Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Feature Review
  • Published:

Transgenic animal models of Alzheimer's disease and related disorders: histopathology, behavior and therapy

Abstract

Alzheimer's disease (AD) is a devastating neurodegenerative disease that affects more than 15 million people worldwide. Within the next generation, these numbers will more than double. To assist in the elucidation of pathogenic mechanisms of AD and related disorders, such as frontotemporal dementia (FTDP-17), genetically modified mice, flies, fish and worms were developed, which reproduce aspects of the human histopathology, such as β-amyloid-containing plaques and tau-containing neurofibrillary tangles (NFT). In mice, the tau pathology caused selective behavioral impairment, depending on the distribution of the tau aggregates in the brain. β-Amyloid induced an increase in the numbers of NFT, whereas the opposite was not observed in mice. In β-amyloid-producing transgenic mice, memory impairment was associated with increased levels of β-amyloid. Active and passive β-amyloid-directed immunization caused the removal of β-amyloid plaques and restored memory functions. These findings have since been translated to human therapy. This review aims to discuss the suitability and limitations of the various animal models and their contribution to an understanding of the pathophysiology of AD and related disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Alzheimer A, Stelzmann RA, Schnitzlein HN, Murtagh FR . An English translation of Alzheimer's 1907 paper, ‘Uber eine eigenartige Erkankung der Hirnrinde’. Clin Anat 1995; 8: 429–431.

    Article  CAS  PubMed  Google Scholar 

  2. Hebert LE, Scherr PA, Bienias JL, Bennett DA, Evans DA . Alzheimer disease in the US population: prevalence estimates using the 2000 census. Arch Neurol 2003; 60: 1119–1122.

    Article  PubMed  Google Scholar 

  3. Glenner GG, Wong CW . Alzheimer's disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun 1984; 120: 885–890.

    Article  CAS  PubMed  Google Scholar 

  4. Masters CL, Simms G, Weinman NA, Multhaup G, McDonald BL, Beyreuther K . Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc Natl Acad Sci USA 1985; 82: 4245–4249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Vassar R, Bennett BD, Babu-Khan S, Kahn S, Mendiaz EA, Denis P et al. Beta-secretase cleavage of Alzheimer's amyloid precursor protein by the transmembrane aspartic protease BACE. Science 1999; 286: 735–741.

    Article  CAS  PubMed  Google Scholar 

  6. Edbauer D, Winkler E, Regula JT, Pesold B, Steiner H, Haass C . Reconstitution of gamma-secretase activity. Nat Cell Biol 2003; 5: 486–488.

    Article  CAS  PubMed  Google Scholar 

  7. Gotz J . Tau and transgenic animal models. Brain Res Brain Res Rev 2001; 35: 266–286.

    Article  CAS  PubMed  Google Scholar 

  8. Lee VM, Goedert M, Trojanowski JQ . Neurodegenerative tauopathies. Annu Rev Neurosci 2001; 24: 1121–1159.

    Article  CAS  PubMed  Google Scholar 

  9. Crowther RA, Wischik CM . Image reconstruction of the Alzheimer paired helical filament. EMBO J 1985; 4: 3661–3665.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wischik CM, Crowther RA, Stewart M, Roth M . Subunit structure of paired helical filaments in Alzheimer's disease. J Cell Biol 1985; 100: 1905–1912.

    Article  CAS  PubMed  Google Scholar 

  11. Goedert M, Wischik CM, Crowther RA, Walker JE, Klug A . Cloning and sequencing of the cDNA encoding a core protein of the paired helical filament of Alzheimer disease: identification as the microtubule-associated protein tau. Proc Natl Acad Sci USA 1988; 85: 4051–4055.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lee G, Rook SL . Expression of tau protein in non-neuronal cells: microtubule binding and stabilization. J Cell Sci 1992; 102: 227–237.

