A., Giuliani, S., Santicioli, P., Patacchini, R., and Meli, A. (1988). Neural pathways and pharmacological modulation of defecation reflex in rats. Gen. Pharmacol. 19, 517–523.10.1016/0306-3623(88)90157-7Search in Google Scholar PubMed

Magnuson, D.S. and Trinder, T.C. (1997). Locomotor rhythm evoked by ventrolateral funiculus stimulation in the neonatal rat spinal cord in vitro. J. Neurophysiol. 77, 200–206.10.1152/jn.1997.77.1.200Search in Google Scholar PubMed

Mallory, B.S., Roppolo, J.R., and de Groat, W.C. (1991). Pharmacological modulation of the pontine micturition center. Brain Res. 546, 310–320.10.1016/0006-8993(91)91495-MSearch in Google Scholar PubMed

Marder, E. and Bucher, D. (2007). Understanding circuit dynamics using the stomatogastric nervous system of lobsters and crabs. Ann. Rev. Physiol. 69, 291–316.10.1146/annurev.physiol.69.031905.161516Search in Google Scholar

Marini, G. and Sotqui, M.L. (1985). Single unit activity in lateral reticular nucleus during cortically evoked masticatory movements in rabbits. Brain Res. 337, 287–292.10.1016/0006-8993(85)90065-4Search in Google Scholar PubMed

Martin, R.E. and Sessle, B.J. (1993). The role of the cerebral cortex in swallowing. Dysphagia 8, 195–202.10.1007/BF01354538Search in Google Scholar PubMed

Mascaro, M.B. Bittencourt, J.C., Casatti, C.A., and Elias, C.F. (2005). Alternative pathways for catecholamine action in oral motor control. Neurosci. Lett. 386, 34–39.10.1016/j.neulet.2005.05.062Search in Google Scholar PubMed

Masino, M.A., Abbinanti, M.D., Eian, J., and Harris-Warrick, R.M. (2012). TTX-resistant NMDA receptor-mediated membrane potential oscillations in neonatal mouse Hb9 interneurons. PLoS One 7, e47940.10.1371/journal.pone.0047940Search in Google Scholar PubMed

Masson, R.L. Jr., Sparkes, M.L., and Ritz, L.A. (1991). Descending projections to the rat sacrocaudal spinal cord. J. Comp. Neurol. 307, 120–130.10.1002/cne.903070111Search in Google Scholar PubMed

Matthews, P.B.C. (1972). Mammalian Muscle Receptors and their Central Actions (Baltimore, USA: Williams and Wilkins).Search in Google Scholar

Matthews, P.B.C. (1991). The human stretch reflex and the motor cortex. Trends Neurosci. 14, 87–90.10.1016/0166-2236(91)90064-2Search in Google Scholar PubMed

McCormack, M. and Dubrovsky, B. (1979). Impairments in limb actions after dorsal funiculi section in cats. Exp. Brain Res. 37, 31–40.10.1007/BF01474251Search in Google Scholar PubMed

McCrea, D.A. and Rybak, I.A. (2008). Organization of mammalian locomotor rhythm and pattern generation. Brain Res. Rev. 57, 134–146.10.1016/j.brainresrev.2007.08.006Search in Google Scholar PubMed

McCrea, D.A., Pratt, C.A., and Jordan, L.M. (1980). Renshaw cell activity and recurrent effects on motoneurons during fictive locomotion. J. Neurophysiol. 44, 475–488.10.1152/jn.1980.44.3.475Search in Google Scholar PubMed

McEwen, M.L., Van Hartesveldt, C., and Stehouwer, D.J. (1999). The NMDA antagonist, MK-801, alters L-DOPA-induced air-stepping in neonatal rats. Brain Res. Dev. Brain Res. 115, 33–40.10.1016/S0165-3806(99)00051-6Search in Google Scholar PubMed

McKenna, K.E., Chung, S.K., and McVary, K.T. (1991). A model for the study of sexual function in anesthetized male and female rats. Am. J. Physiol. 261, 1276–1285.10.1152/ajpregu.1991.261.5.R1276Search in Google Scholar PubMed

McLean, D.L., Masino, M.A., Koh, I.Y., Lindquist, W.B., and Fetcho, J.R. (2008). Continuous shifts in the active set of spinal interneurons during changes in locomotor speed. Nat. Neurosci. 11, 1419–1429.10.1038/nn.2225Search in Google Scholar PubMed

McMillan, D., de Leon, R., Guertin, P.A., and Dy, C. (2017). the utility of interappendicular connections in bipedal locomotion. Curr. Pharm. Des. 23, 1734–1740.10.2174/1381612822666161216115947Search in Google Scholar PubMed

Mehrholz, J., Harvey, L.A., Thomas, S., and Elsner, B. (2017). Is body-weight-supported treadmill training or robotic-assisted gait training superior to overground gait training and other forms of physiotherapy in people with spinal cord injury? A systematic review. Spinal Cord 55, 722–729.10.1038/sc.2017.31Search in Google Scholar PubMed

Merrill, E.G. and Fedorko, L. (1984). Monosynaptic inhibition of phrenic motoneurons: a long descending projection from Bötzinger neurons. J. Neurosci. 4, 2350–2353.10.1523/JNEUROSCI.04-09-02350.1984Search in Google Scholar PubMed

Merton, P.A. (1953). The Spinal Cord. Speculations on the Servo Control of Movements. J.L. Malcolm, J.A. Gray, and G.E. Wolstenhom, eds. (Boston: Little Brown), pp. 247–260.10.1016/B978-0-443-06951-2.50010-6Search in Google Scholar

Miller, A.J. (1972). Characteristics of the swallowing reflex induced by peripheral nerve and brain stem stimulation. Exp. Neurol. 34, 210–222.10.1016/0014-4886(72)90168-9Search in Google Scholar PubMed

Miller, A.J. (1982). Deglutition. Physiol. Rev. 62, 129–184.10.1152/physrev.1982.62.1.129Search in Google Scholar PubMed

Miller, S. and Scott, P.D. (1977). The spinal locomotor generator. Exp. Brain Res. 30, 387–403.10.1007/BF00237264Search in Google Scholar PubMed

Miller, S., Reitsma, D.J., and van der Meché, F.G. (1973). Functional organization of long ascending propriospinal pathways linking lumbo-sacral and cervical segments in the cat. Brain Res. 62, 169–188.10.1016/0006-8993(73)90626-4Search in Google Scholar

Miller, S., Van Der Burg, J., and Van Der Meche, F.G.A. (1975). Coordination of movements of the hindlimbs and forelimbs in different forms of locomotion in normal and decerebrate cats. Brain Res. 91, 217–237.10.1016/0006-8993(75)90544-2Search in Google Scholar PubMed

Minassian, K., Persy, I., Rattay, F., Pinter, M.M., Kern, H., and Dimitrijevic, M.R. (2007). Human lumbar cord circuitries can be activated by extrinsic tonic input to generate locomotor-like activity. Hum. Mov. Sci. 26, 275–295.10.1016/j.humov.2007.01.005Search in Google Scholar PubMed

Minassian, K., Hofstoetter, U.S., Danner, S.M., Mayr, W., Bruce, J.A., McKay, W.B., and Tansey, K.E. (2016). Spinal rhythm generation by step-induced feedback and transcutaneous posterior root stimulation in complete spinal cord-injured individuals. Neurorehabil. Neural Repair 30, 233–243.10.1177/1545968315591706Search in Google Scholar PubMed

Minassian, K., Hofstoetter, U.S., Dzeladini, F., Guertin, P.A., and Ijspeert, A. (2017). The human central pattern generator for locomotion. Neuroscientist. Mar 1, 107385841769979.10.1177/1073858417699790Search in Google Scholar PubMed

Mladinic, M. and Nistri, A. (2013). Microelectrode arraws in combination with in vitro models of spinal cord injury as tools to investigate pathological changes in network activity: facts and promises. Front. Neuroeng. 6, 2.10.3389/fneng.2013.00002Search in Google Scholar PubMed PubMed Central

Moore, J.C. (1984). The Golgi tendon organ: a review and update. Am. J. Occup. Ther. 38, 227–236.10.5014/ajot.38.4.227Search in Google Scholar PubMed

Moore, J.D., Kleinfeld, D., and Wang, F. (2014). How the brainstem controls orofacial behaviors comprised of rhythmic actions. Trends Neurosci. 37, 370–380.10.1016/j.tins.2014.05.001Search in Google Scholar PubMed PubMed Central

Moreland, A.J. and Makela, E.H. (2005). SSRIs in the treatment of premature ejaculation. Ann. Pharmacother. 39, 1296–1301.10.1345/aph.1E069Search in Google Scholar PubMed

Mori, S., Matsui, T., Kuze, B., Asanome, M., Makajima, K., and Matsuyama, K. (1999). Stimulation of a restricted region in the midline cerebellar white matter evokes coordinated quadrupedal locomotion in the decerebrate cat. J. Neurophysiol. 82, 290–300.10.1152/jn.1999.82.1.290Search in Google Scholar PubMed

