1932

Abstract

Circuit dysfunction models of psychiatric disease posit that pathological behavior results from abnormal patterns of electrical activity in specific cells and circuits in the brain. Many psychiatric disorders are associated with abnormal activity in the prefrontal cortex and in the basal ganglia, a set of subcortical nuclei implicated in cognitive and motor control. Here we discuss the role of the basal ganglia and connected prefrontal regions in the etiology and treatment of obsessive-compulsive disorder, anxiety, and depression, emphasizing mechanistic work in rodent behavioral models to dissect causal cortico–basal ganglia circuits underlying discrete behavioral symptom domains relevant to these complex disorders.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physiol-021115-105355
2016-02-10
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/physiol/78/1/annurev-physiol-021115-105355.html?itemId=/content/journals/10.1146/annurev-physiol-021115-105355&mimeType=html&fmt=ahah

Literature Cited

  1. Deisseroth K. 1.  2014. Circuit dynamics of adaptive and maladaptive behaviour. Nature 505:309–17 [Google Scholar]
  2. Kopell BH, Greenberg B, Rezai AR. 2.  2004. Deep brain stimulation for psychiatric disorders. J. Clin. Neurophysiol. 21:51–67 [Google Scholar]
  3. Denys D, Feenstra M, Schuurman R. 3.  2012. Deep Brain Stimulation: A New Frontier in Psychiatry Berlin/Heidelberg, Ger: Springer
  4. Benabid AL, Pollak P, Gross C, Hoffmann D, Benazzouz A. 4.  et al. 1994. Acute and long-term effects of subthalamic nucleus stimulation in Parkinson's disease. Stereotact. Funct. Neurosurg. 62:76–84 [Google Scholar]
  5. Hikosaka O, Takikawa Y, Kawagoe R. 5.  2000. Role of the basal ganglia in the control of purposive saccadic eye movements. Physiol. Rev. 80:953–78 [Google Scholar]
  6. Albin RL, Young AB, Penney JB. 6.  1989. The functional anatomy of basal ganglia disorders. Trends Neurosci. 12:366–75 [Google Scholar]
  7. Wichmann T, DeLong MR. 7.  1996. Functional and pathophysiological models of the basal ganglia. Curr. Opin. Neurobiol. 6:751–58 [Google Scholar]
  8. Graybiel AM, Aosaki T, Flaherty AW, Kimura M. 8.  1994. The basal ganglia and adaptive motor control. Science 265:1826–31 [Google Scholar]
  9. Gerfen CR. 9.  1992. The neostriatal mosaic: multiple levels of compartmental organization. Trends Neurosci. 15:133–39 [Google Scholar]
  10. Bevan MD, Magill PJ, Terman D, Bolam JP, Wilson CJ. 10.  2002. Move to the rhythm: oscillations in the subthalamic nucleus–external globus pallidus network. Trends Neurosci 25:525–31 [Google Scholar]
  11. Grillner S, Hellgren J, Menard A, Saitoh K, Wikstrom MA. 11.  2005. Mechanisms for selection of basic motor programs—roles for the striatum and pallidum. Trends Neurosci. 28:364–70 [Google Scholar]
  12. Kravitz AV, Freeze BS, Parker PR, Kay K, Thwin MT. 12.  et al. 2010. Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry. Nature 466:622–26 [Google Scholar]
  13. Cui G, Jun SB, Jin X, Pham MD, Vogel SS. 13.  et al. 2013. Concurrent activation of striatal direct and indirect pathways during action initiation. Nature 494:238–42 [Google Scholar]
  14. Wise SP, Murray EA, Gerfen CR. 14.  1996. The frontal cortex–basal ganglia system in primates. Crit. Rev. Neurobiol. 10:317–56 [Google Scholar]
  15. Graybiel AM. 15.  1998. The basal ganglia and chunking of action repertoires. Neurobiol. Learn. Mem. 70:119–36 [Google Scholar]
  16. Hollerman JR, Tremblay L, Schultz W. 16.  2000. Involvement of basal ganglia and orbitofrontal cortex in goal-directed behavior. Prog. Brain Res. 126:193–215 [Google Scholar]
  17. Tai LH, Lee AM, Benavidez N, Bonci A, Wilbrecht L. 17.  2012. Transient stimulation of distinct subpopulations of striatal neurons mimics changes in action value. Nat. Neurosci. 15:1281–89 [Google Scholar]
  18. Kravitz AV, Tye LD, Kreitzer AC. 18.  2012. Distinct roles for direct and indirect pathway striatal neurons in reinforcement. Nat. Neurosci. 15:816–18 [Google Scholar]
  19. Lobo MK, Covington HE 3rd, Chaudhury D, Friedman AK, Sun H. 19.  et al. 2010. Cell type–specific loss of BDNF signaling mimics optogenetic control of cocaine reward. Science 330:385–90 [Google Scholar]
