1932

Abstract

Advances on several fronts have refined our understanding of the neuronal mechanisms of attention. This review focuses on recent progress in understanding visual attention through single-neuron recordings made in behaving subjects. Simultaneous recordings from populations of individual cells have shown that attention is associated with changes in the correlated firing of neurons that can enhance the quality of sensory representations. Other work has shown that sensory normalization mechanisms are important for explaining many aspects of how visual representations change with attention, and these mechanisms must be taken into account when evaluating attention-related neuronal modulations. Studies comparing different brain structures suggest that attention is composed of several cognitive processes, which might be controlled by different brain regions. Collectively, these and other recent findings provide a clearer picture of how representations in the visual system change when attention shifts from one target to another.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-vision-082114-035431
2015-11-24
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/vision/1/1/annurev-vision-082114-035431.html?itemId=/content/journals/10.1146/annurev-vision-082114-035431&mimeType=html&fmt=ahah

Literature Cited

  1. Abbott LF, Dayan P. 1999. The effect of correlated variability on the accuracy of a population code. Neural Comput. 11:91–101 [Google Scholar]
  2. Anderson B. 2011. There is no such thing as attention. Front. Psychol. 2:246 [Google Scholar]
  3. Armstrong KM, Fitzgerald JK, Moore T. 2006. Changes in visual receptive fields with microstimulation of frontal cortex. Neuron 50:791–98 [Google Scholar]
  4. Averbeck BB, Latham PE, Pouget A. 2006. Neural correlations, population coding and computation. Nat. Rev. Neurosci. 7:358–66 [Google Scholar]
  5. Balan PF, Gottlieb JP. 2006. Integration of exogenous input into a dynamic salience map revealed by perturbing attention. J. Neurosci. 26:9239–49 [Google Scholar]
  6. Bisley JW. 2011. The neural basis of visual attention. J. Physiol. 589:49–57 [Google Scholar]
  7. Bisley JW, Goldberg ME. 2003. Neuronal activity in the lateral intraparietal area and spatial attention. Science 299:81–86 [Google Scholar]
  8. Bisley JW, Goldberg ME. 2006. Neural correlates of attention and distractibility in the lateral intraparietal area. J. Neurophysiol. 95:1696–717 [Google Scholar]
  9. Bisley JW, Goldberg ME. 2010. Attention, intention, and priority in the parietal lobe. Annu. Rev. Neurosci. 33:1–21 [Google Scholar]
  10. Boudreau CE, Williford TH, Maunsell JHR. 2006. Effects of task difficulty and target likelihood in area V4 of macaque monkeys. J. Neurophysiol. 96:2377–87 [Google Scholar]
  11. Boynton GM. 2009. A framework for describing the effects of attention on visual responses. Vis. Res. 49:1129–43 [Google Scholar]
  12. Briggs F, Mangun GR, Usrey WM. 2013. Attention enhances synaptic efficacy and the signal-to-noise ratio in neural circuits. Nature 499:476–80 [Google Scholar]
  13. Busse L, Katzner S, Treue S. 2008. Temporal dynamics of neuronal modulation during exogenous and endogenous shifts of visual attention in macaque area MT. PNAS 105:16380–85 [Google Scholar]
  14. Carandini M, Heeger DJ. 2012. Normalization as a canonical neural computation. Nat. Rev. Neurosci. 13:51–62 [Google Scholar]
  15. Carrasco M. 2011. Visual attention: the past 25 years. Vis. Res. 51:1484–525 [Google Scholar]
  16. Cavanaugh J, Alvarez BD, Wurtz RH. 2006. Enhanced performance with brain stimulation: attentional shift or visual cue?. J. Neurosci. 26:11347–58 [Google Scholar]
  17. Cavanaugh J, Wurtz RH. 2004. Subcortical modulation of attention counters change blindness. J. Neurosci. 24:11236–43 [Google Scholar]
