Skip to main content
Log in

Connectivity and dynamics of neural information processing

  • Review Article
  • Published:
Neuroinformatics Aims and scope Submit manuscript

Abstract

In this article, we systematically review the current literature on neural connectivity and dynamics, or equivalently, structure and function. In particular, we discuss how changes in the connectivity of a neural network affect the spatiotemporal network dynamics qualitatively. The three major criteria of comparison are, first, the local dynamics at the network nodes which includes fixed point dynamics, oscillatory and chaotic dynamics; second, the presence of time delays via propagation along connecting pathways; and third, the properties of the connectivity matrix such as its statistics, symmetry, and translational invariance. Since the connection topology changes when anatomical scales are traversed, so will the corresponding network dynamics change. As a consequence different types of networks are encountered on different levels of neural organization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abeles, M. (1991) Corticonics. Cambridge University Press.

  • Albert, R. and Barabási, A., L. (2002) Statistical mechanics of complex networks. Rev. Mod. Phys. 74, 47–97.

    Article  Google Scholar 

  • Amari, S. (1977) Dynamics of pattern formation in lateral-inhibition type neural fields. Biol. Cybern. 27, 77–87.

    Article  CAS  Google Scholar 

  • Arbib, M. and Érdi, P. (2000) Structure, Function, and Dynamics: An Integrated Approach to Neural Organization. Behavioral and Brain Sciences 23, 513–571.

    Article  CAS  Google Scholar 

  • Atay, F.M. (2003) Distributed Delays Facilitate Amplitude Death of Coupled Oscillators. Phys. Rev. Lett. 91, 094101.

    Google Scholar 

  • Barabási, A.L. and Albert R. (1999) Emergence of scaling in random networks. Science 286, 509.

    Article  Google Scholar 

  • Bélair, J. (1992) Stability in delayed networks. In: Stability in delayed neural networks, Ordinary and delay differential equations. Hale, J., Wer J. and Longnan (eds.), 6, 1–4.

    Google Scholar 

  • Bélair, J. (1993) Stability in a model of a delayed neural network. J. Dynamics Differential Equations. 5, 607–623.

    Article  Google Scholar 

  • Braitenberg, V. and Schüz, A. (1991) Anatomy of the cortex. Statistics and geometry. Springer, Berlin Heidelberg New York.

    Google Scholar 

  • Brauer, F. (1987) Absolute stability in delay equations. J. Diff. Equ. 69, 185–191.

    Article  Google Scholar 

  • Bressler, S.L. (2002) Understanding cognition through large-scale cortical networks. Curr. Dir. Psych. Sci. 11, 58–61.

    Article  Google Scholar 

  • Bressler, S.L. (2003) Cortical coordination dynamics and the disorganization syndrome in schizophrenia. Neuropsychpharmacology 28, 535–539.

    Google Scholar 

  • Bressler, S.L. and Kelso, J.A.S. (2001) Cortical coordination dynamics and cognition. Trends in Cog. Sci. 5, 26–36.

    Article  Google Scholar 

  • Bressloff, P.C. (1996) New mechanism for neural pattern formation. Phys. Rev. Let 76, 4644–4647.

    Article  CAS  Google Scholar 

  • Calvert, G.A. (2001) Crossmodal Processing in the Human Brain: Insights from functional neuroimaging studies. Cereb. Cortex 11, 1110–1123.

    Article  CAS  Google Scholar 

  • Campbell, S.R. and Wang, D. (1998) Relaxation oscillators with time delay coupling. Physica D 111, 151–178.

    Article  Google Scholar 

  • Chen, L. and Aihara, K. (2002) Stability of genetic regulatory networks with time delay. IEEE Trans. Circ. Sys. 49 (5) 602–608.

    Article  Google Scholar 

  • Chen, Y., Rangarajan, G., and Ding, M. (2003) General stability analysis of synchronized dynamics in coupled systems. Phys. Rev. E 67, 026209.

    Google Scholar 

  • Cohen, M.A. and Grossberg, S. (1983) Absolute stability of global pattern formation and parallel memory storage by competitive neural networks. IEEE Transactions on Systems, Man, and Cybernetics, SMC-13, 815–826.

    Google Scholar 

  • Coombes, S., Lord, G.J., and Owen, M.R. (2003) Waves and bumps in neuronal networks with axo-dendritic synaptic interactions. Physica D 178, 219–241.

    Article  Google Scholar 

  • Cross, M.C. and Hohenberg, P.C. (1993) Pattern Formation Outside of Equilibrium. Rev. Mod. Phys. 65, 851.