  20. Bolam JP, Hanley JJ, Booth PA, Bevan MD. 20.  2000. Synaptic organisation of the basal ganglia. J. Anat. 196:Part 4527–42 [Google Scholar]
  21. Graybiel AM. 21.  2008. Habits, rituals, and the evaluative brain. Annu. Rev. Neurosci. 31:359–87 [Google Scholar]
  22. Aron AR, Poldrack RA. 22.  2006. Cortical and subcortical contributions to Stop signal response inhibition: role of the subthalamic nucleus. J. Neurosci. 26:2424–33 [Google Scholar]
  23. Schmidt R, Leventhal DK, Mallet N, Chen F, Berke JD. 23.  2013. Canceling actions involves a race between basal ganglia pathways. Nat. Neurosci. 16:1118–24 [Google Scholar]
  24. Sano H, Chiken S, Hikida T, Kobayashi K, Nambu A. 24.  2013. Signals through the striatopallidal indirect pathway stop movements by phasic excitation in the substantia nigra. J. Neurosci. 33:7583–94 [Google Scholar]
  25. Gradinaru V, Mogri M, Thompson KR, Henderson JM, Deisseroth K. 25.  2009. Optical deconstruction of parkinsonian neural circuitry. Science 324:354–59 [Google Scholar]
  26. Wiesendanger E, Clarke S, Kraftsik R, Tardif E. 26.  2004. Topography of cortico-striatal connections in man: anatomical evidence for parallel organization. Eur. J. Neurosci. 20:1915–22 [Google Scholar]
  27. Alexander GE, DeLong MR, Strick PL. 27.  1986. Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu. Rev. Neurosci. 9:357–81 [Google Scholar]
  28. Yin HH, Knowlton BJ. 28.  2006. The role of the basal ganglia in habit formation. Nat. Rev. Neurosci. 7:464–76 [Google Scholar]
  29. Gremel CM, Costa RM. 29.  2013. Orbitofrontal and striatal circuits dynamically encode the shift between goal-directed and habitual actions. Nat. Commun. 4:2264 [Google Scholar]
  30. Drevets WC, Price JL, Furey ML. 30.  2008. Brain structural and functional abnormalities in mood disorders: implications for neurocircuitry models of depression. Brain Struct. Funct. 213:93–118 [Google Scholar]
  31. Ongur D, Price JL. 31.  2000. The organization of networks within the orbital and medial prefrontal cortex of rats, monkeys and humans. Cereb. Cortex 10:206–19 [Google Scholar]
  32. Price JL, Drevets WC. 32.  2010. Neurocircuitry of mood disorders. Neuropsychopharmacology 35:192–216 [Google Scholar]
  33. Price JL, Carmichael ST, Drevets WC. 33.  1996. Networks related to the orbital and medial prefrontal cortex; a substrate for emotional behavior?. Prog. Brain Res. 107:523–36 [Google Scholar]
  34. Lehman JF, Greenberg BD, McIntyre CC, Rasmussen SA, Haber SN. 34.  2011. Rules ventral prefrontal cortical axons use to reach their targets: implications for diffusion tensor imaging tractography and deep brain stimulation for psychiatric illness. J. Neurosci. 31:10392–402 [Google Scholar]
  35. Uylings HB, Groenewegen HJ, Kolb B. 35.  2003. Do rats have a prefrontal cortex?. Behav. Brain Res. 146:3–17 [Google Scholar]
  36. Haber SN, Knutson B. 36.  2010. The reward circuit: linking primate anatomy and human imaging. Neuropsychopharmacology 35:4–26 [Google Scholar]
  37. Rolls ET. 37.  1996. The orbitofrontal cortex. Philos. Trans R. Soc. B 351:1433–43; discussion 43–44 [Google Scholar]
  38. Tremblay L, Schultz W. 38.  1999. Relative reward preference in primate orbitofrontal cortex. Nature 398:704–8 [Google Scholar]
  39. Rudebeck PH, Saunders RC, Prescott AT, Chau LS, Murray EA. 39.  2013. Prefrontal mechanisms of behavioral flexibility, emotion regulation and value updating. Nat. Neurosci. 16:1140–45 [Google Scholar]
  40. Padoa-Schioppa C, Assad JA. 40.  2006. Neurons in the orbitofrontal cortex encode economic value. Nature 441:223–26 [Google Scholar]
  41. Gottfried JA, O'Doherty J, Dolan RJ. 41.  2003. Encoding predictive reward value in human amygdala and orbitofrontal cortex. Science 301:1104–7 [Google Scholar]
  42. Eblen F, Graybiel AM. 42.  1995. Highly restricted origin of prefrontal cortical inputs to striosomes in the macaque monkey. J. Neurosci. 15:5999–6013 [Google Scholar]
  43. Fullana MA, Mataix-Cols D, Caspi A, Harrington H, Grisham JR. 43.  et al. 2009. Obsessions and compulsions in the community: prevalence, interference, help-seeking, developmental stability, and co-occurring psychiatric conditions. Am. J. Psychiatry 166:329–36 [Google Scholar]