  18. Chelazzi L, Estocinova J, Calletti R, Lo Gerfo E, Sani I. et al. 2014. Altering spatial priority maps via reward-based learning. J. Neurosci. 34:8594–604 [Google Scholar]
  19. Chun MM, Golomb JD, Turk-Browne NB. 2011. A taxonomy of external and internal attention. Annu. Rev. Psychol. 62:73–101 [Google Scholar]
  20. Cohen MR, Kohn A. 2011. Measuring and interpreting neuronal correlations. Nat. Neurosci. 14:811–19 [Google Scholar]
  21. Cohen MR, Maunsell JHR. 2009. Attention improves performance primarily by reducing interneuronal correlations. Nat. Neurosci. 12:1594–600 [Google Scholar]
  22. Cohen MR, Maunsell JHR. 2010. A neuronal population measure of attention predicts behavioral performance on individual trials. J. Neurosci. 30:15241–53 [Google Scholar]
  23. Cohen MR, Maunsell JHR. 2011a. Using neuronal populations to study the mechanisms underlying spatial and feature attention. Neuron 70:1192–204 [Google Scholar]
  24. Cohen MR, Maunsell JHR. 2011b. When attention wanders: how uncontrolled fluctuations in attention affect performance. J. Neurosci. 31:15802–6 [Google Scholar]
  25. Cohen MR, Maunsell JHR. 2014. Neuronal mechanisms of spatial attention in visual cerebral cortex. See Nobre & Kastner 2014 318–45
  26. Connor CE, Preddie DC, Gallant JL, Van Essen DC. 1997. Spatial attention effects in macaque area V4. J. Neurosci. 17:3201–14 [Google Scholar]
  27. Cook EP, Maunsell JHR. 2002. Attentional modulation of behavioral performance and neuronal responses in middle temporal and ventral intraparietal areas of macaque monkey. J. Neurosci. 22:1994–2004 [Google Scholar]
  28. Cook EP, Maunsell JHR. 2004. Attentional modulation of motion integration of individual neurons in the middle temporal visual area. J. Neurosci. 24:7964–77 [Google Scholar]
  29. Corbetta M, Shulman GL. 2002. Control of goal-directed and stimulus-driven attention in the brain. Nat. Rev. Neurosci. 3:201–15 [Google Scholar]
  30. Cutrell EB, Marrocco RT. 2002. Electrical microstimulation of primate posterior parietal cortex initiates orienting and alerting components of covert attention. Exp. Brain Res. 144:103–13 [Google Scholar]
  31. David SV, Hayden BY, Mazer JA, Gallant JL. 2008. Attention to stimulus features shifts spectral tuning of V4 neurons during natural vision. Neuron 59:509–21 [Google Scholar]
  32. Desimone R, Duncan J. 1995. Neural mechanisms of selective visual attention. Annu. Rev. Neurosci. 18:193–222 [Google Scholar]
  33. Disney AA, Aoki C, Hawken MJ. 2007. Gain modulation by nicotine in macaque V1. Neuron 56:701–13 [Google Scholar]
  34. Fecteau JH, Munoz DP. 2006. Salience, relevance, and firing: a priority map for target selection. Trends Cogn. Sci. 10:382–90 [Google Scholar]
  35. Felleman DJ, Van Essen DC. 1991. Distributed hierarchical processing in the primate cerebral cortex. Cereb. Cortex 1:1–47 [Google Scholar]
  36. Fries P, Reynolds JH, Rorie AE, Desimone R. 2001. Modulation of oscillatory neuronal synchronization by selective visual attention. Science 291:1560–63 [Google Scholar]
  37. Galashan FO, Sassen HC, Kreiter AK, Wegener D. 2013. Monkey area MT latencies to speed changes depend on attention and correlate with behavioral reaction times. Neuron 78:740–50 [Google Scholar]
  38. Ghose GM, Bearl DW. 2010. Attention directed by expectations enhances receptive fields in cortical area MT. Vis. Res. 50:441–51 [Google Scholar]
  39. Ghose GM, Harrison IT. 2009. Temporal precision of neuronal information in a rapid perceptual judgment. J. Neurophysiol. 101:1480–93 [Google Scholar]
  40. Ghose GM, Maunsell JHR. 2002. Attentional modulation in visual cortex depends on task timing. Nature 419:616–20 [Google Scholar]