Mori, A., Kogo, M., Ishihama, K., Tanaka, S., Enomoto, A., Koizumi, H., and Matsuya, T. (2002). Effect of serotonin (5-HT) on trigeminal rhythmic activities generated in in vitro brainstem block preparations. J. Dent. Res. 81, 598–602.10.1177/154405910208100904Search in Google Scholar PubMed

Morquette, P., Lavoie, R., Fhima, M.D., Lamoureux, X., Verdier, D., and Kolta, A. (2012). Generation of the masticatory central pattern and its modulation by sensory feedback. Prog. Neurobiol. 96, 340–355.10.1016/j.pneurobio.2012.01.011Search in Google Scholar PubMed

Morquette, P., Verdier, D., Kadala, A., Féthière, J., Philippe, A.G., Robitaille, R., and Kolta, A. (2015). An astrocyte-dependent mechanism for neuronal rhythmogenesis. Nat. Neurosci. 18, 844–854.10.1038/nn.4013Search in Google Scholar PubMed

Morris, D.L. and Rui, L. (2009). Recent advances in understanding leptin signaling and leptin resistance. Am. J. Physiol. Endocrinol. Metab. 297, E1247–E1259.10.1152/ajpendo.00274.2009Search in Google Scholar PubMed PubMed Central

Morrison, J., Birder, L., and Craggs, M. (2005). Neural Control. Incontinence. P. Abrams, L. Cardozo, S. Khoury, and A. Wein, eds. (Jersey: Health Publications Ltd.), pp. 363–422.Search in Google Scholar

Moshonkina, T.R., Makarovski, A.N., Bogacheva, I.N., Scherbakova, N.A., Savohin, A.A., and Gerasimenko, Y.P. (2012). Effects of spinal cord electrical stimulation in patients with vertebrospinal pathology. Bull. Exp. Biol. Med. 153, 16–20.10.1007/s10517-012-1632-9Search in Google Scholar PubMed

Munro, R.R. (1975). Electromyography of the muscles of mastication. Monogr. Oral Sci. 4, 87–116.10.1159/000397868Search in Google Scholar PubMed

Munoz-Ortiz, J., Munoz-Ortiz, E., Lopez-Meraz, M.L., Berltran-Parrazal, L., and Morgado-Valle, C. (2016). Pre-Bötzinger complex: generation and modulation of respiratory rhythm. Neurologia 33, 1–7.10.1016/j.nrleng.2018.05.006Search in Google Scholar

Murray, M. and Goldberger, M.E. (1974). Restitution of function and collateral sprouting in the cat spinal cord: the partially hemisected animal. J. Comp. Neurol. 158, 19–36.10.1002/cne.901580103Search in Google Scholar PubMed

Murray, K.C., Nakae, A., Stephens, M.J., Rank, M., D’Amico, J., Harvey, P.J., Li, X., Harris, R.L., Ballou, E.W., Anelli, R., et al. (2010). Recovery of motoneuron and locomotor function after spinal cord injury depends on constitutive activity in 5-HT2C receptors. Nat. Med. 16, 694–700.10.1038/nm.2160Search in Google Scholar PubMed PubMed Central

Mushahwar, V.K., Gillard, D.M., Gauthier, M.J., and Prochazka, A. (2002). Intraspinal micro stimulation generates locomotor-like and feedback-controlled movements. IEEE Trans. Neural. Syst. Rehabil. Eng. 10, 68–81.10.1109/TNSRE.2002.1021588Search in Google Scholar PubMed

Muybridge, E. (1979). Muybridge’s Complete Human and Animal Locomotion: All 781 Plates from the 1887 Animal Locomotion (Berkeley, CA: Courier Dover Publications).Search in Google Scholar

Nadeau, S., Jacquemin, G., Fournier, C., Lamarre, Y., and Rossignol, S. (2010). Spontaneous motor rhythms of the back and legs in a patient with a complete spinal cord transection. Neurorehabil. Neural Repair 24, 377–383.10.1177/1545968309349945Search in Google Scholar PubMed

Nadelhaft, I. and Vera, P.L. (1995). Central nervous system neurons infected by pseudorabies virus injected into the rat urinary bladder following unilateral transection of the pelvic nerve. J. Comp. Neurol. 359, 443–456.10.1002/cne.903590307Search in Google Scholar PubMed

Nagano, M., Ishimizu, Y., Saitoh, S., Okada, H., and Fukada, H. (2004). The defecation reflex in rats: fundamental properties and the reflex center. Auton. Neurosci. 111, 48–56.10.1016/j.autneu.2004.02.002Search in Google Scholar PubMed

Nagy, S., Huang, Y.C., Alkema, M.J., and Biron, D. (2015). Caenorhabditis elegans exhibit a coupling between the defecation motor program and directed locomotion. Sci. Rep. 5, 17174.10.1038/srep17174Search in Google Scholar PubMed

Naitou, K., Mamerto, T.P., Pustovit, R.V., Callaghan, B., Rivera, L.R., Chan, A.J., Ringuet, M.T., Pietra, C., and Furness, J.B. (2015a). Site and mechanism of the colokinetic action of the ghrelin receptor agonist, HM01. Neurogastroenterol. Motil. 27, 1764–1771.10.1111/nmo.12688Search in Google Scholar

Naitou, K., Shiina, T., Sugita, R., Nakamori, H., and Shimizu, Y. (2015b). Characterization of ghrelin-sensitive neurons in the lumbosacral defecation center in rats. Neurogastroenterol. Motil. 27, 147–155.10.1111/nmo.12492Search in Google Scholar

Naitou, K., Nakamori, H., Shiina, T., Ikeda, A., Nozue, Y., Sano, Y., Yokoyama, T., Yamamoto, Y., Yamada, A., Akimoto, N., et al. (2016). Stimulation of dopamine D2-like receptors in the lumbosacral defaecation centre causes propulsive colorectal contractions in rats. J. Physiol. 594, 4339–4350.10.1113/JP272073Search in Google Scholar PubMed

Naitou, K., Shiina, T., Nakamori, H., Sano, Y., Shimaoka, H., and Shimizu, Y. (2017). Colokinetic effect of somatostatin in the spinal defecation center in rats. J. Physiol. Sci. 68, 243–251.10.1007/s12576-017-0524-1Search in Google Scholar PubMed

Nakamori, H., Naitou, K., Horii, Y., Shimaoka, H., Horii, K., Sakai, H., Yamada, A., Furue, H., Shiina, T., and Shimizu, Y. (2018). Medullary raphe nuclei activate the lumbosacral defecation center through the descending serotonergic pathway to regulate colorectal motility in rats. Am. J. Physiol. Gastrointest. Liver Physiol. 314, G341–G348.10.1152/ajpgi.00317.2017Search in Google Scholar

Nakamura, Y. and Katakura, N. (1995). Generation of masticatory rhythm in the brainstem. Neurosci. Res. 23, 1–19.10.1016/0168-0102(95)90003-9Search in Google Scholar PubMed

Nakamura, Y., Yanagawa, Y., Morrisson, S.F., and Nakamura, K. (2017). Medullary reticular neurons mediate neuropeptide Y-induced metabolic inhibition and mastication. Cell Metab. 25, 322–334.10.1016/j.cmet.2016.12.002Search in Google Scholar PubMed

Nashold, B.S. Jr., Friedman, H., and Boyarsky, S. (1971). Electrical activation of micturition by spinal cord stimulation. J. Surg. Res. 11, 144–147.10.1016/0022-4804(71)90039-4Search in Google Scholar PubMed

Nashold, B.S.J., Friedman, H., and Grimes, J. (1981). Electrical stimulation of the conus medullaris to control the bladder in the paraplegic patient. A 10-year review. Applied Neurophysiol. 44, 225–232.Search in Google Scholar

Nassour, J., Hénaff, P., Benouezdou, F., and Cheng, G. (2014). Multi-layered multi-pattern CPG for adaptive locomotion of humanoid robots. Biol. Cybern. 108, 291–303.10.1007/s00422-014-0592-8Search in Google Scholar PubMed

Nathan, P.W. and Smith, M.C. (1955). Long descending tracts in man. I. Review of present knowledge. Brain 78, 248–303.10.1093/brain/78.2.248Search in Google Scholar

Nathan, P.W., Smith, M., and Deacon, P. (1996). Vestibulospinal, reticulospinal and descending propriospinal nerve fibres in man. Brain 119, 1809–1833.10.1093/brain/119.6.1809Search in Google Scholar PubMed

Nelson, A.D., Camilleri, M., Chirapongsathorn, S., Vijayvargiya, P., Valentin, N., Shin, A., Erwin, P.J., Wang, Z., and Murad, M.H. (2017). Comparison of efficacy of pharmacological treatments for chronic idiopathic constipation: a systematic review and network meta-analysis. Gut 66, 1611–1622.10.1136/gutjnl-2016-311835Search in Google Scholar PubMed