  44. Ruscio AM, Stein DJ, Chiu WT, Kessler RC. 44.  2010. The epidemiology of obsessive-compulsive disorder in the National Comorbidity Survey Replication. Mol. Psychiatry 15:53–63 [Google Scholar]
  45. Denys D. 45.  2006. Pharmacotherapy of obsessive-compulsive disorder and obsessive-compulsive spectrum disorders. Psychiatr. Clin. North Am. 29:553–84 [Google Scholar]
  46. Whiteside SP, Port JD, Abramowitz JS. 46.  2004. A meta-analysis of functional neuroimaging in obsessive-compulsive disorder. Psychiatry Res. 132:69–79 [Google Scholar]
  47. Swedo SE, Schapiro MB, Grady CL, Cheslow DL, Leonard HL. 47.  et al. 1989. Cerebral glucose metabolism in childhood-onset obsessive-compulsive disorder. Arch. Gen. Psychiatry 46:518–23 [Google Scholar]
  48. Swedo SE, Pietrini P, Leonard HL, Schapiro MB, Rettew DC. 48.  et al. 1992. Cerebral glucose metabolism in childhood-onset obsessive-compulsive disorder. Revisualization during pharmacotherapy. Arch. Gen. Psychiatry 49:690–94 [Google Scholar]
  49. Benkelfat C, Nordahl TE, Semple WE, King AC, Murphy DL, Cohen RM. 49.  1990. Local cerebral glucose metabolic rates in obsessive-compulsive disorder. Patients treated with clomipramine. Arch. Gen. Psychiatry 47:840–48 [Google Scholar]
  50. Saxena S, Brody AL, Maidment KM, Dunkin JJ, Colgan M. 50.  et al. 1999. Localized orbitofrontal and subcortical metabolic changes and predictors of response to paroxetine treatment in obsessive-compulsive disorder. Neuropsychopharmacology 21:683–93 [Google Scholar]
  51. Rauch SL, Jenike MA, Alpert NM, Baer L, Breiter HC. 51.  et al. 1994. Regional cerebral blood flow measured during symptom provocation in obsessive-compulsive disorder using oxygen 15–labeled carbon dioxide and positron emission tomography. Arch. Gen. Psychiatry 51:62–70 [Google Scholar]
  52. Harrison BJ, Soriano-Mas C, Pujol J, Ortiz H, Lopez-Sola M. 52.  et al. 2009. Altered corticostriatal functional connectivity in obsessive-compulsive disorder. Arch. Gen. Psychiatry 66:1189–200 [Google Scholar]
  53. Posner J, Marsh R, Maia TV, Peterson BS, Gruber A, Simpson HB. 53.  2014. Reduced functional connectivity within the limbic cortico-striato-thalamo-cortical loop in unmedicated adults with obsessive-compulsive disorder. Hum. Brain Mapp. 35:2852–60 [Google Scholar]
  54. Mindus P, Rasmussen SA, Lindquist C. 54.  1994. Neurosurgical treatment for refractory obsessive-compulsive disorder: implications for understanding frontal lobe function. J. Neuropsychiatry Clin. Neurosci. 6:467–77 [Google Scholar]
  55. de Koning PP, Figee M, van den Munckhof P, Schuurman PR, Denys D. 55.  2011. Current status of deep brain stimulation for obsessive-compulsive disorder: a clinical review of different targets. Curr. Psychiatry Rep. 13:274–82 [Google Scholar]
  56. Abelson JL, Curtis GC, Sagher O, Albucher RC, Harrigan M. 56.  et al. 2005. Deep brain stimulation for refractory obsessive-compulsive disorder. Biol. Psychiatry 57:510–16 [Google Scholar]
  57. Nuttin BJ, Gabriels L, van Kuyck K, Cosyns P. 57.  2003. Electrical stimulation of the anterior limbs of the internal capsules in patients with severe obsessive-compulsive disorder: anecdotal reports. Neurosurg. Clin. N. Am. 14:267–74 [Google Scholar]
  58. Van Laere K, Nuttin B, Gabriels L, Dupont P, Rasmussen S. 58.  et al. 2006. Metabolic imaging of anterior capsular stimulation in refractory obsessive-compulsive disorder: a key role for the subgenual anterior cingulate and ventral striatum. J. Nucl. Med. 47:740–47 [Google Scholar]
  59. Figee M, Vink M, de Geus F, Vulink N, Veltman DJ. 59.  et al. 2011. Dysfunctional reward circuitry in obsessive-compulsive disorder. Biol. Psychiatry 69:867–74 [Google Scholar]
  60. Denys D, Mantione M, Figee M, van den Munckhof P, Koerselman F. 60.  et al. 2010. Deep brain stimulation of the nucleus accumbens for treatment-refractory obsessive-compulsive disorder. Arch. Gen. Psychiatry 67:1061–68 [Google Scholar]
  61. Mallet L, Mesnage V, Houeto JL, Pelissolo A, Yelnik J. 61.  et al. 2002. Compulsions, Parkinson's disease, and stimulation. Lancet 360:1302–4 [Google Scholar]