    Article  CAS  Google Scholar 

  • De Monte, S., d’Ovidio, F., and Mosekilde, E. (2003) Coherent regimes of globally coupled dynamical systems. Phys. Rev. Let. 90, 054102.

    Google Scholar 

  • Earl, M.G. and Strogatz, S.H. (2003) Synchronization in oscillator networks with delayed coupling: A stability criterion. Phys. Rev. E 67, 036204.

    Google Scholar 

  • Eggert, J. and van Hemmen, J.L. (2001) Modeling neuronal assemblies: theory and implementation. Neural Computation 13, 1923–1974.

    Article  CAS  Google Scholar 

  • Erdös, P. and Rényi, A. (1959) Publ. Math. (Debrecen) 6, 290.

    Google Scholar 

  • Erlhagen, W. and Schöner, G. (2002) Dynamic field theory of motor programming. Psychological Review 109 (3), 545–572.

    Article  Google Scholar 

  • Ermentrout, B. (1998) Neural networks as spatiotemporal patternforming systems. Rep. Prog. Phys. 61, 353–430.

    Article  Google Scholar 

  • FitzHugh, R. (1961) Impulses and physiological states in theoretical models of nerve membrane. Biophys. J. 1, 445–466.

    CAS  Google Scholar 

  • Frank, T.D., Daffertshofer, A., Beek, P.J., and Haken, H. (1999). Impacts of noise on a field theoretical model of the human brain. Physica D, 127, 233–249.

    Article  Google Scholar 

  • Frank, T. D., Daffertshofer, A., Peper, C. E., Beek, P. J., and Haken, H. (2000). Towards a comprehensive theory of brain activity: coupled oscillator systems under external forces. Physica D, 144, 62–86.

    Article  Google Scholar 

  • Freeman, W.J. (1975) Mass action in the nervous system. Academic Press New York.

    Google Scholar 

  • Freeman, W.J. (1992) Tutorial on neurobiology: From single neurons to brain chaos. Inter. Journ. Bif. Chaos 2, 451–482.

    Article  Google Scholar 

  • Fuchs, A., Kelso, J.A.S., and Haken, H. (1992) Phase Transitions in the Human Brain: Spatial Mode Dynamics. Inter. Journ. Bif. Chaos 2, 917–939.

    Article  Google Scholar 

  • Fuchs, A., Jirsa, V.K., and Kelso, J.A.S. (2000) Issues for the coordination of human brain activity and motor behavior, NeuroImage 11, 375–377.

    Article  CAS  Google Scholar 

  • Gerstner, W. (2000) Population Dynamics of Spiking Neurons: Fast Transients, Asynchronous States, and Locking. Neural Computation 12, 43–89.

    Article  CAS  Google Scholar 

  • Gerstner, W. and Kistler, W.M. (2002) Spiking neuron models: Single neurons, populations, plasticity. Cambridge University Press.

  • Grossberg, S. (1988) Nonlinear Neural Networks: Principles, Mechanisms, and Architectures. Neural Networks 1, 17–61.

    Article  Google Scholar 

  • Haken, H. (1975) Cooperative phenomena in systems far from thermal equilibrium and in non-physical systems. Rev. Mod. Phys. 47.1, 67–121.

    Article  Google Scholar 

  • Hendrey, M., Ott E., and Antonsen T.M. Jr. (1999) Effect of inhomogeneity on spiral wave dynamics. Phys. Rev. Let. 82, 859–862.

    Article  CAS  Google Scholar 

  • Hindmarsh, J.L. and Rose, R.M. (1984) A model of neuronal bursting using three coupled first order differential equations. Proc. R. Soc. London, Ser. B 221, 87.

    CAS  Google Scholar 

  • Hopfield, J.J. (1982) Neural networks and physical systems with emergent collective computational abilities. Proc. Nat. Acad. Sci. 79, 2554–2558.

    Article  CAS  Google Scholar 

  • Hopfield, J.J. (1984) Neurons with graded response have collective computational properties like those of two-state neurons. Proc. Nat. Acad. Sci. 81, 3088–3092.

    Article  CAS  Google Scholar 

  • Horwitz, B., Friston, K.J., and Taylor, J.G. (2000) Neural modeling and functional brain imaging: an overview. Neural Networks 13, 829–846.

    Article  CAS  Google Scholar 

  • Hodgkin, A.L. and Huxley, A.F. (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117, 500–544.

    CAS  Google Scholar 

  • Huberman, B.A., Pirolli, P.L.T., Pitkow, J.E., and Luose, R.M. (1998) Strong regularities in World Wide Web surfing. Science 280, 95.