Nicholas, A.P., Zhang, X., and Hökfelt, T. (1999). An immunohistochemical investigation of the opioid cell column in lamina X of the male rat lumbosacral spinal cord. Neurosci. Lett. 270, 9–12.10.1016/S0304-3940(99)00446-2Search in Google Scholar PubMed

Nishimaru, H., Takizawa, H., and Kudo, N. (2000). 5-Hydroxytryptamine-induced locomotor rhythm in the neonatal mouse spinal cord in vitro. Neurosci. Lett. 280, 187–190.10.1016/S0304-3940(00)00805-3Search in Google Scholar PubMed

Nishimaru, H., Restrepo, C.E., and Kiehn, O. (2006). Activity of Renshaw cells during locomotor-like rhythmic activity in the isolated spinal cord of neonatal mice. J. Neurosci. 26, 5320–5328.10.1523/JNEUROSCI.5127-05.2006Search in Google Scholar PubMed PubMed Central

Nissen, U.V., Mochida, H., and Glover, J.C. (2005). Development of projection-specific interneurons and projection neurons in the embryonic mouse and rat spinal cord. J. Comp. Neurol. 483, 30–47.10.1002/cne.20435Search in Google Scholar PubMed

Noga, B.R., Shefchyk, S.J., Jamal, J., and Jordan, L.M. (1987). The role of Renshaw cells in locomotion: antagonism of their excitation from motor axon collaterals with intravenous mecamylamine. Exp. Brain Res. 66, 99–105.10.1007/BF00236206Search in Google Scholar PubMed

Noga, B.R., Kriellars, D.J., and Jordan, L.M. (1991). The effect of selective brainstem or spinal cord lesions on treadmill locomotion evoked by stimulation of the mesencephalic or pontomedullary locomotor regions. J. Neurosci. 11, 1691–1700.10.1523/JNEUROSCI.11-06-01691.1991Search in Google Scholar PubMed

Noga, B.R., Kriellars, D.J., Brownstone, R.M., and Jordan, L.M. (2003). Mechanism for activation of locomotor centers in the spinal cord by stimulation of the mesencephalic locomotor region. J. Neurophysiol. 90, 1464–1478.10.1152/jn.00034.2003Search in Google Scholar PubMed

Norreel, J.C., Pflieger, J.F., Pearlstein, E., Simeoni-Alias, J., Clarac, F., and Vinay, L. (2003). Reversible disorganization of the locomotor pattern after neonatal spinal cord transection in the rat. J. Neurosci. 23, 1924–1932.10.1523/JNEUROSCI.23-05-01924.2003Search in Google Scholar PubMed

Nozaki, S., Iriki, A., and Nakamura, Y. (1986). Localization of central rhythm generator involved in cortically induced rhythmical masticatory jaw-opening movement in the guinea pig. J. Neurophysiol. 55, 806–825.10.1152/jn.1986.55.4.806Search in Google Scholar PubMed

Nurse, M.A. and Nigg, B.M. (2001). The effect of changes in foot sensation on plantar pressure and muscle activity. Clin. Biomech. 16, 719–727.10.1016/S0268-0033(01)00090-0Search in Google Scholar

Oka, T., Iwakiri, H., and Mori, S. (1993). Pontine-induced generalized suppression of postural muscle tone in a reflexively standing acute decerebrate cat. Neurosci. Res. 17, 127–140.10.1016/0168-0102(93)90090-DSearch in Google Scholar

Okusawa, S., Kohsaka, H., and Nose, A. (2014). Serotonin and downstream leucokinin neurons modulate larval turning behavior in Drosophila. J. Neurosci. 34, 2544–2558.10.1523/JNEUROSCI.3500-13.2014Search in Google Scholar PubMed PubMed Central

Ollivier-Lanvin, K., Krupka, A.J., AuYong, N., Miller, K., Prilutsky, B.I., and Lemay, M.A. (2011). Electrical stimulation of the sural cutaneous afferent nerve controls the amplitude and onset of the swing phase of locomotion in the spinal cat. J. Neurophysiol. 105, 2297–2308.10.1152/jn.00385.2010Search in Google Scholar PubMed PubMed Central

Omer, A. and Quigley, E.M.M. (2017). An update on prucalopride in the treatment of chronic constipation. Therap. Adv. Gastroenterol. 10, 877–887.10.1177/1756283X17734809Search in Google Scholar PubMed PubMed Central

Orsal, D., Cabelguen, J.M., and Perret, C. (1990). Interlimb coordination during fictive locomotion in the thalamic cat. Exp. Brain Res. 82, 536–546.10.1007/BF00228795Search in Google Scholar PubMed

Panchin, Y.V., Perrins, R.J., and Roberts, A. (1991). The action of acetylcholine on the locomotor central pattern generator for swimming in Xenopus embryos. J. Exp. Biol. 161, 527–531.10.1242/jeb.161.1.527Search in Google Scholar PubMed

Pang, M.Y. and Yang, J.F. (2000). The initiation of the swing phase in human infant stepping: importance of hip position and leg loading. J. Physiol. 528, 389–404.10.1111/j.1469-7793.2000.00389.xSearch in Google Scholar PubMed

Pearson, K.G. (1995). Proprioceptive regulation of locomotion. Curr. Opin. Neurobiol. 5, 786–791.10.1016/0959-4388(95)80107-3Search in Google Scholar PubMed

Pearson, K.G. (2004). Generating the walking gait: role of sensory feedback. Prog. Brain Res. 143, 123–129.10.1016/S0079-6123(03)43012-4Search in Google Scholar PubMed

Pearson, K.G. (2008). Role of sensory feedback in the control of stance duration in walking cats. Brain Res. Rev. 57, 222–227.10.1016/j.brainresrev.2007.06.014Search in Google Scholar PubMed

Pearson, K. and Duysens, J. (1976). Function of Segmental Reflexes in the Control of Stepping in Cockroaches and C. Neural Control of Locomotion. M. Herman, S. Grillner, P.S.G. Stein, and D. Stuart, eds. (New York: Plenum Press), pp. 519–538.10.1007/978-1-4757-0964-3_21Search in Google Scholar

Pearson, K.G. and Rossignol, S. (1991). Fictive motor patterns in chronic spinal cats. J. Neurophysiol. 66, 1874–1887.10.1152/jn.1991.66.6.1874Search in Google Scholar PubMed

Pearson, K.G. and Collins, D.F. (1993). Reversal of the influence of group Ib afferents from plantaris on activity in medial gastrocnemius muscle during locomotor activity. J. Neurophysiol. 70, 1009–1017.10.1152/jn.1993.70.3.1009Search in Google Scholar PubMed

Peña, F. and Ramirez, J.M. (2004). Substance P-mediated modulation of pacemaker properties in the mammalian respiratory network. J. Neurosci. 24, 7549–7556.10.1523/JNEUROSCI.1871-04.2004Search in Google Scholar PubMed PubMed Central

Pena, F. and Aguileta, M.A. (2007). Effects of riluzole and flufenamic acid on eupnea and gasping of neonatal mice in vivo. Neurosci. Lett. 415, 288–293.10.1016/j.neulet.2007.01.032Search in Google Scholar PubMed

Perreault, M.C., Angel, M.J., Guertin, P., and McCrea, D.A. (1995). Effects of stimulation of hindlimb flexor group II afferents during fictive locomotion in the cat. J. Physiol. 487, 211–220.10.1113/jphysiol.1995.sp020872Search in Google Scholar PubMed PubMed Central

Perreault, M.C., Shefchyk, S.J., Jimenez, I., and McCrea, D.A. (1999). Depression of muscle and cutaneous afferent-evoked monosynaptic field potentials during fictive locomotion in the cat. J. Physiol. 521, 691–703.10.1111/j.1469-7793.1999.00691.xSearch in Google Scholar

Perret, C. (1983). Centrally generated pattern of motoneuron activity during locomotion in the cats. Symp. Soc. Exp. Biol. 37, 405–422.Search in Google Scholar PubMed

Perret, C. and Cabelguen, J.M. (1980). Main characteristics of the hindlimb locomotor cycle in the decorticate cat with special reference to bifunctional muscles. Brain Res. 187, 333–352.10.1016/0006-8993(80)90207-3Search in Google Scholar PubMed

Perret, C., Cabelguen, J.M., and Orsal, D. (1998). Analysis of the Pattern of Actvity in ‘Knee Flexor’ Motoneurons during Locomotion in the Cat. Stance and Motion: Facts and Concepts. V.S. Gurfinkle, M.E. Ioffe, J. Massion, and J.P. Roll, eds. (New York, USA: Plenum Press), pp. 133–141.Search in Google Scholar

Peyron, M.A., Blanc, O., Lund, J.P., and Woda, A. (2004). Influence of age on adaptability of human mastication. J. Neurophysiol. 92, 773–779.10.1152/jn.01122.2003Search in Google Scholar PubMed