  62. Mallet L, Polosan M, Jaafari N, Baup N, Welter ML. 62.  et al. 2008. Subthalamic nucleus stimulation in severe obsessive-compulsive disorder. N. Engl. J. Med. 359:2121–34 [Google Scholar]
  63. Greenhouse I, Gould S, Houser M, Aron AR. 63.  2013. Stimulation of contacts in ventral but not dorsal subthalamic nucleus normalizes response switching in Parkinson's disease. Neuropsychologia 51:1302–9 [Google Scholar]
  64. Weintraub DB, Zaghloul KA. 64.  2013. The role of the subthalamic nucleus in cognition. Rev. Neurosci. 24:125–38 [Google Scholar]
  65. Le Jeune F, Verin M, N'Diaye K, Drapier D, Leray E. 65.  et al. 2010. Decrease of prefrontal metabolism after subthalamic stimulation in obsessive-compulsive disorder: a positron emission tomography study. Biol. Psychiatry 68:1016–22 [Google Scholar]
  66. Pitman RK. 66.  1987. A cybernetic model of obsessive-compulsive psychopathology. Compr. Psychiatry 28:334–43 [Google Scholar]
  67. Tolin DF, Abramowitz JS, Brigidi BD, Amir N, Street GP, Foa EB. 67.  2001. Memory and memory confidence in obsessive-compulsive disorder. Behav. Res. Ther. 39:913–27 [Google Scholar]
  68. Carter CS, Braver TS, Barch DM, Botvinick MM, Noll D, Cohen JD. 68.  1998. Anterior cingulate cortex, error detection, and the online monitoring of performance. Science 280:747–49 [Google Scholar]
  69. Botvinick M, Nystrom LE, Fissell K, Carter CS, Cohen JD. 69.  1999. Conflict monitoring versus selection-for-action in anterior cingulate cortex. Nature 402:179–81 [Google Scholar]
  70. Rushworth MF, Walton ME, Kennerley SW, Bannerman DM. 70.  2004. Action sets and decisions in the medial frontal cortex. Trends Cogn. Sci. 8:410–17 [Google Scholar]
  71. Kennerley SW, Walton ME, Behrens TE, Buckley MJ, Rushworth MF. 71.  2006. Optimal decision making and the anterior cingulate cortex. Nat. Neurosci. 9:940–47 [Google Scholar]
  72. Rushworth MF, Behrens TE. 72.  2008. Choice, uncertainty and value in prefrontal and cingulate cortex. Nat. Neurosci. 11:389–97 [Google Scholar]
  73. Stalnaker TA, Cooch NK, Schoenbaum G. 73.  2015. What the orbitofrontal cortex does not do. Nat. Neurosci. 18:620–27 [Google Scholar]
  74. Quilodran R, Rothe M, Procyk E. 74.  2008. Behavioral shifts and action valuation in the anterior cingulate cortex. Neuron 57:314–25 [Google Scholar]
  75. Hayden BY, Pearson JM, Platt ML. 75.  2011. Neuronal basis of sequential foraging decisions in a patchy environment. Nat. Neurosci. 14:933–39 [Google Scholar]
  76. Daw ND, O'Doherty JP, Dayan P, Seymour B, Dolan RJ. 76.  2006. Cortical substrates for exploratory decisions in humans. Nature 441:876–79 [Google Scholar]
  77. Yin HH, Ostlund SB, Knowlton BJ, Balleine BW. 77.  2005. The role of the dorsomedial striatum in instrumental conditioning. Eur. J. Neurosci. 22:513–23 [Google Scholar]
  78. Delgado MR, Miller MM, Inati S, Phelps EA. 78.  2005. An fMRI study of reward-related probability learning. NeuroImage 24:862–73 [Google Scholar]
  79. Haruno M, Kuroda T, Doya K, Toyama K, Kimura M. 79.  et al. 2004. A neural correlate of reward-based behavioral learning in caudate nucleus: a functional magnetic resonance imaging study of a stochastic decision task. J. Neurosci. 24:1660–65 [Google Scholar]
  80. Tricomi EM, Delgado MR, Fiez JA. 80.  2004. Modulation of caudate activity by action contingency. Neuron 41:281–92 [Google Scholar]
  81. Hikosaka O, Sakamoto M, Usui S. 81.  1989. Functional properties of monkey caudate neurons. III. Activities related to expectation of target and reward. J. Neurophysiol. 61:814–32 [Google Scholar]
  82. Hollerman JR, Tremblay L, Schultz W. 82.  1998. Influence of reward expectation on behavior-related neuronal activity in primate striatum. J. Neurophysiol. 80:947–63 [Google Scholar]
  83. Samejima K, Ueda Y, Doya K, Kimura M. 83.  2005. Representation of action-specific reward values in the striatum. Science 310:1337–40 [Google Scholar]
  84. Albelda N, Joel D. 84.  2012. Current animal models of obsessive compulsive disorder: an update. Neuroscience 211:83–106 [Google Scholar]