    Article  CAS  Google Scholar 

  • Huberman, B.A. and Adamic, L.A. (1999) Internet-Growth dynamics of the world-wide web. Nature 401, 131.

    CAS  Google Scholar 

  • Jirsa, V.K., Friedrich, R., Haken, H., and Kelso, J.A.S. (1994) A theoretical model of phase transitions in the human brain. Biol. Cybern. 71, 27–35.

    CAS  Google Scholar 

  • Jirsa, V.K., Friedrich, R., and Haken, H. (1995) Reconstruction of the spatiotemporal dynamics of a human magnetoencephalogram, Physica D 89, 100–122.

    Article  Google Scholar 

  • Jirsa, V.K. and Haken, H. (1996) Field theory of electromagnetic brain activity. Phys. Rev. Let. 77, 960–963.

    Article  CAS  Google Scholar 

  • Jirsa, V.K. and Haken, H. (1997) A derivation of a macroscopic field theory of the brain from the quasi-microscopic neural dynamics. Physica D 99, 503–526.

    Article  Google Scholar 

  • Jirsa, V.K., Fuchs, A., and Kelso, J.A.S. (1998) Connecting cortical and behavioral dynamics: bimanual coordination. Neural Computation 10, 2019–2045.

    Article  CAS  Google Scholar 

  • Jirsa, V.K. and Kelso, J.A.S. (2000) Spatiotemporal pattern formation in continuous systems with heterogeneous connection topologies. Phys. Rev. E 62, 6, 8462–8465.

    Article  CAS  Google Scholar 

  • Jirsa, V.K., Jantzen, K.J., Fuchs, A., and Kelso, J.A.S. (2002) Spatiotemporal forward solution of the EEG and MEG using network modeling. IEEE Transactions on Medical Imaging, 21, 5, 493–504.

    Article  Google Scholar 

  • Jirsa, V.K. (2002) Heterogeneous connectivity patterns alter the timing variability in spatially distributed dynamic systems. Nonlinear Phenomena In Complex Systems 5 (4), 356–363.

    Google Scholar 

  • Jirsa, V.K. (2004) Information processing in brain and behavior displayed in large-scale scalp topographies such as EEG and MEG. Intern. J. Bif. Chaos 14 (2).

  • Jirsa, V.K. and Ding, M. (2004) Will a large complex system with delays be stable? Phys. Rev. Lett., in press.

  • Kiss, T. and Érdi, P. (2002) Mesoscopic Neurodynamics. BioSystems 64, 119–126.

    Article  Google Scholar 

  • Kaneko, K (1997) Dominance of Milnor Attractors and Noise-Induced Selection in a Multiattractor System. Phys. Rev. Lett. 78, 2736–2739.

    Article  CAS  Google Scholar 

  • Kelso, J.A.S., Bressler, S.L., Buchanan, S., DeGuzman, G.C., Ding M., Fuchs A., and Holroyd T. (1992) A phase transition in human brain and behavior. Physics Letters A 169, 134–144.

    Article  Google Scholar 

  • Kötter, R. and Sommer, F.T. (2000) Global relationship between anatomical connectivity and activity propagation in the cerebral cortex. Phil. Trans. R. Soc. Lond. B 355, 127–134.

    Article  Google Scholar 

  • Lago-Fernández, L.F., Huerta, R., Corbacho, F., and Sigüenza, J.A. (2000) Fast response and temporal coherent oscillations in small-world networks. Phys. Rev. Let. 84, 2758–2761.

    Article  Google Scholar 

  • Large, E.W. (2001) Periodicity, pattern formation, and metric structure. Journal of New Music Research 22, 173–185.

    Article  Google Scholar 

  • MacDonald, N. (1989) Biological delay systems: linear stability theory. Cambridge University Press.

  • Mallot, H.A. and Brittinger, R. (1989) Towards a network theory of cortical areas. In: Cotteril R.M.J. (ed.) Models of brain function. Cambridge University Press, 175–189.

  • Mallot, H.A. and Giannakopoulos, F. (1996) population networks: a large-scale framework for modelling cortical neural networks. Biol. Cybern. 75, 441–452.

    Article  CAS  Google Scholar 

  • Markram, H., Lubke, J., Frotscher, M., and Sakmann, B. (1997) Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 275, 213–215.

    Article  CAS  Google Scholar 

  • Nagumo, J., Arimoto, S., and Yoshizawa, S. (1962) An active pulse transmission line simulating nerve axon. Proc. IRE, 50, 2061–2070.

    Article  Google Scholar 

  • Nunez, P.L. (1974) The brain wave equation: A model for the EEG. Mathematical Biosciences 21, 279–297.