Philippson, M. (1905). L’autonomie et la centralisation dans le système nerveux des animaux [Autonomy and centralization in the animal nervous system]. Trav. Lab. Physiol. Inst. Solvay (Bruxelles) 7, 1–208.Search in Google Scholar

Pikov, V., Bullara, L., and McCreery, D.B. (2007). Intraspinal stimulation for bladder voiding in cats before and after chronic spinal cord injury. J. Neural Eng. 4, 356–368.10.1088/1741-2560/4/4/002Search in Google Scholar PubMed PubMed Central

Pokrovskii, V.M. (2005). Integration of the heart rhythmogenesis levels: heart rhythm generator in the brain. J. Integr. Neurosci. 4, 161–168.10.1142/S0219635205000793Search in Google Scholar PubMed

Pomerantz, S.M., Hepner, B.C., and Wertz, J.M. (1993). Serotonergic influences on male sexual behavior of rhesus monkeys: effects of serotonin agonists. Psychopharmacology 111, 47–54.10.1007/BF02257406Search in Google Scholar PubMed

Pozos, R.S. and Iaizzo, P.A. (1991). Shivering and pathological and physiological clonic oscillations of the human ankle. J. Appl. Physiol. 71, 1929–1932.10.1152/jappl.1991.71.5.1929Search in Google Scholar PubMed

Pratt, C.A. and Jordan, L.M. (1987). Ia inhibitory interneurons and Renshaw cells as contributors to the spinal mechanisms of fictive locomotion. J. Neurophysiol. 57, 56–71.10.1152/jn.1987.57.1.56Search in Google Scholar PubMed

Pratt, C.A., Buford, J.A., and Smith, J.L. (1996). Adaptive control for backward quadrupedal walking V. Mutable activation of bifunctional thigh muscles. J. Neurophysiol. 75, 832–842.10.1152/jn.1996.75.2.832Search in Google Scholar PubMed

Prentice, S.D. and Drew, T. (2001). Contributions of the reticulospinal system to the postural adjustments occurring during voluntary gait modifications. J. Neurophysiol. 85, 679–698.10.1152/jn.2001.85.2.679Search in Google Scholar PubMed

Prochazka, A., Clarac, F., Loeb, G.E., Rothwell, J.C., and Wolpaw, J.R. (2000). What do reflex and voluntary mean? Modern views on an ancient debate. Exp. Brain Res. 130, 417–432.10.1007/s002219900250Search in Google Scholar PubMed

Puskar, Z. and Antal, M. (1997). Localization of last-order premotor interneurons in the lumbar spinal cord of rats. J. Comp. Neurol. 389, 377–389.10.1002/(SICI)1096-9861(19971222)389:3<377::AID-CNE2>3.0.CO;2-YSearch in Google Scholar PubMed

Radhakrishna, M., Steuer, I., Prince, F., Roberts, M., Mongeon, D., Kia, M., Dyck, S., Matte, G., Vaillancourt, M., and Guertin, P.A. (2017). Double-blind, placebo-controlled, randomized phase I/IIa study (safety and efficacy) with buspirone/levodopa/carbidopa (SpinalonTM) in subjects with complete AIS A or motor-complete AIS B spinal cord injury. Curr. Pharm. Des. 23, 1789–1804.10.2174/1381612822666161227152200Search in Google Scholar

Ramirez, J.M., Schwarzacher, S.W., Pierrefiche, O., Olivera, B.M., and Richter, D.W. (1998). Selective lesioning of the cat pre-Bötzinger complex in vivo eliminates breathing but not gasping. J. Physiol. 507, 895–907.10.1111/j.1469-7793.1998.895bs.xSearch in Google Scholar

Rankin, J. and Dempsey, J.A. (1967). Respiratory muscles and the mechanisms of breathing. Am. J. Phys. Med. 46, 198–244.Search in Google Scholar PubMed

Ratnovsky, A. (2008). Mechanics of respiratory muscles. Respir. Physiol. Neurobiol. 163, 82–89.10.1016/j.resp.2008.04.019Search in Google Scholar PubMed

Reed, W.R. and Magnuson, D.S. (2013). Cervical response among ascending ventrolateral funiculus pathways of the neonatal rat. Brain Res. 1491, 136–146.10.1016/j.brainres.2012.11.002Search in Google Scholar PubMed

Reith, C.A. and Sillar, K.T. (1998). A role for slow NMDA receptor-mediated, intrinsic neuronal oscillations in the control of fast fictive swimming in Xenopus laevis larvae. Eur. J. Neurosci. 10, 1329–1340.10.1046/j.1460-9568.1998.00144.xSearch in Google Scholar PubMed

Reitz, A., Knapp, P.A., Müntener, M., and Schurch, B. (2004). Oral nitric oxide donors: a new pharmacological approach to detrusor-sphincter dyssynergia in spinal cord injured patients? Eur. Urol. 45, 516–520.10.1016/j.eururo.2003.11.006Search in Google Scholar

Ren, J., Chew, D.J., Biers, S., and Thiruchelvam, N. (2016). Electrical nerve stimulation to promote micturition in spinal cord injury patients: A review of current attempts. Neurourol. Urodyn. 35, 365–370.10.1002/nau.22730Search in Google Scholar PubMed

Rexed, B. (1952). The cytoarchitectonic organization of the spinal cord in the cat. J. Comp. Neurol. 96, 414–495.10.1002/cne.900960303Search in Google Scholar

Riddle, D.L., Blumenthal, T., Meyer, B.J., and Priess, J.R. (1997). C. elegans II. 2nd ed. (Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press).Search in Google Scholar

Rigaud, M., Gemes, G., Barabas, M.E., Chernoff, D.I., Abram, S.E., Stucky, C.L., and Hogan, Q.H. (2008). Species and strain differences in rodent sciatic nerve anatomy: implications for studies of neuropathic pain. Pain 136, 188–201.10.1016/j.pain.2008.01.016Search in Google Scholar PubMed PubMed Central

Riley, A.J. and Riley, E.J. (1982). Partial ejaculatory incompetence: the therapeutic effect of midodrine, an orally active selective alpha-adrenoceptor agonist. Eur. Urol. 8, 155.10.1159/000473504Search in Google Scholar PubMed

Robertson, R.M. and Pearson, K.G. (1985). Neural circuits in the flight system of the locust. J. Neurophysiol. 53, 110–128.10.1152/jn.1985.53.1.110Search in Google Scholar PubMed

Roseberry, T.K., Lee, A.M., Lalive, A.L., Wibrecht, L., Bonci, A., and Kreitzer, A.C. (2016). Cell-type-specific control of brainstem locomotor circuits by basal ganglia. Cell 164, 526–537.10.1016/j.cell.2015.12.037Search in Google Scholar PubMed PubMed Central

Rossi, S., Santarnecchi, E., Valenza, G., and Ulivelli, M. (2016). The heart side of brain neuromodulation. Phil. Trans. R. Soc. A 374, 20150187.10.1098/rsta.2015.0187Search in Google Scholar PubMed

Rossignol, S., Giroux, N., Chau, C., Marcoux, J., Brustein, E., and Reader, T.A. (2001). Pharmacological aids to locomotor training after spinal injury in the cat. J. Physiol. 533, 65–74.10.1111/j.1469-7793.2001.0065b.xSearch in Google Scholar PubMed PubMed Central

Rossignol, S., Dubuc, R., and Gossard, J.P. (2006). Dynamic sensorimotor interactions in locomotion. Physiol. Rev. 86, 89–154.10.1152/physrev.00028.2005Search in Google Scholar PubMed

Rostad, H. (1973). Extrinsic and central nervous control of colonic motility. A survey of previous and new concepts based on experimental results. J. Oslo City Hosp. 23, 65–75.Search in Google Scholar PubMed

Rouzade-Dominguez, M.L., Miselis, R., and Valentino, R.J. (2003). Central representation of bladder and colon revealed by dual transsynaptic tracing in the rat: substrates for pelvic visceral coordination. Eur. J. Neurosci. 18, 3311–3324.10.1111/j.1460-9568.2003.03071.xSearch in Google Scholar PubMed

Rubio-Casillas, A., Rodríguez-Quintero, C.M., Rodríguez-Manzo, G., and Fernández-Guasti, A. (2015). Unraveling the modulatory actions of serotonin on male rat sexual responses. Neurosci. Biobehav. Rev. 55, 234–246.10.1016/j.neubiorev.2015.05.003Search in Google Scholar PubMed

Rybak, I.A., Shevtsova, N.A., Lafreniere-Roula, M., and McCrea, D.A. (2006). Modelling spinal circuitry involved in locomotor pattern generation: insights from deletions during fictive locomotion. J. Physiol. 577, 617–639.10.1113/jphysiol.2006.118703Search in Google Scholar PubMed PubMed Central

Rybak, I.A., Dougherty, K.J., and Shevtsova, N.A. (2015). Organization of the mammalian locomotor CPG: Review of computational model and circuit architectures based on genetically identified spinal interneurons(1,2,3). eNeuro 2, 1–20.10.1523/ENEURO.0069-15.2015Search in Google Scholar