  85. Szechtman H, Sulis W, Eilam D. 85.  1998. Quinpirole induces compulsive checking behavior in rats: a potential animal model of obsessive-compulsive disorder (OCD). Behav. Neurosci. 112:1475–85 [Google Scholar]
  86. Boulougouris V, Dalley JW, Robbins TW. 86.  2007. Effects of orbitofrontal, infralimbic and prelimbic cortical lesions on serial spatial reversal learning in the rat. Behav. Brain Res. 179:219–28 [Google Scholar]
  87. Britton JC, Rauch SL, Rosso IM, Killgore WD, Price LM. 87.  et al. 2010. Cognitive inflexibility and frontal-cortical activation in pediatric obsessive-compulsive disorder. J. Am. Acad. Child Adolesc. Psychiatry 49:944–53 [Google Scholar]
  88. Joel D. 88.  2006. The signal attenuation rat model of obsessive-compulsive disorder: a review. Psychopharmacology 186:487–503 [Google Scholar]
  89. Joel D, Doljansky J, Schiller D. 89.  2005. ‘Compulsive’ lever pressing in rats is enhanced following lesions to the orbital cortex, but not to the basolateral nucleus of the amygdala or to the dorsal medial prefrontal cortex. Eur. J. Neurosci. 21:2252–62 [Google Scholar]
  90. Clarke HF, Robbins TW, Roberts AC. 90.  2008. Lesions of the medial striatum in monkeys produce perseverative impairments during reversal learning similar to those produced by lesions of the orbitofrontal cortex. J. Neurosci. 28:10972–82 [Google Scholar]
  91. Mundt A, Klein J, Joel D, Heinz A, Djodari-Irani A. 91.  et al. 2009. High-frequency stimulation of the nucleus accumbens core and shell reduces quinpirole-induced compulsive checking in rats. Eur. J. Neurosci. 29:2401–12 [Google Scholar]
  92. Klavir O, Flash S, Winter C, Joel D. 92.  2009. High frequency stimulation and pharmacological inactivation of the subthalamic nucleus reduces ‘compulsive’ lever-pressing in rats. Exp. Neurol. 215:101–9 [Google Scholar]
  93. Winter C, Mundt A, Jalali R, Joel D, Harnack D. 93.  et al. 2008. High frequency stimulation and temporary inactivation of the subthalamic nucleus reduce quinpirole-induced compulsive checking behavior in rats. Exp. Neurol. 210:217–28 [Google Scholar]
  94. Wang L, Simpson HB, Dulawa SC. 94.  2009. Assessing the validity of current mouse genetic models of obsessive-compulsive disorder. Behav. Pharmacol. 20:119–33 [Google Scholar]
  95. Welch JM, Lu J, Rodriguiz RM, Trotta NC, Peca J. 95.  et al. 2007. Cortico-striatal synaptic defects and OCD-like behaviours in Sapap3-mutant mice. Nature 448:894–900 [Google Scholar]
  96. Shmelkov SV, Hormigo A, Jing D, Proenca CC, Bath KG. 96.  et al. 2010. Slitrk5 deficiency impairs corticostriatal circuitry and leads to obsessive-compulsive-like behaviors in mice. Nat. Med. 16:598–602 [Google Scholar]
  97. Aruga J, Mikoshiba K. 97.  2003. Identification and characterization of Slitrk, a novel neuronal transmembrane protein family controlling neurite outgrowth. Mol. Cell. Neurosci. 24:117–29 [Google Scholar]
  98. Takeuchi M, Hata Y, Hirao K, Toyoda A, Irie M, Takai Y. 98.  1997. SAPAPs. A family of PSD-95/SAP90-associated proteins localized at postsynaptic density. J. Biol. Chem. 272:11943–51 [Google Scholar]
  99. Zhang F, Wang LP, Boyden ES, Deisseroth K. 99.  2006. Channelrhodopsin-2 and optical control of excitable cells. Nat. Methods 3:785–92 [Google Scholar]
  100. Ranck JB Jr. 100.  1975. Which elements are excited in electrical stimulation of mammalian central nervous system: a review. Brain Res. 98:417–40 [Google Scholar]
  101. Ahmari SE, Spellman T, Douglass NL, Kheirbek MA, Simpson HB. 101.  et al. 2013. Repeated cortico-striatal stimulation generates persistent OCD-like behavior. Science 340:1234–39 [Google Scholar]
  102. Burguiere E, Monteiro P, Feng G, Graybiel AM. 102.  2013. Optogenetic stimulation of lateral orbitofronto-striatal pathway suppresses compulsive behaviors. Science 340:1243–46 [Google Scholar]
  103. Carobrez AP, Bertoglio LJ. 103.  2005. Ethological and temporal analyses of anxiety-like behavior: the elevated plus-maze model 20 years on. Neurosci. Biobehav. Rev. 29:1193–205 [Google Scholar]
  104. Witt K, Daniels C, Reiff J, Krack P, Volkmann J. 104.  et al. 2008. Neuropsychological and psychiatric changes after deep brain stimulation for Parkinson's disease: a randomised, multicentre study. Lancet Neurol. 7:605–14 [Google Scholar]