  41. Ghose GM, Maunsell JHR. 2008. Spatial summation can explain the attentional modulation of neuronal responses to multiple stimuli in area V4. J. Neurosci. 28:5115–26 [Google Scholar]
  42. Goldberg ME, Wurtz RH. 1972. Activity of superior colliculus in behaving monkey. II. Effect of attention on neuronal responses. J. Neurophysiol. 35:560–74 [Google Scholar]
  43. Gottlieb J. 2014. Neuronal mechanisms of attentional control: parietal cortex. See Nobre & Kastner 2014 346–74
  44. Gregoriou GG, Rossi AF, Ungerleider LG, Desimone R. 2014. Lesions of prefrontal cortex reduce attentional modulation of neuronal responses and synchrony in V4. Nat. Neurosci. 17:1003–11 [Google Scholar]
  45. Grill-Spector K, Malach R. 2004. The human visual cortex. Annu. Rev. Neurosci. 27:649–77 [Google Scholar]
  46. Heeger DJ. 1993. Modeling simple-cell direction selectivity with normalized, half-squared, linear operators. J. Neurophysiol. 70:1885–98 [Google Scholar]
  47. Herrero JL, Gieselmann MA, Sanayei M, Thiele A. 2013. Attention-induced variance and noise correlation reduction in macaque V1 is mediated by NMDA receptors. Neuron 78:729–39 [Google Scholar]
  48. Herrero JL, Roberts MJ, Delicato LS, Gieselmann MA, Dayan P, Thiele A. 2008. Acetylcholine contributes through muscarinic receptors to attentional modulation in V1. Nature 454:1110–14 [Google Scholar]
  49. Herrington TM, Assad JA. 2010. Temporal sequence of attentional modulation in the lateral intraparietal area and middle temporal area during rapid covert shifts of attention. J. Neurosci. 30:3287–96 [Google Scholar]
  50. Herrmann K, Montaser-Kouhsari L, Carrasco M, Heeger DJ. 2010. When size matters: attention affects performance by contrast or response gain. Nat. Neurosci. 13:1554–59 [Google Scholar]
  51. Hikosaka O. 2007. Basal ganglia mechanisms of reward-oriented eye movement. Ann. N. Y. Acad. Sci. 1104:229–49 [Google Scholar]
  52. Hubel DH, Henson CO, Rubert A, Galambos R. 1959. “Attention” units in the auditory cortex. Science 129:1279–80 [Google Scholar]
  53. Itthipuripat S, Garcia JO, Rungratsameetaweemana N, Sprague TC, Serences JT. 2014. Changing the spatial scope of attention alters patterns of neural gain in human cortex. J. Neurosci. 34:112–13 [Google Scholar]
  54. Janssen P, Shadlen MN. 2005. A representation of hazard rate of elapsed time in macaque area LIP. Nat. Neurosci. 8:234–41 [Google Scholar]
  55. Kandel ER, Schwartz JH, Jessell TM, Siegelbaum SA, Hudspeth AJ. 2013. Principles of Neural Science New York: McGraw-Hill Medical, 5th ed..
  56. Kastner S, Ungerleider LG. 2000. Mechanisms of visual attention in the human cortex. Annu. Rev. Neurosci. 23:315–41 [Google Scholar]
  57. Khayat PS, Niebergall R, Martinez-Trujillo JC. 2010. Attention differentially modulates similar neuronal responses evoked by varying contrast and direction stimuli in area MT. J. Neurosci. 30:2188–97 [Google Scholar]
  58. Khayat PS, Spekreijse H, Roelfsema PR. 2006. Attention lights up new object representations before the old ones fade away. J. Neurosci. 26:138–42 [Google Scholar]
  59. Knudsen EI. 2007. Fundamental components of attention. Annu. Rev. Neurosci. 30:57–78 [Google Scholar]
  60. Krauzlis RJ, Lovejoy LP, Zenon A. 2013. Superior colliculus and visual spatial attention. Annu. Rev. Neurosci. 36:165–82 [Google Scholar]
  61. Kusunoki M, Gottlieb J, Goldberg ME. 2000. The lateral intraparietal area as a salience map: the representation of abrupt onset, stimulus motion, and task relevance. Vis. Res. 40:1459–68 [Google Scholar]
  62. Lakatos P, O’Connell MN, Barczak A, Mills A, Javitt DC, Schroeder CE. 2009. The leading sense: supramodal control of neurophysiological context by attention. Neuron 64:419–30 [Google Scholar]