Ryczko, D. and Dubuc, R. (2013). The multifunctional mesencephalic locomotor region. Curr. Pharm. Des. 19, 4448–4470.10.2174/1381612811319240011Search in Google Scholar PubMed

Ryczko, D., Cone, J.J., Alpert, M.H., Goetz, L., Auclair, F., Dube, C., Parent, M., Roitman, M.F., Alford, S., and Dubuc, R. (2016). A descending dopamine pathway conserved from basal vertebrates to mammals. Proc. Natl. Acad. Sci. USA 113, E2440–E2449.10.1073/pnas.1600684113Search in Google Scholar

Sacco, E., Pinto, F., and Bassi, P. (2008). Emerging pharmacological targets in overactive bladder therapy: experimental and clinical evidences. Int. Urogynecol. J. 19, 583–598.10.1007/s00192-007-0529-zSearch in Google Scholar

Sandler, V.M., Puil, E., and Schwarz, D.W.F. (1998). Intrinsic response properties of busting neurons in the nucleus principalis trigemini of the gerbil. Neuroscience 83, 891–904.10.1016/S0306-4522(97)00415-6Search in Google Scholar

Sanger, G.J., Broad, J., Callaghan, B., and Furness, J.B. (2017). Ghrelin and motilin control systems in GI physiology and therapeutics. Handb. Exp. Pharmacol. 239, 379–416.10.1007/164_2016_104Search in Google Scholar PubMed

Sasaki, M. (2002). Bladder contractility-related neurons in Barrington’s nucleus: axonal projections to the spinal cord in the cat. J. Comp. Neurol. 449, 355–363.10.1002/cne.10290Search in Google Scholar

Sasaki, M. (2005). Role of Barrington’s nucleus in micturition. J. Comp. Neurol. 493, 21–26.10.1002/cne.20719Search in Google Scholar PubMed

Schmidt, R.A. (1986). Advances in genitourinary neurostimulation. Neurosurgery 18, 1041–1052.10.1227/00006123-198612000-00026Search in Google Scholar

Schmidt, B.J. and Jordan, L.M. (2000). The role of serotonin in reflex modulation and locomotor rhythm production in the mammalian spinal cord. Brain Res. Bull. 53, 689–710.10.1016/S0361-9230(00)00402-0Search in Google Scholar PubMed

Schmidt, B.J., Hochman, S., and MacLean, J.N. (1998). NMDA receptor-mediated oscillatory properties: potential role in rhythm generation in the mammalian spinal cord. Ann. NY Acad. Sci. 860, 189–202.10.1111/j.1749-6632.1998.tb09049.xSearch in Google Scholar

Schomburg, E.D., Petersen, N., Barajon, I., and Hultborn, H. (1998). Flexor reflex afferents reset the step cycle during fictive locomotion in the cat. Exp. Brain Res. 122, 339–350.10.1007/s002210050522Search in Google Scholar

Schroder, H.D. (1985). Anatomical and pathoanatomical studies on the spinal efferent systems innervating pelvic structures. 1. Organization of spinal nuclei in animals. 2. The nucleus X-pelvic motor system in man. J. Auton. Nerv. Syst. 14, 23–48.10.1016/0165-1838(85)90123-7Search in Google Scholar PubMed

Schurch, B., Stöhrer, M., Kramer, G., Schmid, D.M., Gaul, G., and Hauri, D. (2000). Botulinum-A toxin for treating detrusor hyperreflexia in spinal cord injured patients: a new alternative to anticholinergic drugs? Preliminary results. J. Urol. 164, 692–697.10.1016/S0022-5347(05)67283-7Search in Google Scholar PubMed

Schwarzacher, S.W., Rüb, U., and Deller, T. (2011). Neuroanatomical characteristics of the human pre-Bötzinger complex and its involvement in neurodegenerative brainstem diseases. Brain 134, 24–35.10.1093/brain/awq327Search in Google Scholar PubMed

Selionova, V.A., Ivanenko, Y.P., Solopova, I.A., and Gurfinkel, V.S. (2009). Tonic central and sensory stimuli facilitate involuntary air-stepping in humans. J. Neurophysiol. 101, 2847–2858.10.1152/jn.90895.2008Search in Google Scholar PubMed

Selverston, A.I. (2010). Invertebrate central pattern generator circuits. Phil. Trans. R. Soc. B. 365, 2329–2345.10.1098/rstb.2009.0270Search in Google Scholar PubMed PubMed Central

Shafei, M.N. and Nasimi, A. (2011). Effect of glutamate stimulation of the cuneiform nucleus on cardiovascular regulation in anesthetized rats: role of the pontine Kolliker-Fuse nucleus. Brain Res. 1385, 135–143.10.1016/j.brainres.2011.02.046Search in Google Scholar PubMed

Shafton, A.D., Sanger, G.J., Witherington, J., Brown, J.D., Muir, A., Butler, S., Abberley, L., Shimizu, Y., and Furness, J.B. (2009). Oral administration of a centrally acting ghrelin receptor agonist to conscious rats triggers defecation. Neurogastroenterol. Motil. 21, 71–77.10.1111/j.1365-2982.2008.01176.xSearch in Google Scholar PubMed

Shapkova, E.Y. (2004). Spinal Locomotor Capabality Revealed by Electrical Stimulation of the Lumbar Enlargement in Paraplegic Patients. Progress in Motor Control. M. Latash and M. Levin, eds. (Champaign, IL: Human Kinetics), pp. 253–289.Search in Google Scholar

Shapkova, E.Y. and Schomburg, E.D. (2001). Two types of motor modulation underlying human stepping by spinal cord electrical stimulation (SCES). Acta Physiol. Pharmacol. Bulg. 26, 155–157.Search in Google Scholar PubMed

Shaw, A.C., Jackson, A.W., Holmes, T., Thurman, S., Davis, G.R., and McClellan, A.D. (2010). Descending brain neurons in larval lamprey: spinal projection patterns and initiation of locomotion. Exp. Neurol. 224, 527–541.10.1016/j.expneurol.2010.05.016Search in Google Scholar PubMed PubMed Central

Shefchyk, S.J. and Jordan, L.M. (1985). Excitatory and inhibitory postsynaptic potentials in α-motoneurons produced during fictive locomotion by stimulation of the mesencephalic locomotor region. J. Neurophysiol. 53, 1345–1355.10.1152/jn.1985.53.6.1345Search in Google Scholar PubMed

Shefchyk, S., McCrea, D., Kriellaars, D., Fortier, P., and Jordan, L. (1990). Activity of interneurons within the L4 spinal segment of the cat during brainstem-evoked fictive locomotion. Exp. Brain Res. 80, 290–295.10.1007/BF00228156Search in Google Scholar

Sherrington, C.S. (1910). Flexion-reflex of the limb, crossed extension-reflex, and reflex stepping and standing. J. Physiol. 40, 28–121.10.1113/jphysiol.1910.sp001362Search in Google Scholar PubMed

Shik, M.L., Severin, F.V., and Orlovskii, G.N. (1966). Control of walking and running by means of electrical stimulation of the midbrain. Biofizika 11, 659–666.Search in Google Scholar PubMed

Shik, M.L., Severin, F.V., and Orlovsky, G.N. (1969). Control of walking and running by means of electrical stimulation of the mesencephalon. Electroencephalogr. Clin. Neurophysiol. 26, 549.Search in Google Scholar PubMed

Shimizu, Y., Chang, E.C., Shafton, A.D., Ferens, D.M., Sanger, G.J., Witherington, J., and Furness, J.B. (2006). Evidence that stimulation of ghrelin receptors in the spinal cord initiates propulsive activity in the colon of the rat. J. Physiol. 576, 329–338.10.1113/jphysiol.2006.116160Search in Google Scholar PubMed

Sigvardt, K.A., Grillner, S., Wallén, P., and Van Dongen, P.A. (1985). Activation of NMDA receptors elicits fictive locomotion and bistable membrane properties in the lamprey spinal cord. Brain Res. 336, 390–395.10.1016/0006-8993(85)90676-6Search in Google Scholar PubMed

Silva, J.N., Tanabe, F.M., Moreira, T.S., and Takakura, A.C. (2016). Neuroanatomical and physiological evidence that the retrotrapezoid nucleus/parafacial region regulates expiration in adult rats. Respir. Physiol. Neurobiol. 227, 9–22.10.1016/j.resp.2016.02.005Search in Google Scholar PubMed

Sivertsen, M.S., Glover, J.C., and Perreault, M.C. (2014). Organization of pontine reticulospinal inputs to motoneurons controlling axial and limb muscles in the neonatal mouse. J. Neurophysiol. 112, 1628–1643.10.1152/jn.00820.2013Search in Google Scholar PubMed PubMed Central

Sivertsen, M.S., Glover, J.C., and Perreault, M.C. (2016). Pontine reticulospinal projections in the neonatal mouse: internal organization and axon trajectories. J. Comp. Neurol. 524, 1270–1291.10.1002/cne.23904Search in Google Scholar PubMed PubMed Central