  105. Houeto JL, Mallet L, Mesnage V, Tezenas du Montcel S, Behar C. 105.  et al. 2006. Subthalamic stimulation in Parkinson disease: behavior and social adaptation. Arch. Neurol. 63:1090–95 [Google Scholar]
  106. Daniele A, Albanese A, Contarino MF, Zinzi P, Barbier A. 106.  et al. 2003. Cognitive and behavioural effects of chronic stimulation of the subthalamic nucleus in patients with Parkinson's disease. J. Neurol. Neurosurg. Psychiatry 74:175–82 [Google Scholar]
  107. Milad MR, Furtak SC, Greenberg JL, Keshaviah A, Im JJ. 107.  et al. 2013. Deficits in conditioned fear extinction in obsessive-compulsive disorder and neurobiological changes in the fear circuit. JAMA Psychiatry 70:608–18 [Google Scholar]
  108. Milad MR, Rauch SL. 108.  2012. Obsessive-compulsive disorder: beyond segregated cortico-striatal pathways. Trends Cogn. Sci. 16:43–51 [Google Scholar]
  109. LeDoux JE. 109.  2000. Emotion circuits in the brain. Annu. Rev. Neurosci. 23:155–84 [Google Scholar]
  110. Milad MR, Rauch SL, Pitman RK, Quirk GJ. 110.  2006. Fear extinction in rats: implications for human brain imaging and anxiety disorders. Biol. Psychol. 73:61–71 [Google Scholar]
  111. Rodriguez-Romaguera J, Do Monte FHM, Quirk GJ. 111.  2012. Deep brain stimulation of the ventral striatum enhances extinction of conditioned fear. PNAS 109:8764–69 [Google Scholar]
  112. Do-Monte FH, Rodriguez-Romaguera J, Rosas-Vidal LE, Quirk GJ. 112.  2013. Deep brain stimulation of the ventral striatum increases BDNF in the fear extinction circuit. Front. Behav. Neurosci. 7:102 [Google Scholar]
  113. Long Z, Medlock C, Dzemidzic M, Shin YW, Goddard AW, Dydak U. 113.  2013. Decreased GABA levels in anterior cingulate cortex/medial prefrontal cortex in panic disorder. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 44:131–35 [Google Scholar]
  114. Morinaga K, Akiyoshi J, Matsushita H, Ichioka S, Tanaka Y. 114.  et al. 2007. Anticipatory anxiety-induced changes in human lateral prefrontal cortex activity. Biol. Psychol. 74:34–38 [Google Scholar]
  115. Morgan MA, Romanski LM, Ledoux JE. 115.  1993. Extinction of emotional learning—contribution of medial prefrontal cortex. Neurosci. Lett. 163:109–13 [Google Scholar]
  116. Morgan MA, Ledoux JE. 116.  1995. Differential contribution of dorsal and ventral medial prefrontal cortex to the acquisition and extinction of conditioned fear in rats. Behav. Neurosci. 109:681–88 [Google Scholar]
  117. Sotres-Bayon F, Cain CK, LeDoux JE. 117.  2006. Brain mechanisms of fear extinction: historical perspectives on the contribution of prefrontal cortex. Biol. Psychiatry 60:329–36 [Google Scholar]
  118. Laurent V, Westbrook RF. 118.  2009. Inactivation of the infralimbic but not the prelimbic cortex impairs consolidation and retrieval of fear extinction. Learn. Mem. 16:520–29 [Google Scholar]
  119. Milad MR, Quirk GJ. 119.  2002. Neurons in medial prefrontal cortex signal memory for fear extinction. Nature 420:70–74 [Google Scholar]
  120. Vidal-Gonzalez I, Vidal-Gonzalez B, Rauch SL, Quirk GJ. 120.  2006. Microstimulation reveals opposing influences of prelimbic and infralimbic cortex on the expression of conditioned fear. Learn. Mem. 13:728–33 [Google Scholar]
  121. Santini E, Quirk GJ, Porter JT. 121.  2008. Fear conditioning and extinction differentially modify the intrinsic excitability of infralimbic neurons. J. Neurosci. 28:4028–36 [Google Scholar]
  122. Burgos-Robles A, Vidal-Gonzalez I, Quirk GJ. 122.  2009. Sustained conditioned responses in prelimbic prefrontal neurons are correlated with fear expression and extinction failure. J. Neurosci. 29:8474–82 [Google Scholar]
  123. Gilmartin MR, McEchron MD. 123.  2005. Single neurons in the medial prefrontal cortex of the rat exhibit tonic and phasic coding during trace fear conditioning. Behav. Neurosci. 119:1496–510 [Google Scholar]
  124. Knapska E, Maren S. 124.  2009. Reciprocal patterns of c-Fos expression in the medial prefrontal cortex and amygdala after extinction and renewal of conditioned fear. Learn. Mem. 16:486–93 [Google Scholar]
