Skip to main content
Log in

Axotomy-induced early down-regulation of POU-IV class transcription factors Brn-3a and Brn-3b in retinal ganglion cells

  • Original Article
  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

It has been proposed that neurons being exposed to proapoptotic stimuli undergo dedifferentiation, a process that can either allow for regeneration and axon regrowth or, if remaining incomplete, can force the cell to activate apoptotic pathways. A pivotal step in the differentiation program from neuronal precursor cells to differentiated, postmitotic neurons is their exit from the cell cycle. The POU domain transcription factors Brn-3b and Brn-3a, which are expressed in retinal ganglion cells (RGCs) directly after the exit of RGC precursors from the cell cycle, can be employed as RGC-specific differentiation markers to study potential dedifferentiation of RGCs after axotomy. Here, we examined mRNA and protein expression of Brn-3a and-3b in rat RGCs following axonal lesion. We observed a rapid down-regulation of Brn-3a and -3b protein expression in axotomized RGCs, clearly preceding apoptosis of RGCs. Using real-time PCR, we show that regulation of Brn-3 expression occurred at the transcriptional level. The small subset of RGCs regenerating into a peripheral nerve graft did not (re-)express Brn-3a or -b. In conclusion, we found further evidence supporting the hypothesis of a dedifferentiation process in severed mature neurons. As Brn-3b expression has been shown to be a prerequisite for developmental survival of most RGCs and Brn-3a activates transcription of anti-apoptotic genes, down-regulation of Brn-3 transcription factors might be causally involved in the secondary death of adult RGCs following axotomy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Bray G. M., Villegas-Perez M. P., Vidal-Sanz M., and Aguayo A. J. (1987) The use of peripheral nerve grafts to enhance neuronal survival, promote growth and permit terminal reconnections in the central nervous system of adult rats. J. Exp. Biol. 132, 5–19.

    PubMed  CAS  Google Scholar 

  • Erkman L., McEvilly R. J., Luo L., Ryan A. K., Hooshmand F., O’Connell S. M., et al. (1996) Role of transcription factors Brn-3.1 and Brn-3.2 in auditory and visual system development. Nature 381, 603–606.

    Article  PubMed  CAS  Google Scholar 

  • Erkman L., Yates P. A., McLaughlin T., McEvilly R. J., Whisenhunt T., O’Connell S. M., et al. (2000) A POU domain transcription factor-dependent program regulates axon pathfinding in the vertebrate visual system. Neuron 28, 779–792.

    Article  PubMed  CAS  Google Scholar 

  • Fedtsova N. G. and Turner E. E. (1995) Brn-3.0 expression identifies early post-mitotic CNS neurons and sensory neural precursors. Mech. Dev. 53, 291–304.

    Article  PubMed  CAS  Google Scholar 

  • Freeman R. S., Estus S., and Johnson E. M. Jr. (1994) Analysis of cell cycle-related gene expression in postmitotic neurons: selective induction of Cyclin D1 during programmed cell death. Neuron 12, 343–355.

    Article  PubMed  CAS  Google Scholar 

  • Gan L., Xiang M., Zhou L., Wagner D. S., Klein W. H., and Nathans J. (1996) POU domain factor Brn-3b is required for the development of a large set of retinal ganglion cells. Proc. Natl. Acad. Sci. U. S. A. 93, 3920–3925.

    Article  PubMed  CAS  Google Scholar 

  • Heintz N. (1993) Cell death and the cell cycle: a relationship between transformation and neurodegeneration? Trends Biochem. Sci. 18, 157–159.

    Article  PubMed  CAS  Google Scholar 

  • Hudson C. D., Podesta J., Henderson D., Latchman D. S., and Budhram-Mahadeo V. (2004) Coexpression of Brn-3a POU protein with p53 in a population of neuronal progenitor cells is associated with differentiation and protection against apoptosis. J. Neurosci. Res. 18, 803–814.

    Article  CAS  Google Scholar 

  • Hull M. and Bähr M. (1994) Differential regulation of c-JUN expression in rat retinal ganglion cells after proximal and distal optic nerve transection. Neurosci. Lett. 178, 39–42.