    Article  CAS  PubMed  Google Scholar 

  13. Reszka AA, Seger R, Diltz CD, Krebs EG, Fischer EH . Association of mitogen-activated protein kinase with the microtubule cytoskeleton. Proc Natl Acad Sci USA 1995; 92: 8881–8885.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Morishima-Kawashima M, Kosik KS . The pool of map kinase associated with microtubules is small but constitutively active. Mol Biol Cell 1996; 7: 893–905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Flanagan LA, Cunningham CC, Chen J, Prestwich GD, Kosik KS, Janmey PA . The structure of divalent cation-induced aggregates of PIP2 and their alteration by gelsolin and tau. Biophys J 1997; 73: 1440–1447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ebneth A, Godemann R, Stamer K, Illenberger S, Trinczek B, Mandelkow E . Overexpression of tau protein inhibits kinesin-dependent trafficking of vesicles, mitochondria, and endoplasmic reticulum: implications for Alzheimer's disease. J Cell Biol 1998; 143: 777–794.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jenkins SM, Johnson GV . Tau complexes with phospholipase C-gamma in situ. Neuroreport 1998; 9: 67–71.

    Article  CAS  PubMed  Google Scholar 

  18. Sontag E, Nunbhakdi-Craig V, Lee G, Brandt R, Kamibayashi C, Kuret J et al. Molecular interactions among protein phosphatase 2A, tau, and microtubules. Implications for the regulation of tau phosphorylation and the development of tauopathies. J Biol Chem 1999; 274: 25490–25498.

    Article  CAS  PubMed  Google Scholar 

  19. Anderton BH, Dayanandan R, Killick R, Lovestone S . Does dysregulation of the Notch and wingless/Wnt pathways underlie the pathogenesis of Alzheimer's disease? Mol Med Today 2000; 6: 54–59.

    Article  CAS  PubMed  Google Scholar 

  20. De F, Gv, Inestrosa NC . Wnt signaling function in Alzheimer's disease. Brain Res Brain Res Rev 2000; 33: 1–12.

    Article  Google Scholar 

  21. Maas T, Eidenmuller J, Brandt R . Interaction of tau with the Neurol membrane cortex is regulated by phosphorylation at sites that are modified in paired helical filaments. J Biol Chem 2000; 275: 15733–15740.

    Article  CAS  PubMed  Google Scholar 

  22. Tashiro K, Hasegawa M, Ihara Y, Iwatsubo T . Somatodendritic localization of phosphorylated tau in neonatal and adult rat cerebral cortex. Neuroreport 1997; 8: 2797–2801.

    Article  CAS  PubMed  Google Scholar 

  23. Goedert M, Jakes R, Crowther RA, Six J, Lubke U, Vandermeeren M et al. The abnormal phosphorylation of tau protein at Ser-202 in Alzheimer disease recapitulates phosphorylation during development. Proc Natl Acad Sci USA 1993; 90: 5066–5070.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Buee L, Bussiere T, Buee-Scherrer V, Delacourte A, Hof PR . Tau protein isoforms, phosphorylation and role in neurodegenerative disorders. Brain Res Brain Res Rev 2000; 33: 95–130.

    Article  CAS  PubMed  Google Scholar 

  25. Lichtenberg B, Mandelkow EM, Hagestedt T, Mandelkow E . Structure and elasticity of microtubule-associated protein tau. Nature 1988; 334: 359–362.

    Article  CAS  PubMed  Google Scholar 

  26. Schweers O, Schonbrunn-Hanebeck E, Marx A, Mandelkow E . Structural studies of tau protein and Alzheimer paired helical filaments show no evidence for beta-structure. J Biol Chem 1994; 269: 24290–24297.

    Article  CAS  PubMed  Google Scholar 

  27. Gatz M, Pedersen NL, Berg S, Johansson B, Johansson K, Mortimer JA et al. Heritability for Alzheimer's disease: the study of dementia in Swedish twins. J Gerontol A Biol Sci Med Sci 1997; 52: M117–M125.

    Article  CAS  PubMed  Google Scholar 

  28. Rocchi A, Pellegrini S, Siciliano G, Mum L . Causative and susceptibility genes for Alzheimer's disease: a review. Brain Res Bull 2003; 61: 1–24.