  125. Corcoran KA, Quirk GJ. 125.  2007. Activity in prelimbic cortex is necessary for the expression of learned, but not innate, fears. J. Neurosci. 27:840–84 [Google Scholar]
  126. Kim MJ, Gee DG, Loucks RA, Davis FC, Whalen PJ. 126.  2011. Anxiety dissociates dorsal and ventral medial prefrontal cortex functional connectivity with the amygdala at rest. Cereb. Cortex 21:1667–73 [Google Scholar]
  127. Simpson JR Jr, Drevets WC, Snyder AZ, Gusnard DA, Raichle ME. 127.  2001. Emotion-induced changes in human medial prefrontal cortex. II. During anticipatory anxiety. PNAS 98:688–93 [Google Scholar]
  128. Peters J, Kalivas PW, Quirk GJ. 128.  2009. Extinction circuits for fear and addiction overlap in prefrontal cortex. Learn. Mem. 16:279–88 [Google Scholar]
  129. Etkin A, Egner T, Kalisch R. 129.  2011. Emotional processing in anterior cingulate and medial prefrontal cortex. Trends Cogn. Sci. 15:85–93 [Google Scholar]
  130. Milad MR, Quirk GJ, Pitman RK, Orr SP, Fischl B, Rauch SL. 130.  2007. A role for the human dorsal anterior cingulate cortex in fear expression. Biol. Psychiatry 62:1191–94 [Google Scholar]
  131. Amat J, Baratta MV, Paul E, Bland ST, Watkins LR, Maier SF. 131.  2005. Medial prefrontal cortex determines how stressor controllability affects behavior and dorsal raphe nucleus. Nat. Neurosci. 8:365–71 [Google Scholar]
  132. Maier SF, Watkins LR. 132.  2010. Role of the medial prefrontal cortex in coping and resilience. Brain Res. 1355:52–60 [Google Scholar]
  133. Amat J, Paul E, Zarza C, Watkins LR, Maier SF. 133.  2006. Previous experience with behavioral control over stress blocks the behavioral and dorsal raphe nucleus activating effects of later uncontrollable stress: role of the ventral medial prefrontal cortex. J. Neurosci. 26:13264–72 [Google Scholar]
  134. Varela JA, Wang J, Christianson JP, Maier SF, Cooper DC. 134.  2012. Control over stress, but not stress per se increases prefrontal cortical pyramidal neuron excitability. J. Neurosci. 32:12848–53 [Google Scholar]
  135. Amat J, Christianson JP, Aleksejev RM, Kim J, Richeson KR. 135.  et al. 2014. Control over a stressor involves the posterior dorsal striatum and the act/outcome circuit. Eur. J. Neurosci. 40:2352–58 [Google Scholar]
  136. Yin HH, Knowlton BJ, Balleine BW. 136.  2004. Lesions of dorsolateral striatum preserve outcome expectancy but disrupt habit formation in instrumental learning. Eur. J. Neurosci. 19:181–89 [Google Scholar]
  137. Rush AJ, Trivedi MH, Wisniewski SR, Nierenberg AA, Stewart JW. 137.  et al. 2006. Acute and longer-term outcomes in depressed outpatients requiring one or several treatment steps: a STAR*D report. Am. J. Psychiatry 163:1905–17 [Google Scholar]
  138. Santamaria J, Tolosa E, Valles A. 138.  1986. Parkinson's disease with depression: a possible subgroup of idiopathic parkinsonism. Neurology 36:1130–33 [Google Scholar]
  139. Gustafsson H, Nordstrom A, Nordstrom P. 139.  2015. Depression and subsequent risk of Parkinson disease: a nationwide cohort study. Neurology 84:2422–29 [Google Scholar]
  140. Knutson B, Adams CM, Fong GW, Hommer D. 140.  2001. Anticipation of increasing monetary reward selectively recruits nucleus accumbens. J. Neurosci. 21:RC159 [Google Scholar]
  141. Pizzagalli DA, Holmes AJ, Dillon DG, Goetz EL, Birk JL. 141.  et al. 2009. Reduced caudate and nucleus accumbens response to rewards in unmedicated individuals with major depressive disorder. Am. J. Psychiatry 166:702–10 [Google Scholar]
  142. Knutson B, Bhanji JP, Cooney RE, Atlas LY, Gotlib IH. 142.  2008. Neural responses to monetary incentives in major depression. Biol. Psychiatry 63:686–92 [Google Scholar]
  143. Bewernick BH, Hurlemann R, Matusch A, Kayser S, Grubert C. 143.  et al. 2010. Nucleus accumbens deep brain stimulation decreases ratings of depression and anxiety in treatment-resistant depression. Biol. Psychiatry 67:110–16 [Google Scholar]
  144. Schlaepfer TE, Cohen MX, Frick C, Kosel M, Brodesser D. 144.  et al. 2008. Deep brain stimulation to reward circuitry alleviates anhedonia in refractory major depression. Neuropsychopharmacology 33:368–77 [Google Scholar]