    Article  PubMed  CAS  Google Scholar 

  • Isenmann S. and Bähr M. (1997) Expression of c-Jun protein in degenerating retinal ganglion cells after optic nerve lesion in the rat. Exp. Neurol. 147, 28–36.

    Article  PubMed  CAS  Google Scholar 

  • Isenmann S., Wahl C., Krajewski S., Reed J. C., and Bähr M. (1997) Up-regulation of Bax protein in degenerating retinal ganglion cells precedes apoptotic cell death after optic nerve lesion in the rat. Eur. J. Neurosci. 9, 1763–1772.

    Article  PubMed  CAS  Google Scholar 

  • Kermer P., Klöcker N., Weishaupt J. H., and Bähr M. (2001) Transection of the optic nerve in rats: studying neuronal death and survival in vivo. Brain Res. Brain Res. Protocols 7, 255–260.

    Article  CAS  Google Scholar 

  • Klöcker N., Braunling F., Isenmann S., and Bähr M. (1997) In vivo neurotrophic effects of GDNF on axotomized retinal ganglion cells. Neuroreport 8, 3439–3442.

    Article  PubMed  Google Scholar 

  • Klöcker N., Jung M., Stuermer C. A., and Bähr M. (2001) BDNF increases the number of axotomized rat retinal ganglion cells expressing GAP-43, L1, and TAG-1 mRNA—a supportive role for nitric oxide? Neurobiol. Dis. 8, 103–113.

    Article  PubMed  CAS  Google Scholar 

  • Latchman D. S. (1999) POU family transcription factors in the nervous system. J. Cell. Physiol. 179, 126–133.

    Article  PubMed  CAS  Google Scholar 

  • Lee E. Y., Hu N., Yuan S. S., Cox L. A., Bradley A., Lee W. H., and Herrup K. (1994) Dual roles of the retinoblastoma protein in cell cycle regulation and neuron differentiation. Genes Dev. 8, 2008–2021.

    Article  PubMed  CAS  Google Scholar 

  • Lefevre K., Clarke P. G., Danthe E. E., and Castagne V. (2002) Involvement of cyclin-dependent kinases in axotomy-induced retinal ganglion cell death. J. Comp. Neurol. 447, 72–81.

    Article  PubMed  CAS  Google Scholar 

  • Liu Y. Z., Dawson S. J., and Latchman D. S. (1996) Alternative splicing of the Brn-3a and Brn-3b transcription factor RNAs is regulated in neuronal cells. J. Mol. Neurosci. 7, 77–85.

    Article  PubMed  CAS  Google Scholar 

  • McEvilly R. J., Erkman L., Luo L., Sawchenko P. E., Ryan A. F., and Rosenfeld M. G. (1996) Requirement for Brn-3.0 in differentiation and survival of sensory and motor neurons. Nature 384, 574–577.

    Article  PubMed  CAS  Google Scholar 

  • O’Hare M. J., Hou S. T., Morris E. J., Cregan S. P., Xu Q., Slack R. S., and Park D. S. (2000) Induction and modulation of cerebellar granule neuron death by E2F-1. J. Biol. Chem. 275, 25358–25364.

    Article  PubMed  CAS  Google Scholar 

  • Osuga H., Osuga S., Wang F., Fetni R., Hogan M. J., Slack R. S., et al. (2000) Cyclin-dependent kinases as a therapeutic target for stroke. Proc. Natl. Acad. Sci. U. S. A. 97, 10254–10259.

    Article  PubMed  CAS  Google Scholar 

  • Park D. S., Levine B., Ferrari G., and Greene L. A. (1997a) Cyclin dependent kinase inhibitors and dominant negative cyclin dependent kinase 4 and 6 promote survival of NGF-deprived sympathetic neurons. J. Neurosci. 17, 8975–8983.

    PubMed  CAS  Google Scholar 

  • Park D. S., Morris E. J., Greene L. A., and Geller H. M. (1997b) G1/S cell cycle blockers and inhibitors of cyclin-dependent kinases suppress camptothecin-induced neuronal apoptosis. J. Neurosci. 17, 1256–1270.