  63. Lavie N, Tsal Y. 1994. Perceptual load as a major determinant of the locus of selection in visual attention. Percept. Psychophys. 56:183–97 [Google Scholar]
  64. Lee AKC, Larson E, Maddox RK, Shinn-Cunningham BG. 2014. Using neuroimaging to understand the cortical mechanisms of auditory selective attention. Hear. Res. 307:111–20 [Google Scholar]
  65. Lee J, Maunsell JHR. 2009. A normalization model of attentional modulation of single unit responses. PLOS ONE 4:e4651 [Google Scholar]
  66. Lee J, Maunsell JHR. 2010a. Attentional modulation of MT neurons with single or multiple stimuli in their receptive fields. J. Neurosci. 30:3058–66 [Google Scholar]
  67. Lee J, Maunsell JHR. 2010b. The effect of attention on neuronal responses to high and low contrast stimuli. J. Neurophysiol. 104:960–71 [Google Scholar]
  68. Lee J, Williford T, Maunsell JHR. 2007. Spatial attention and the latency of neuronal responses in macaque area V4. J. Neurosci. 27:9632–37 [Google Scholar]
  69. Levick WR. 1973. Variation in the response latency of cat retinal ganglion cells. Vis. Res. 13:837–53 [Google Scholar]
  70. Li Z. 2002. A saliency map in primary visual cortex. Trends Cogn. Sci. 6:9–16 [Google Scholar]
  71. Lovejoy LP, Krauzlis RJ. 2010. Inactivation of primate superior colliculus impairs covert selection of signals for perceptual judgments. Nat. Neurosci. 13:261–66 [Google Scholar]
  72. Luck SJ, Chelazzi L, Hillyard SA, Desimone R. 1997. Neural mechanisms of spatial selective attention in areas V1, V2, and V4 of macaque visual cortex. J. Neurophysiol. 77:24–42 [Google Scholar]
  73. Martínez-Trujillo JC, Treue S. 2002. Attentional modulation strength in cortical area MT depends on stimulus contrast. Neuron 35:365–70 [Google Scholar]
  74. Martinez-Trujillo JC, Treue S. 2004. Feature-based attention increases the selectivity of population responses in primate visual cortex. Curr. Biol. 14:744–51 [Google Scholar]
  75. Maunsell JHR. 2004. Neuronal representations of cognitive state: reward or attention?. Trends Cogn. Sci. 8:261–65 [Google Scholar]
  76. Maunsell JHR, Cook EP. 2002. The role of attention in visual processing. Philos. Trans. R. Soc. Lond. B 357:1063–72 [Google Scholar]
  77. Maunsell JHR, Ghose GM, Assad JA, McAdams CJ, Boudreau CE, Noerager BD. 1999. Visual response latencies of magnocellular and parvocellular LGN neurons in macaque monkeys. Vis. Neurosci. 16:1–14 [Google Scholar]
  78. Maunsell JHR, Treue S. 2006. Feature-based attention in visual cortex. Trends Neurosci. 29:317–22 [Google Scholar]
  79. Mayo JP, Cohen MR, Maunsell JHR. 2015. A refined neuronal population measure of visual attention. PLOS ONE 10:e0136570 [Google Scholar]
  80. Mazer JA, Gallant JL. 2003. Goal-related activity in V4 during free viewing visual search. Evidence for a ventral stream visual salience map. Neuron 40:1241–50 [Google Scholar]
  81. McAdams CJ, Maunsell JHR. 1999a. Effects of attention on orientation-tuning functions of single neurons in macaque cortical area V4. J. Neurosci. 19:431–41 [Google Scholar]
  82. McAdams CJ, Maunsell JHR. 1999b. Effects of attention on the reliability of individual neurons in monkey visual cortex. Neuron 23:765–73 [Google Scholar]
  83. McAdams CJ, Reid RC. 2005. Attention modulates the responses of simple cells in monkey primary visual cortex. J. Neurosci. 25:11023–33 [Google Scholar]
  84. Merigan WH, Maunsell JHR. 1993. How parallel are the primate visual pathways?. Annu. Rev. Neurosci. 16:369–402 [Google Scholar]
  85. Mitchell JF, Sundberg KA, Reynolds JH. 2007. Differential attention-dependent response modulation across cell classes in macaque visual area V4. Neuron 55:131–41 [Google Scholar]
  86. Mitchell JF, Sundberg KA, Reynolds JH. 2009. Spatial attention decorrelates intrinsic activity fluctuations in macaque area V4. Neuron 63:879–88 [Google Scholar]