    Article  CAS  PubMed  Google Scholar 

  29. Rosenberg RN . The molecular and genetic basis of AD: the end of the beginning: the 2000 Wartenberg lecture. Neurology 2000; 54: 2045–2054.

    Article  CAS  PubMed  Google Scholar 

  30. Delacourte A, Sergeant N, Champain D, Wattez A, Maurage CA, Lebert F et al. Nonoverlapping but synergetic tau and APP pathologies in sporadic Alzheimer's disease. Neurology 2002; 59: 398–407.

    Article  CAS  PubMed  Google Scholar 

  31. Goate A, Chartier-Harlin MC, Mullan M, Brown J, Crawford F, Fidani L et al. Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer's disease. Nature 1991; 349: 704–706.

    Article  CAS  PubMed  Google Scholar 

  32. Mullan M, Crawford F, Axelman K, Houlden H, Lilius L, Winblad B et al. A pathogenic mutation for probable Alzheimer's disease in the APP gene at the N-terminus of beta-amyloid. Nat Genet 1992; 1: 345–347.

    Article  CAS  PubMed  Google Scholar 

  33. Revesz T, Helton JL, Lashley T, Plant G, Rostagno A, Ghiso J et al. Sporadic and familial cerebral amyloid angiopathies. Brain Pathol 2002; 12: 343–357.

    Article  PubMed  Google Scholar 

  34. Ellis RJ, Olichney JM, Thal LJ, Mirra SS, Morris JC, Beekly D et al. Cerebral amyloid angiopathy in the brains of patients with Alzheimer's disease: the CERAD experience, Part XV. Neurology 1996; 46: 1592–1596.

    Article  CAS  PubMed  Google Scholar 

  35. Sherrington R, Rogaev EI, Liang Y, Rogaeva EA, Levesque G, Ikeda M et al. Cloning of a gene bearing missense mutations in early-onset familial Alzheimer's disease. Nature 1995; 375: 754–760.

    Article  CAS  PubMed  Google Scholar 

  36. Van Broeckhoven C, Backhovens H, Cruts M, De Winter G, Bruyland M, Cras P et al. Mapping of a gene predisposing to early-onset Alzheimer's disease to chromosome 14q24.3. Nat Genet 1992; 2: 335–339.

    Article  CAS  PubMed  Google Scholar 

  37. Levy-Lahad E, Wasco W, Poorkaj P, Romano DM, Oshima J, Pettingell WH et al. Candidate gene for the chromosome 1 familial Alzheimer's disease locus. Science 1995; 269: 973–977.

    Article  CAS  PubMed  Google Scholar 

  38. Hutton M, Lendon CL, Rizzu P, Baker M, Froelich S, Houlden H et al. Association of missense and 5′-splice-site mutations in tau with the inherited dementia FTDP-17. Nature 1998; 393: 702–705.

    Article  CAS  PubMed  Google Scholar 

  39. Poorkaj P, Bird TD, Wijsman E, Nemens E, Garruto RM, Anderson L et al. Tau is a candidate gene for chromosome 17 frontotemporal dementia. Ann Neurol 1998; 43: 815–825.

    Article  CAS  PubMed  Google Scholar 

  40. Spillantini MG, Murrell JR, Goedert M, Farlow MR, Klug A, Ghetti B . Mutation in the tau gene in familial multiple system tauopathy with presenile dementia. Proc Natl Acad Sci USA 1998; 95: 7737–7741.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Goedert M, Spillantini MG, Crowther RA, Chen SG, Parchi P, Tabaton M et al. Tau gene mutation in familial progressive subcortical gliosis. Nat Med 1999; 5: 454–457.

    Article  CAS  PubMed  Google Scholar 

  42. Bugiani O, Murrell JR, Giaccone G, Hasegawa M, Ghigo G, Tabaton M et al. Frontotemporal dementia and corticobasal degeneration in a family with a P301S mutation in tau. J Neuropathol Exp Neurol 1999; 58: 667–677.