    PubMed  CAS  Google Scholar 

  • Peinado-Ramon P., Salvador M., Villegas-Perez M. P., and Vidal-Sanz M. (1996) Effects of axotomy and intraocular administration of NT-4, NT-3, and brain-derived neurotrophic factor on the survival of adult rat retinal ganglion cells. A quantitative in vivo study. Invest. Ophthalmol. Vis. Sci. 37, 489–500.

    PubMed  CAS  Google Scholar 

  • Rubin L. L., Gatchalian C. L., Rimon G., and Brooks S. F. (1994) The molecular mechanisms of neuronal apoptosis. Curr. Opin. Neurobiol. 4, 696–702.

    Article  PubMed  CAS  Google Scholar 

  • Smith M. D., Dawson S. J., and Latchman D. S. (1997a) The Brn-3a transcription factor induces neuronal process outgrowth and the coordinate expression of genes encoding synaptic proteins. Mol. Cell. Biol. 17, 345–354.

    PubMed  CAS  Google Scholar 

  • Smith M. D., Ensor E. A., Coffin R. S., Boxer L. M., and Latchman D. S. (1998) Bcl-2 transcription from the proximal P2 promoter is activated in neuronal cells by the Brn-3a POU family transcription factor. J. Biol. Chem. 273, 16715–16722.

    Article  PubMed  CAS  Google Scholar 

  • Smith M. D., Melton L. A., Ensor E. A., Packham G., Anderson P., Kinloch R. A., and Latchman D. S. (2001) Brn-3a activates the expression of Bcl-x(L) and promotes neuronal survival in vivo as well as in vitro. Mol. Cell. Neurosci. 17, 460–470.

    Article  PubMed  CAS  Google Scholar 

  • Smith M. D., Morris P. J., Dawson S. J., Schwartz M. L., Schlaepfer W. W., and Latchman D. S. (1997b) Coordinate induction of the three neurofilament genes by the Brn-3a transcription factor. J. Biol. Chem. 272, 21325–21333.

    Article  PubMed  CAS  Google Scholar 

  • Vidal-Sanz M., Villegas-Perez M. P., Bray G. M., and Aguayo A. J. (1988) Persistent retrograde labeling of adult rat retinal ganglion cells with the carbocyanine dye dil. Exp. Neurol. 102, 92–101.

    Article  PubMed  CAS  Google Scholar 

  • Villegas-Perez M. P., Vidal-Sanz M., Bray G. M., and Aguayo A. J. (1988) Influences of peripheral nerve grafts on the survival and regrowth of axotomized retinal ganglion cells in adult rats. J. Neurosci. 8, 265–280.

    PubMed  CAS  Google Scholar 

  • Xiang M. (1998) Requirement for Brn-3b in early differentiation of postmitotic retinal ganglion cell precursors. Dev. Biol. 197, 155–169.

    Article  PubMed  CAS  Google Scholar 

  • Xiang M., Gan L., Li D., Chen Z. Y., Zhou L., O’Malley B. W. Jr., Klein W., and Nathans J. (1997a) Essential role of POU-domain factor Brn-3c in auditory and vestibular hair cell development. Proc. Natl. Acad. Sci. U. S. A. 94, 9445–9450.

    Article  PubMed  CAS  Google Scholar 

  • Xiang M., Gan L., Li D., Zhou L., Chen Z. Y., Wagner D., et al. (1997b) Role of the Brn-3 family of POU-domain genes in the development of the auditory/vestibular, somatosensory, and visual systems. Cold Spring Harb. Symp. Quant. Biol. 62, 325–336.

    PubMed  CAS  Google Scholar 

  • Xiang M., Gan L., Zhou L., Klein W. H., and Nathans J. (1996) Targeted deletion of the mouse POU domain gene Brn-3a causes selective loss of neurons in the brainstem and trigeminal ganglion, uncoordinated limb movement, and impaired suckling. Proc. Natl. Acad. Sci. U. S. A. 93, 11950–11955.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathias Bähr.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weishaupt, J.H., Klöcker, N. & Bähr, M. Axotomy-induced early down-regulation of POU-IV class transcription factors Brn-3a and Brn-3b in retinal ganglion cells. J Mol Neurosci 26, 17–26 (2005). https://doi.org/10.1385/JMN:26:1:017

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/JMN:26:1:017

Index Entries

Navigation