  87. Moore T, Armstrong KM. 2003. Selective gating of visual signals by microstimulation of frontal cortex. Nature 421:370–73 [Google Scholar]
  88. Moore T, Fallah M. 2001. Control of eye movements and spatial attention. PNAS 98:1273–76 [Google Scholar]
  89. Moore T, Fallah M. 2004. Microstimulation of the frontal eye field and its effects on covert spatial attention. J. Neurophysiol. 91:152–62 [Google Scholar]
  90. Moran J, Desimone R. 1985. Selective attention gates visual processing in the extrastriate cortex. Science 229:782–84 [Google Scholar]
  91. Motter BC. 1994. Neural correlates of feature selective memory and pop-out in extrastriate area V4. J. Neurosci. 14:2190–99 [Google Scholar]
  92. Mountcastle VB, Motter BC, Steinmetz MA, Sestokas AK. 1987. Common and differential effects of attentive fixation on the excitability of parietal and prestriate (V4) cortical visual neurons in the macaque monkey. J. Neurosci. 7:2239–55 [Google Scholar]
  93. Müller JR, Philiastides MG, Newsome WT. 2005. Microstimulation of the superior colliculus focuses attention without moving the eyes. PNAS 102:524–29 [Google Scholar]
  94. Ni AM, Ray S, Maunsell JHR. 2012. Tuned normalization explains the size of attention modulations. Neuron 73:803–13 [Google Scholar]
  95. Niebergall R, Khayat PS, Treue S, Martinez-Trujillo JC. 2011. Expansion of MT neurons excitatory receptive fields during covert attentive tracking. J. Neurosci. 31:15499–510 [Google Scholar]
  96. Nobre AC, Kastner S. The Oxford Handbook of Attention AC Nobre, S Kastner Oxford, UK: Oxford Univ. Press
  97. Noudoost B, Moore T. 2011. Control of visual cortical signals by prefrontal dopamine. Nature 474:372–75 [Google Scholar]
  98. O’Connor DH, Fukui MM, Pinsk MA, Kastner S. 2002. Attention modulates responses in the human lateral geniculate nucleus. Nat. Neurosci. 5:1203–9 [Google Scholar]
  99. Patzwahl DR, Treue S. 2009. Combining spatial and feature-based attention within the receptive field of MT neurons. Vis. Res. 49:1188–93 [Google Scholar]
  100. Posner MI, Rothbart MK. 2007. Research on attention networks as a model for the integration of psychological science. Annu. Rev. Psychol. 58:1–23 [Google Scholar]
  101. Ray WJ, Cole HW. 1985. EEG alpha activity reflects attentional demands, and beta activity reflects emotional and cognitive processes. Science 228:750–52 [Google Scholar]
  102. Reynolds JH, Chelazzi L, Desimone R. 1999. Competitive mechanisms subserve attention in macaque areas V2 and V4. J. Neurosci. 19:1736–53 [Google Scholar]
  103. Reynolds JH, Pasternak T, Desimone R. 2000. Attention increases sensitivity of V4 neurons. Neuron 26:703–14 [Google Scholar]
  104. Reynolds JH, Heeger DJ. 2009. The normalization model of attention. Neuron 61:168–85 [Google Scholar]
  105. Rossi AF, Paradiso MA. 1995. Feature-specific effects of selective visual attention. Vis. Res. 35:621–34 [Google Scholar]
  106. Ruff CC, Blankenburg F, Bjoertomt O, Bestmann S, Freeman E. et al. 2006. Concurrent TMS-fMRI and psychophysics reveal frontal influences on human retinotopic visual cortex. Curr. Biol. 16:1479–88 [Google Scholar]
  107. Ruff DA, Cohen MR. 2014. Attention can either increase or decrease spike count correlations in visual cortex. Nat. Neurosci. 17:1591–97 [Google Scholar]
  108. Sàenz M, Buraĉas GT, Boynton GM. 2003. Global feature-based attention for motion and color. Vis. Res. 43:629–37 [Google Scholar]
  109. Sarter M, Hasselmo ME, Bruno JP, Givens B. 2005. Unraveling the attentional functions of cortical cholinergic inputs: interactions between signal-driven and cognitive modulation of signal detection. Brain Res. Rev. 48:98–111 [Google Scholar]
  110. Schafer RJ, Moore T. 2007. Attention governs action in the primate frontal eye field. Neuron 56:541–51 [Google Scholar]