Skinner, R.D., Kinjo, N., Henderson, V., and Garcia-Rill, E. (1990). Locomotor projections from the pedunculopontine nucleus to the spinal cord. Neuroreport 1, 183–186.10.1097/00001756-199011000-00001Search in Google Scholar PubMed

Sławińska, U., Rossignol, S., Bennett, D.J., Schmidt, B.J., Frigon, A., Fouad, K., and Jordan, L.M. (2012). Comment on ‘Restoring voluntary control of locomotion after paralyzing spinal cord injury’. Science 338, 328.10.1126/science.1226082Search in Google Scholar

Sławińska, U., Miazga, K., and Jordan, L.M. (2014). 5-HT₂ and 5-HT₇ receptor agonists facilitate plantar stepping in chronic spinal rats through actions on different populations of spinal neurons. Front. Neural Circuits 8, 95.Search in Google Scholar PubMed

Smith, J.C., Ellenberger, H.H., Ballanyi, K., Richter, D.W., and Feldman, J.L. (1991). Pre-Bötzinger complex: a brainstem region that may generate respiratory rhythm in mammals. Science 254, 726–729.10.1126/science.1683005Search in Google Scholar PubMed

Smith, J.C., Abdala, A.P.L., Rybak, I.A., and Paton, J.F.R. (2009). Structural and functional architecture of respiratory networks in the mammalian brainstem. Phil. Trans. R. Soc. B. 364, 2577–2587.10.1098/rstb.2009.0081Search in Google Scholar

Smith, J.C., Abdala, A.P.L., Borgmann, A., Rybak, I.A., and Paton, J.F.R. (2013). Brainstem respiratory networks: building blocks and microcircuits. Trends Neurosci. 36, 152–162.10.1016/j.tins.2012.11.004Search in Google Scholar PubMed

Snoeren, E.M., Veening, J.G., Olivier, B., and Oosting, R.S. (2014). Serotonin 1A receptors and sexual behavior in male rats: a review. Pharmacol. Biochem. Behav. 121, 102–114.10.1016/j.pbb.2013.11.007Search in Google Scholar PubMed

Sqalli-Houssaini, Y. and Cazalets, J.R. (2000). Noradrenergic control of locomotor networks in the in vitro spinal cord of the neonatal rat. Brain Res. 852, 100–109.10.1016/S0006-8993(99)02219-2Search in Google Scholar PubMed

Staerman, F., Bryckaert, P.E., Youinou, Y., Colin, J., Brandt, B., and Lardennois, B. (2001). Pharmacologic stimulation of ejaculation with midodrine hydrochloride (Gutron) for medically assisted reproduction in spinal injury. Prog. Urol. 11, 1264.Search in Google Scholar PubMed

Stafford, S.A., Bowery, N.G., Tang, K., and Coote, J.H. (2006). Activation by p-chloroamphetamine of the spinal ejaculatory pattern generator in anaesthetized male rats. Neurosci. 140, 1031–1040.10.1016/j.neuroscience.2006.02.039Search in Google Scholar

Stanek, E., Cheng, S., Takatoh, J., Bao-Xia, H., and Fan, W. (2014). Monosynaptic premotor circuits tracing reveals neural substrates for oro-motor coordinatin. eLife 3, e02511.10.7554/eLife.02511Search in Google Scholar

Staudt, M.D., Truitt, W.A., McKenna, K.E., de Oliveira, C.V., Lehman, M.N., and Coolen, L.M. (2012). A pivotal role of lumbar spinothalamic cells in the regulation of ejaculation via intraspinal connections. J. Sex. Med. 9, 2256–2265.10.1111/j.1743-6109.2011.02574.xSearch in Google Scholar PubMed

Stecina, K., Fedirchuk, B., and Hultborn, H. (2013). Information to cerebellum on spinal motor networks mediated by the dorsal spinocerebellar tract. J. Physiol. 591, 5433–5443.10.1113/jphysiol.2012.249110Search in Google Scholar PubMed

Steeves, J.D. and Jordan, L.M. (1980). Localization of a descending pathway in the spinal cord which is necessary for controlled treadmill locomotion. Neurosci. Lett. 20, 283–288.10.1016/0304-3940(80)90161-5Search in Google Scholar PubMed

Stein, R.B. and Capaday, C. (1988). The modulation of human reflexes during functional motor tasks. Trends Neurosci. 11, 328–332.10.1016/0166-2236(88)90097-5Search in Google Scholar PubMed

Stein, P.S.G. and Smith, J.L. (1997). Neural and Biomechanical Control Strategies for Different forms of Vertebrate Hindlimb Motor tasks. Neurons, Networks, and Motor Behavior. P.S.G. Stein, S. Grillner, A.I. Selverston, and D.G. Stuart, eds. (Cambridge, USA: MIT Press), pp. 61–73.Search in Google Scholar

Stokke, M.F., Nissen, U.V., Glover, J.C., and Kiehn, O. (2002). Projection patterns of commissural interneurons in the lumbar spinal cord of the neonatal rats. J. Comp. Neurol. 446, 349–359.10.1002/cne.10211Search in Google Scholar PubMed

Stuart, D.G. and Hultborn, H. (2008). Thomas Graham Brown (1882–1965), Anders Lundberg (1920–), and the neural control of stepping. Brain Res. Rev. 59, 74–95.10.1016/j.brainresrev.2008.06.001Search in Google Scholar

Sugaya, K., Roppolo, J.R., Yoshimura, N., Card, J.P., and de Groat, W.C. (1997). The central neural pathways involved in micturition in the neonatal rat as revealed by the injection of pseudorabies virus into the urinary bladder. Neurosci. Lett. 223, 197–200.10.1016/S0304-3940(97)13433-4Search in Google Scholar PubMed

Sugaya, K., Nishijima, S., Miyazato, M., and Ogawa, Y. (2005). Central nervous control of micturition and urine storage. J. Smooth Muscle Res. 41, 117–132.10.1540/jsmr.41.117Search in Google Scholar PubMed

Sugaya, K., Nishijima, S., Kadekawa, K., Ashitomi, K., Ueda, T., and Yamamoto, H. (2014). Spinal mechanism of micturition reflex inhibition by naftopidil in rats. Life Sci. 116, 106–111.10.1016/j.lfs.2014.09.008Search in Google Scholar PubMed

Sugaya, K., Nishijima, S., Kadekawa, K., Ashitomi, K., Ueda, T., Yamamoto, H., and Hattori, T. (2017). Action of naftopidil on spinal serotonergic neurotransmission for inhibition of the micturition reflex in rats. Neurourol. Urodyn. 36, 604–609.10.1002/nau.23028Search in Google Scholar PubMed

Sultan, F. and Braitenberg, V. (1993). Shapes and sizes of different mammalian cerebella. A study in quantitative comparative neuroanatomy. J. Hirnforsch. 34, 79–92.Search in Google Scholar PubMed

Sylos-Labini, F., Ivanenko, Y.P., Maclellan, M.J., Cappellini, G., Poppele, R.E., and Lacquaniti, F. (2014). Locomotor-like leg movements evoked by rhythmic arm movements in humans. PLoS One 9, e90775.10.1371/journal.pone.0090775Search in Google Scholar PubMed PubMed Central

Székely, G., Czéh, G., and Voros, G. (1969). The activity pattern of limb muscles in freely moving normal and deafferented newts. Exp. Brain Res. 9, 53–72.10.1007/BF00235451Search in Google Scholar PubMed

Taccola, G., Marchetti, C., and Nistri, A. (2003). Effect of metabotropic glutamate receptor activity on rhythmic discharges of the neonatal rat spinal cord in vitro. Exp. Brain Res. 153, 388–393.10.1007/s00221-003-1668-1Search in Google Scholar PubMed

Takaki, M., Neya, T., and Nakayama, S. (1983). Role and localization of a region in the pons which has a descending inhibitory influence on sympathetically mediated inhibition of the recto-rectal reflex of guinea pigs. Pflüger’s Arch. 398, 120–125.10.1007/BF00581058Search in Google Scholar

Takakusaki, K. (2017). Functional neuroanatomy for posture and gait control. J. Mov. Disord. 10, 1–17.10.14802/jmd.16062Search in Google Scholar PubMed

Talpalar, A.E. and Kiehn, O. (2010). Glutamatergic mechanisms for speed control and network operation in the rodent locomotor CPG. Front. Neural Circuits. 4, 3.10.3389/fncir.2010.00019Search in Google Scholar

Talpalar, A.E., Endo, T., Löw, P., Borgius, L., Hägglund, M., Dougherty, K.J., Ryge, J., Hnasko, T.S., and Kiehn, O. (2011). Identification of minimal neuronal networks involved in flexor-extensor alternation in the mammalian spinal cord. Neuron 71, 1071–1084.10.1016/j.neuron.2011.07.011Search in Google Scholar PubMed