  145. Mayberg HS, Lozano AM, Voon V, McNeely HE, Seminowicz D. 145.  et al. 2005. Deep brain stimulation for treatment-resistant depression. Neuron 45:651–60 [Google Scholar]
  146. Sacher J, Neumann J, Funfstuck T, Soliman A, Villringer A, Schroeter ML. 146.  2012. Mapping the depressed brain: a meta-analysis of structural and functional alterations in major depressive disorder. J. Affect. Disord. 140:142–48 [Google Scholar]
  147. Mayberg HS, Brannan SK, Tekell JL, Silva JA, Mahurin RK. 147.  et al. 2000. Regional metabolic effects of fluoxetine in major depression: serial changes and relationship to clinical response. Biol. Psychiatry 48:830–43 [Google Scholar]
  148. Mayberg HS, Brannan SK, Mahurin RK, Jerabek PA, Brickman JS. 148.  et al. 1997. Cingulate function in depression: a potential predictor of treatment response. NeuroReport 8:1057–61 [Google Scholar]
  149. Goldapple K, Segal Z, Garson C, Lau M, Bieling P. 149.  et al. 2004. Modulation of cortical-limbic pathways in major depression—treatment-specific effects of cognitive behavior therapy. Arch. Gen. Psychiatry 61:34–41 [Google Scholar]
  150. Hamani C, Temel Y. 150.  2012. Deep brain stimulation for psychiatric disease: contributions and validity of animal models. Sci. Transl. Med. 4:142rv8 [Google Scholar]
  151. Puigdemont D, Perez-Egea R, Portella MJ, Molet J, de Diego-Adelino J. 151.  et al. 2012. Deep brain stimulation of the subcallosal cingulate gyrus: further evidence in treatment-resistant major depression. Int. J. Neuropsychopharmacol. 15:121–33 [Google Scholar]
  152. Lozano AM, Mayberg HS, Giacobbe P, Hamani C, Craddock RC, Kennedy SH. 152.  2008. Subcallosal cingulate gyrus deep brain stimulation for treatment-resistant depression. Biol. Psychiatry 64:461–67 [Google Scholar]
  153. Lozano AM, Giacobbe P, Hamani C, Rizvi SJ, Kennedy SH. 153.  et al. 2012. A multicenter pilot study of subcallosal cingulate area deep brain stimulation for treatment-resistant depression. J. Neurosurg. 116:315–22 [Google Scholar]
  154. Lozano AM, Dostrovsky J, Chen R, Ashby P. 154.  2002. Deep brain stimulation for Parkinson's disease: disrupting the disruption. Lancet Neurol. 1:225–31 [Google Scholar]
  155. McIntyre CC, Savasta M, Kerkerian-Le Goff L, Vitek JL. 155.  2004. Uncovering the mechanism(s) of action of deep brain stimulation: activation, inhibition, or both. Clin. Neurophysiol. 115:1239–48 [Google Scholar]
  156. Porsolt RD, Le Pichon M, Jalfre M. 156.  1977. Depression: a new animal model sensitive to antidepressant treatments. Nature 266:730–32 [Google Scholar]
  157. Willner P, Muscat R, Papp M. 157.  1992. Chronic mild stress-induced anhedonia: a realistic animal model of depression. Neurosci. Biobehav. Rev. 16:525–34 [Google Scholar]
  158. Hollis F, Kabbaj M. 158.  2014. Social defeat as an animal model for depression. ILAR J. 55:221–32 [Google Scholar]
  159. Hamani C, Diwan M, Macedo CE, Brandao ML, Shumake J. 159.  et al. 2010. Antidepressant-like effects of medial prefrontal cortex deep brain stimulation in rats. Biol. Psychiatry 67:117–24 [Google Scholar]
  160. Covington HE 3rd, Lobo MK, Maze I, Vialou V, Hyman JM. 160.  et al. 2010. Antidepressant effect of optogenetic stimulation of the medial prefrontal cortex. J. Neurosci. 30:16082–90 [Google Scholar]
  161. Gersner R, Toth E, Isserles M, Zangen A. 161.  2010. Site-specific antidepressant effects of repeated subconvulsive electrical stimulation: potential role of brain-derived neurotrophic factor. Biol. Psychiatry 67:125–32 [Google Scholar]
  162. Friedman A, Frankel M, Flaumenhaft Y, Merenlender A, Pinhasov A. 162.  et al. 2009. Programmed acute electrical stimulation of ventral tegmental area alleviates depressive-like behavior. Neuropsychopharmacology 34:1057–66 [Google Scholar]
  163. Tye KM, Mirzabekov JJ, Warden MR, Ferenczi EA, Tsai HC. 163.  et al. 2013. Dopamine neurons modulate neural encoding and expression of depression-related behaviour. Nature 493:537–41 [Google Scholar]
/content/journals/10.1146/annurev-physiol-021115-105355
Loading
/content/journals/10.1146/annurev-physiol-021115-105355
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error