    Article  CAS  PubMed  Google Scholar 

  43. Yasuda M, Kawamata T, Komure O, Kuno S, D'Souza I, Poorkaj P et al. A mutation in the microtubule-associated protein tau in pallido-nigro-luysian degeneration. Neurology 1999; 53: 864–868.

    Article  CAS  PubMed  Google Scholar 

  44. Arnold SE, Hyman BT, Flory J, Damasio AR, Van Hoesen GW . The topographical and neuroanatomical distribution of neurofibrillary tangles and neuritic plaques in the cerebral cortex of patients with Alzheimer's disease. Cereb Cortex 1991; 1: 103–116.

    Article  CAS  PubMed  Google Scholar 

  45. Braak H, Braak E . Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol (Berl) 1991; 82: 239–259.

    Article  CAS  Google Scholar 

  46. Braak H, Braak E . Staging of Alzheimer's disease-related neurofibrillary changes. Neurobiol Aging 1995; 16: 271–278, discussion 278–284.

    Article  CAS  PubMed  Google Scholar 

  47. Thai DR, Rub U, Orantes M, Braak H . Phases of A beta-deposition in the human brain and its relevance for the development of AD. Neurology 2002; 58: 1791–1800.

    Article  Google Scholar 

  48. Gotz J, Chen F, van Dorpe J, Nitsch RM . Formation of neurofibrillary tangles in P301L tau transgenic mice induced by Abeta 42 fibrils. Science 2001; 293: 1491–1495.

    Article  CAS  PubMed  Google Scholar 

  49. Lewis J, Dickson DW, Lin W-L, Chisholm L, Corral A, Jones G et al. Enhanced neurofibrillary degeneration in transgenic mice expressing mutant Tau and APP. Science 2001; 293: 1487–1491.

    Article  CAS  PubMed  Google Scholar 

  50. Arriagada PV, Growdon JH, Hedley-Whyte ET, Hyman BT . Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer's disease. Neurology 1992; 42: 631–639.

    Article  CAS  PubMed  Google Scholar 

  51. Bierer LM, Hof PR, Purohit DP, Carlin L, Schmeidler J, Davis KL et al. Neocortical neurofibrillary tangles correlate with dementia severity in Alzheimer's disease. Arch Neurol 1995; 52: 81–88.

    Article  CAS  PubMed  Google Scholar 

  52. Delacourte A, David JP, Sergeant N, Buee L, Wattez A, Vermersch P et al. The biochemical pathway of neurofibrillary degeneration in aging and Alzheimer's disease. Neurology 1999; 52: 1158–1165.

    Article  CAS  PubMed  Google Scholar 

  53. Groups TLaM . Clinical and neuropathological criteria for frontotemporal dementia. The Lund and Manchester Groups. J Neurol Neurosurg Psychiatry 1994; 57: 416–418.

    Article  Google Scholar 

  54. Neary D, Snowden JS, Gustafson L, Passant U, Stuss D, Black S et al. Frontotemporal lobar degeneration: a consensus on clinical diagnostic criteria. Neurology 1998; 51: 1546–1554.

    Article  CAS  PubMed  Google Scholar 

  55. Sumi SM, Bird TD, Nochlin D, Raskind MA . Familial presenile dementia with psychosis associated with cortical neurofibrillary tangles and degeneration of the amygdala. Neurology 1992; 42: 120–127.

    Article  CAS  PubMed  Google Scholar 

  56. Reed LA, Grabowski TJ, Schmidt ML, Morris JC, Goate A, Solodkin A et al. Autosomal dominant dementia with widespread neurofibrillary tangles. Ann Neurol 1997; 42: 564–572.

    Article  CAS  PubMed  Google Scholar 

  57. Bird TD, Nochlin D, Poorkaj P, Cherrier M, Kaye J, Payami H et al. A clinical pathological comparison of three families with frontotemporal dementia and identical mutations in the tau gene (P301L). Brain 1999; 122: 741–756.