  111. Serences JT. 2008. Value-based modulations in human visual cortex. Neuron 60:1169–81 [Google Scholar]
  112. Serences JT, Shomstein S, Leber AB, Golay X, Egeth HE, Yantis S. 2005. Coordination of voluntary and stimulus-driven attentional control in human cortex. Psychol. Sci. 16:114–22 [Google Scholar]
  113. Sparks DL. 1999. Conceptual issues related to the role of the superior colliculus in the control of gaze. Curr. Opin. Neurobiol. 9:698–707 [Google Scholar]
  114. Spitzer H, Desimone R, Moran J. 1988. Increased attention enhances both behavioral and neuronal performance. Science 240:338–40 [Google Scholar]
  115. Squire LR. 1986. Mechanisms of memory. Science 232:1612–19 [Google Scholar]
  116. Stănişor L, van der Togt C, Pennartz CM, Roelfsema PR. 2013. A unified selection signal for attention and reward in primary visual cortex. PNAS 110:9136–41 [Google Scholar]
  117. Sundberg KA, Mitchell JF, Gawne TJ, Reynolds JH. 2012. Attention influences single unit and local field potential response latencies in visual cortical area V4. J. Neurosci. 32:16040–50 [Google Scholar]
  118. Sundberg KA, Mitchell JF, Reynolds JH. 2009. Spatial attention modulates center-surround interactions in macaque visual area V4. Neuron 61:952–63 [Google Scholar]
  119. Swallow KM, Jiang YV. 2013. Attentional load and attentional boost: a review of data and theory. Front. Psychol. 4:274 [Google Scholar]
  120. Theeuwes J. 2013. Feature-based attention: It is all bottom-up priming. Philos. Trans. R. Soc. Lond. B 368:20130055 [Google Scholar]
  121. Thompson KG, Bichot NP, Sato TR. 2005. Frontal eye field activity before visual search errors reveals the integration of bottom-up and top-down salience. J. Neurophysiol. S 93:337–51 [Google Scholar]
  122. Tolhurst DJ, Movshon JA, Dean AF. 1983. The statistical reliability of signals in single neurons in cat and monkey visual cortex. Vis. Res. 23:775–85 [Google Scholar]
  123. Treue S. 2014. Object- and feature-based attention: monkey physiology. See Nobre & Kastner, 2014 601–19
  124. Treue S. 2003. Visual attention: the where, what, how and why of saliency. Curr. Opin. Neurobiol. 13:428–32 [Google Scholar]
  125. Treue S, Martínez-Trujillo JC. 1999. Feature-based attention influences motion processing gain in macaque visual cortex. Nature 399:575–79 [Google Scholar]
  126. Treue S, Maunsell JHR. 1996. Attentional modulation of visual motion processing in cortical areas MT and MST. Nature 382:539–41 [Google Scholar]
  127. Wiederman SD, O’Carroll DC. 2013. Selective attention in an insect visual neuron. Curr. Biol. 23:156–61 [Google Scholar]
  128. Williford T, Maunsell JHR. 2006. Effects of spatial attention on contrast response functions in macaque area V4. J. Neurophysiol. 96:40–54 [Google Scholar]
  129. Womelsdorf T, Anton-Erxleben K, Pieper F, Treue S. 2006. Dynamic shifts of visual receptive fields in cortical area MT by spatial attention. Nat. Neurosci. 9:1156–60 [Google Scholar]
  130. Wurtz RH, Mohler CW. 1976. Enhancement of visual responses in monkey striate cortex and frontal eye fields. J. Neurophysiol. 39:766–72 [Google Scholar]
  131. Wurtz RH, Goldberg ME. 1972. Activity of superior colliculus in behaving monkey. III. Cells discharging before eye movements. J. Neurophysiol. 35:575–86 [Google Scholar]
  132. Zelinsky GJ, Bisley JW. 2015. The what, where, and why of priority maps and their interactions with visual working memory. Ann. N. Y. Acad. Sci. 1339:154–64 [Google Scholar]
  133. Zenon A, Krauzlis RJ. 2012. Attention deficits without cortical neuronal deficits. Nature 489:434–37 [Google Scholar]
/content/journals/10.1146/annurev-vision-082114-035431
Loading
  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error