Talpalar, A.E., Bouvier, J., Borgius, L., Fortin, G., Pierani, A., and Kiehn, O. (2013). Dual-mode operation of neuronal networks involved in left-right alternation. Nature 500, 85–88.10.1038/nature12286Search in Google Scholar PubMed

Tan, U. (2010). Uner Tan syndrome: History, clinical evaluations, genetics, and the dynamics of human quadrupedalism. Open Neurol. J. 4, 78–89.10.2174/1874205X01004010078Search in Google Scholar PubMed

Tanaka, S., Kogo, M., Chandler, S.H., and Matsuya, T. (1999). Localization of oral-motor rhythmogenic circuits in the isolated rat brainstem preparation. Brain Res. 821, 190–199.10.1016/S0006-8993(99)01117-8Search in Google Scholar PubMed

Tanaka-Gomi, N., Yasuda, K., Nakamura, M., Hasumi-Nakayama, Y., Umemura, T., Tanaka, S., and Furusawa, K. (2007). Postnatal changes in 5HT and NK1 receptors in rat trigeminal motor nucleus and surroundings. Int. J. Dev. Neurosci. 25, 427–432.10.1016/j.ijdevneu.2007.09.003Search in Google Scholar PubMed

Tankachan, S., Fuller, P.M., and Lu, J. (2012). Movement- and behavioral state-dependent activity of pontine reticulospinal neurons. Neuroscience 221, 125–139.10.1016/j.neuroscience.2012.06.069Search in Google Scholar PubMed PubMed Central

Tateno, F., Sakakibara, R., Kishi, M., Tsuyusaki, Y., Furukawa, R., Yoshimatsu, Y., and Suzuki, Y. (2012). Brainstem stroke and increased anal tone. Low Urin. Tract Symptoms 4, 161–163.10.1111/j.1757-5672.2012.00143.xSearch in Google Scholar PubMed

Tazerart, S., Vinay, L., and Brocart, F. (2008). The persistent sodium current generates pacemaker activities in the central pattern generator for locomotion and regulates the locomotor rhythm. J. Neurosci. 28, 8577–8589.10.1523/JNEUROSCI.1437-08.2008Search in Google Scholar PubMed PubMed Central

Tell, F. and Jean, A. (1991). Activation of N-methyl-d-aspartate receptors induces endogenous rhythmic bursting activities in nucleus tractus solitarii neurons: an intracellular study on adult rat brainstem slices. Eur. J. Neurosci. 3, 1353–1365.10.1111/j.1460-9568.1991.tb00068.xSearch in Google Scholar PubMed

Thomas, G.D. (2011). Neural control of the circulation. Adv. Physiol. Ed 35, 28–32.10.1152/advan.00114.2010Search in Google Scholar PubMed

Tillakaratne, N.J., de Leon, R.D., Hoang, T.X., Roy, R.R., Edgerton, V.R., and Tobin, A.J. (2002). Use-dependent modulation of inhibitory capacity in the feline lumbar spinal cord. J. Neurosci. 22, 3130–3143.10.1523/JNEUROSCI.22-08-03130.2002Search in Google Scholar PubMed

Tresch, M.C., Saltiel, P., and Bizzi, E. (1999). The construction of movement by the spinal cord. Nat. Neurosci. 2, 162–167.10.1038/5721Search in Google Scholar PubMed

Troyer, A. and Boriek, A.M. (2011). Mechanics of the respiratory muscles. Compr. Physiol. 1, 1273–1300.10.1002/cphy.c100009Search in Google Scholar PubMed

Truitt, W.A. and Coolen, L.M. (2002). Identification of a potential ejaculation generator in the spinal cord. Science 297, 1566–1569.10.1126/science.1073885Search in Google Scholar PubMed

Trulsson, M. (2007). Force encoding by human periodontal mechanoreceptors during mastication. Arch. Oral Biol. 52, 357–360.10.1016/j.archoralbio.2006.09.011Search in Google Scholar PubMed

Tsuboi, A., Kolta, A., Chen, C.C., and Lund, J.P. (2003). Neurons of the trigeminal main sensory nucleus participate in the generation of rhythmic motor patterns. Eur. J. Neurosci. 17, 229–238.10.1046/j.1460-9568.2003.02450.xSearch in Google Scholar PubMed

Tsuruyama, K., Hsiao, C.F., and Chandler, S.H. (2013). Participation of a persistent sodium current and calcium-activated nonspecific cationic current to burst generation in trigeminal principal sensory neurons. J. Neurophysiol. 110, 1903–1914.10.1152/jn.00410.2013Search in Google Scholar PubMed PubMed Central

Umemura, T., Ohta, H., Yokota, A., Yarimizu, S., and Nishizawa, S. (2016). Urinary retention associated with stroke. J. UOEH. 38, 263–269.10.7888/juoeh.38.263Search in Google Scholar PubMed

Umezaki, T., Matsuse, T., and Shin, T. (1998). Medullary swallowing-related neurons in the anesthetized cat. Neuroreport 9, 1793–1798.10.1097/00001756-199806010-00022Search in Google Scholar PubMed

Ung, R.V., Landry, E.S., Rouleau, P., Lapointe, N.P., Rouillard, C., and Guertin, P.A. (2008). Role of spinal 5-HT2 receptor subtypes in quipazine-induced hindlimb movements after a low-thoracic spinal cord transection. Eur. J. Neurosci. 28, 2231–2242.10.1111/j.1460-9568.2008.06508.xSearch in Google Scholar PubMed

Ung, R.V., Rouleau, P., and Guertin, P.A. (2012). Functional and physiological effects of treadmill training induced by buspirone, carbidopa, and L-DOPA in clenbuterol-treated paraplegic mice. Neurorehabil. Neural Repair. 26, 385–394.10.1177/1545968311427042Search in Google Scholar PubMed

van den Brand, R., Heutschi, J., Barraud, Q., DiGiovanna, J., Bartholdi, K., Huerlimann, M., Friedli, L., Vollenweider, I., Moraud, E.M., Duis, S., et al. (2012). Restoring voluntary control of locomotion after paralyzing spinal cord injury. Science 336, 1182–1185.10.1126/science.1217416Search in Google Scholar PubMed

Vargas, V.M., Torres, D., Corona, F., Vergara, M., Gomez, L.E., Delgado-Lezama, R., and Cueva-Rolon, R. (2004). Cholinergic facilitation of erection and ejaculation in spinal cord-transected rats. Int. J. Impot. Res. 16, 86–90.10.1038/sj.ijir.3901169Search in Google Scholar PubMed

Veening, J.G. and Coolen, L.M. (2014). Neural mechanisms of sexual behavior in the male rat: emphasis on ejaculation-related circuits. Pharmacol. Biochem. Behav. 121, 170–183.10.1016/j.pbb.2013.12.017Search in Google Scholar PubMed

Viala, D. and Buser, P. (1969). The effects of DOPA and 5-HTP on rhythmic efferent discharges in hind limb nerves in the rabbit. Brain Res. 12, 437–443.10.1016/0006-8993(69)90011-0Search in Google Scholar PubMed

Vitton, V., Grimaud, J.C., Bouvier, M., and Abysique, A. (2006). Supraspinal control of external anal sphincter motility: effects of vesical distension in humans and cats. Neurogastroenterol. Motil. 18, 1031–1040.10.1111/j.1365-2982.2006.00842.xSearch in Google Scholar PubMed

Vizzard, M.A., Erickson, V.L., Card, J.P., Roppolo, J.R., and de Groat, W.C. (1995). Transneuronal labeling of neurons in the adult rat brainstem and spinal cord after injection of pseudorabies virus into the urethra. J. Comp. Neurol. 355, 629–640.10.1002/cne.903550411Search in Google Scholar PubMed

Wallen, P. and Grillner, S. (1987). N-methyl-d-aspartate receptor-induced, inherent oscillatory activity in neurons active during fictive locomotion in the lamprey. J. Neurosci. 7, 2745–2755.10.1523/JNEUROSCI.07-09-02745.1987Search in Google Scholar PubMed

Wang, Y.T. and Bieger, D. (1991). Role of solitarial GABAergic mechanism in control of swallowing. Am. J. Physiol. Regulatory Integrative Comp. Physiol. 267, 639–646.10.1152/ajpregu.1991.261.3.R639Search in Google Scholar

Watson, C., Paxinos, G., and Kayalioglu, G. (2009). The Spinal Cord – A Christopher and Dana Reeve Foundation Text and Atlas (New York, USA: Elsevier Inc.).Search in Google Scholar

Watson, C., Paxinos, G., and Puelles, L. (2012). The Mouse Nervous System (New York: Elsevier Inc.).Search in Google Scholar

Whelan, P.J., Hiebert, G.W., and Pearson, K.G. (1995). Stimulation of the group I extensor afferents prolongs the stance phase in walking cats. Exp. Brain Res. 103, 20–30.10.1007/BF00241961Search in Google Scholar