    Article  Google Scholar 

  • Nunez, P.L. (1995) Neocortical dynamics and human EEG rhythms, Oxford University Press.

  • Ott, E., So, P., Barreto, E., and Antonsen, T. (2002) The onset of synchronization in systems of globally coupled chaotic and periodic oscillators. Physica D 173, 29–51.

    Article  Google Scholar 

  • Pecora, L.M., and Carroll, T.L. (1998) Master stability functions for synchronized coupled systems. Phys. Rev. Let. 80, 2109–2112.

    Article  CAS  Google Scholar 

  • Robinson, P.A., Rennie, C.J., and Wright, J.J. (1997) Propagation and stability of waves of electrical activity in the cerebral cortex. Phys. Rev. E56, 826.

    Google Scholar 

  • Robinson, P.A., Rennie, C.J., Wright, J.J., Bahramali H., Gordon, E., and Rowe, D.L. (2001) Prediction of electroencephalographic spectra from neurophysiology. Phys. Rev. E 63, 021903.

    Google Scholar 

  • Reddy, D.V.R., Sen, A., and Johnston, G.L. (1999) Time delay effects on coupled limit cycle oscillators at Hopf bifurcation. Physica D 129, 15–34.

    Article  Google Scholar 

  • Shayer, L.P. and Campbell, S.A. (2000) Stability, bifurcation, and multistability in a system of two coupled neurons with multiple time delays. SIAM J. Appl. Math. 61, 673–700.

    Article  Google Scholar 

  • Shehadeh, L., Liebovitch, L.S., and Jirsa, V.K. (2004) Patterns of Genetic Interactions within Genomic Networks, in Neurosciences. From biological systems to cognitive robotics. Lindsay K.A., Poznanski R.R., Rosenberg J.R., Sporns O. (eds.) CRC Press London, New York, Tokyo.

    Google Scholar 

  • Singer, W. and Gray, C. (1995) Visual feature integration and the temporal correlation hypothesis. Ann. Rev. Neurosci. 18, 555–586.

    Article  CAS  Google Scholar 

  • Sporns, O., Tononi, G., and Edelman, G.M. (2000) Theoretical Neuroanatomy: Relating anatomical and functional connectivity in graphs and cortical connection matrices. Cerebral Cortex 10, 127–141.

    Article  CAS  Google Scholar 

  • Sporns, O., and Tononi, G. (2002) Classes of Network connectivity and dynamics. Complexity 7, 28–38.

    Article  Google Scholar 

  • Sporns, O. (2004) Complex Neural Dynamics. In: Coordination Dynamics: Issues and Trends. Jirsa V.K. & Kelso J.A.S. (eds.) Springer Berlin.

  • Steyn-Ross, M.L., Steyn-Ross, D. A., Sleigh, J. W., and Liley, D.T.J. (1999) Theoretical electroencephalogram stationary spectrum for a white-noise-driven cortex: Evidence for a general anesthetic-induced phase transition. Phys. Rev. E 60, 7299–7311.

    Article  CAS  Google Scholar 

  • Tagamets, M.A. and Horwitz, B. (1998) Integrating electrophysiological and anatomical experimental data to create a large-scale model that simulates a delayed match-to-sample human brain imaging study. Cereb. Cortex 8, 310–320.

    Article  CAS  Google Scholar 

  • Van den Driessche, P. and Zou, X. (1998) Global attractivity in delayed Hopfield neural network models. SIAM J. Appl. Math. 58 (6) 1878–1890.

    Article  Google Scholar 

  • Watts, D.J. and Strogatz, S.H. (1998) Collective dynamics of small-world’ networks. Nature 393, 440–442.

    Article  CAS  Google Scholar 

  • Wilson, H.R. and Cowan, J.D. (1972) Excitatory and inhibitory interactions in localized populations of model neurons. Biophysical Journal 12, 1–24.

    Article  CAS  Google Scholar 

  • Wilson, H.R. and Cowan, J.D. (1973) A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue. Kybernetik 13, 55–80.

    Article  CAS  Google Scholar 

  • Wright, J.J. and Liley, D.T.J. (1996) Dynamics of the brain at global and microscopic scales: Neural networks and the EEG. Behav. Brain. Sci. 19, 285.

    Article  Google Scholar 

  • Zhao H.Y. (2003) Global stability of neural networks with distributed delays. Phys. Rev. E 68, 051909.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jirsa, V.K. Connectivity and dynamics of neural information processing. Neuroinform 2, 183–204 (2004). https://doi.org/10.1385/NI:2:2:183

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/NI:2:2:183

Index Entries

Navigation