Wieder, J.A., Brackett, N.L., Lynne, C.M., Green, J.T., and Aballa, T.C. (2000). Anesthetic block of the dorsal penile nerve inhibits vibratory-induced ejaculation in men with SCI. Urology 55, 915–917.10.1016/S0090-4295(99)00608-1Search in Google Scholar PubMed

Wienecke, J., Enríquez Denton, M., Stecina, K., Kirkwood, P.A., and Hultborn, H. (2015). Modulation of spontaneous locomotor and respiratory drives to hindlimb motoneurons temporally related to sympathetic drives as revealed by Mayer waves. Front. Neural. Circuits 9, 1.10.3389/fncir.2015.00001Search in Google Scholar PubMed

Williams, R.W. and Herrup, K. (1988). The control of neuron number. Annu. Rev. Neurosci. 11, 423–453.10.1146/annurev.ne.11.030188.002231Search in Google Scholar PubMed

Wilson, D.M. (1961). The central nervous control of flight in a locust. J. Exp. Biol. 38, 471–490.10.1242/jeb.38.2.471Search in Google Scholar

Wilson, D.M. and Wyman, R.J. (1965). Motor output patterns during random and rhythmic stimulation of locust thoracic ganglia. Biophys. J. 5, 121–143.10.1016/S0006-3495(65)86706-6Search in Google Scholar PubMed

Wilson, J.M., Hartley, R., Maxwell, D.J., Todd, A.J., Lieberam, I., Kaltschmidt, J.A., Yoshida, Y., Jessell, T.M., and Brownstone, R.M. (2005). Conditional rhythmicity of ventral spinal interneurons defined by expression of the Hb9 homeodomain protein. J. Neurosci. 25, 5710–5719.10.1523/JNEUROSCI.0274-05.2005Search in Google Scholar PubMed PubMed Central

Winter, D.A. (1991). Changes in gait with aging. Can. J. Sport Sci. 16, 165–167.Search in Google Scholar PubMed

Witts, E.C., Nascimento, F., and Miles, G.B. (2015). Adenosine-mediated modulation of ventral horn interneurons and spinal motoneurons in neonatal mice. J. Neurophysiol. 114, 2305–2315.10.1152/jn.00574.2014Search in Google Scholar PubMed PubMed Central

Wolpaw, J.R. (2010). What can the spinal cord teach us about learning and memory? Neuroscientist 16, 532–549.10.1177/1073858410368314Search in Google Scholar PubMed

Woolf, C.J. and McMahon, S.B. (1985). Injury-induced plasticity of the flexor reflex in chronic decerebrate rats. Neuroscience 16, 395–404.10.1016/0306-4522(85)90011-9Search in Google Scholar PubMed

Wright, A.J. and Haddad, M. (2017). Electroneurostimulation for the management of bladder bowel dysfunction in childhood. Eur. J. Paediatr. Neurol. 21, 67–74.10.1016/j.ejpn.2016.05.012Search in Google Scholar PubMed

Xu, C., Yaici, E.D., Conrath, M., Blanchard, P., Leclerc, P., Benoît, G., Vergé, D., and Giuliano, F. (2005). Galanin and neurokinin-1 receptor immunoreactive [corrected] spinal neurons controlling the prostate and the bulbospongiosus muscle identified by transsynaptic labeling in the rat. Neuroscience 134, 1325–1341.10.1016/j.neuroscience.2005.06.002Search in Google Scholar PubMed

Xu, C., Giuliano, F., Yaici, E.D., Conrath, M., Trassard, O., Benoit, G., and Vergé, D. (2006). Identification of lumbar spinal neurons controlling simultaneously the prostate and the bulbospongiosus muscles in the rat. Neuroscience 138, 561–573.10.1016/j.neuroscience.2005.11.016Search in Google Scholar PubMed

Yaksh, T.L. (1999). Spinal Drug Delivery (Amsterdam, Netherlands: Elsevier Inc.).Search in Google Scholar

Yamanaka, K., Takagishi, M., Kim, J., Gouraud, S.S., and Waki, H. (2018). Bidirectional cardiovascular responses evoked by microstimulation of the amygdala in rats. J. Physiol. Sci. 68, 233–242.10.1007/s12576-017-0523-2Search in Google Scholar PubMed

Yang, C.F. and Feldman, J.L. (2018). Efferent projections of excitatory and inhibitory preBötzinger complex neurons. J. Comp. Neurol. 526, 1389–1402.10.1002/cne.24415Search in Google Scholar PubMed PubMed Central

Yang, Z., Lv, Q., Wang, Z., Dong, X., Yang, R., and Zhao, W. (2017). Identification of crucial genes associated with rat traumatic spinal cord injury. Mol. Med. Rep. 15, 1997–2006.10.3892/mmr.2017.6267Search in Google Scholar PubMed PubMed Central

Yeh, S.Y., Huang, W.H., Wang, W., Ward, C.S., Chao, E.S., Wu, Z., Tang, B., Tang, J., Sun, J.J., Esther van der Heijden, M., et al. (2017). Respiratory network stability and modulatory response to substance P require Nalcn. Neuron 94, 294–303.10.1016/j.neuron.2017.03.024Search in Google Scholar PubMed PubMed Central

Yonezawa, A., Yoshizumi, M., Ebiko, M., Ise, S.N., Watanabe, C., Mizoguchi, H., Kimura, Y., and Sakurada, S. (2008). Ejaculatory response induced by a 5-HT2 receptor agonist m-CPP in rats: Differential roles of 5-HT2 receptor subtypes. Pharmacolo. Biochem. Behav. 88, 367–373.10.1016/j.pbb.2007.09.009Search in Google Scholar PubMed

Yoshiyama, M. and de Groat, W.C. (2005). Supraspinal and spinal α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid and N-methyl-D-aspartate glutamatergic control of the micturition reflex in the urethane anesthetized rat. Neuroscience 132, 1017–1026.10.1016/j.neuroscience.2005.01.041Search in Google Scholar PubMed PubMed Central

Zhang, C. and Lewis, T.J. (2017). Robust phase-waves in chains of half-center oscillators. J. Math. Biol. 74, 1627–1656.10.1007/s00285-016-1066-5Search in Google Scholar PubMed

Zhang, X., Douglas, K.L., Jin, H., Eldaif, B.M., Nassar, R., Fraser, M.O., and Dolber, P.C. (2008a). Sprouting of substance P-expressing primary afferent central terminals and spinal micturition reflex NK1 receptor dependence after spinal cord injury. Am. J. Physiol. Regul. Integr. Comp. Physiol. 295, 2084–2096.10.1152/ajpregu.90653.2008Search in Google Scholar PubMed PubMed Central

Zhang, Y., Narayan, S., Geiman, E., Lanuza, G.M., Velasquez, T., Shanks, B., Akay, T., Dyck, J., Pearons, K., Gosgnach, S., et al. (2008b). V3 spinal neurons establish a robust and balanced locomotor rhythm during walking. Neuron 60, 84–96.10.1016/j.neuron.2008.09.027Search in Google Scholar PubMed PubMed Central

Zhang, D., Zhu, X., Lan, L., and Zhu, K. (2009). Mathematical study on ionic mechanism of lamprey central pattern generator model. Int. J. Neural Syst. 19, 409–424.10.1142/S0129065709002117Search in Google Scholar PubMed

Zhang, J., Lanuza, G.M., Britz, O., Wang, Z., Siembab, V.C., Zhang, Y., Velasquez, T., Alvarez, F.J., Frank, E., and Goulding, M. (2014). V1 and V2b interneurons secure the alternating flexor-extensor motor activity mice require for limbed locomotion. Neuron 82, 138–150.10.1016/j.neuron.2014.02.013Search in Google Scholar PubMed PubMed Central

Zhong, G., Droho, S., Crone, S.A., Dietz, S., Kwan, A.C., Webb, W.W., Sharma, K., and Harris-Warrick, R.M. (2010). Electrophysiological characterization of V2a interneurons and their locomotor-related activity in the neonatal mouse spinal cord. J. Neurosci. 30, 170–182.10.1523/JNEUROSCI.4849-09.2010Search in Google Scholar PubMed PubMed Central

Zhong, G., Sharma, K., and Harris-Warrick, R.M. (2011). Frequency-dependent recruitment of V2a interneurons during fictive locomotion in the mouse spinal cord. Nat. Commun. 2, 274.10.1038/ncomms1276Search in Google Scholar PubMed PubMed Central

Ziskind-Conhaim, L., Wu, L., and Wiesner, E.P. (2008). Persistent sodium current contributes to induced voltage oscillations in locomotor-related hb9 interneurons in the mouse spinal cord. J. Neurophysiol. 100, 2254–2264.10.1152/jn.90437.2008Search in Google Scholar PubMed PubMed Central

Received: 2017-11-27
Accepted: 2018-03-30
Published Online: 2018-12-13
Published in Print: 2019-01-28

©2019 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 23.4.2024 from https://www.degruyter.com/document/doi/10.1515/revneuro-2017-0102/html
Scroll to top button