    Article  PubMed  Google Scholar 

  58. Mirra SS, Murrell JR, Gearing M, Spillantini MG, Goedert M, Crowther RA et al. Tau pathology in a family with dementia and a P301L mutation in tau. J Neuropathol Exp Neurol 1999; 58: 335–345.

    Article  CAS  PubMed  Google Scholar 

  59. van Swieten JC, Stevens M, Rosso SM, Rizzu P, Joosse M, de Koning I et al. Phenotypic variation in hereditary frontotemporal dementia with tau mutations. Ann Neurol 1999; 46: 617–626.

    Article  CAS  PubMed  Google Scholar 

  60. Murrell JR, Spillantini MG, Zolo P, Guazzelli M, Smith MJ, Hasegawa M et al. Tau gene mutation G389R causes a tauopathy with abundant pick body-like inclusions and axonal deposits. J Neuropathol Exp Neurol 1999; 58: 1207–1226.

    Article  CAS  PubMed  Google Scholar 

  61. Wszolek ZK, Pfeiffer RF, Bhatt MH, Schelper RL, Cordes M, Snow BJ et al. Rapidly progressive autosomal dominant parkinsonism and dementia with pallido-ponto-nigral degeneration. Ann Neurol 1992; 32: 312–320.

    Article  CAS  PubMed  Google Scholar 

  62. Froelich S, Basun H, Forsell C, Lilius L, Axelman K, Andreadis A et al. Mapping of a disease locus for familial rapidly progressive frontotemporal dementia to chromosome 17q12-21. Am J Med Genet 1997; 74: 380–385.

    Article  CAS  PubMed  Google Scholar 

  63. Baker M, Kwok JB, Kucera S, Crook R, Fairer M, Houlden H et al. Localization of frontotemporal dementia with parkinsonism in an Australian kindred to chromosome 17q21-22. Ann Neurol 1997; 42: 794–798.

    Article  CAS  PubMed  Google Scholar 

  64. Brion S, Plas J, Jeanneau A . Pick's disease. Anatomo-clinical point of view. Rev Neurol 1991; 147: 693–704.

    CAS  PubMed  Google Scholar 

  65. Hof PR, Bouras C, Perl DP, Morrison JH . Quantitative neuropathologic analysis of Pick's disease cases: cortical distribution of Pick bodies and coexistence with Alzheimer's disease. Acta Neuropathol 1994; 87: 115–124.

    Article  CAS  PubMed  Google Scholar 

  66. Litvan I, Agid Y, Jankovic J, Goetz C, Brandel JP, Lai EC et al. Accuracy of clinical criteria for the diagnosis of progressive supranuclear palsy (Steel–Richardson–Olszewski syndrome). Neurology 1996; 46: 922–930.

    Article  CAS  PubMed  Google Scholar 

  67. Litvan I, Hauw JJ, Bartko JJ, Lantos PL, Daniel SE, Horoupian DS et al. Validity and reliability of the preliminary NINDS neuropathologic criteria for progressive supranuclear palsy and related disorders. J Neuropathol Exp Neurol 1996; 55: 97–105.

    Article  CAS  PubMed  Google Scholar 

  68. Rebeiz JJ, Kolodny EH, Richardson EP . Corticodentatonigral degeneration with neuronal achromasia. Arch Neurol 1968; 18: 20–33.

    Article  CAS  PubMed  Google Scholar 

  69. Rinne JO, Lee MS, Thompson PD, Marsden CD . Corticobasal degeneration. A clinical study of 36 cases. Brain 1994; 117: 1183–1196.

    Article  PubMed  Google Scholar 

  70. Chin SS, Goldman JE . Glial inclusions in CNS degenerative diseases. J Neuropathol Exp Neurol 1996; 55: 499–508.

    Article  CAS  PubMed  Google Scholar 

  71. Komori T . Tau-positive glial inclusions in progressive supranuclear palsy, corticobasal degeneration and Pick's disease. Brain Pathol 1999; 9: 663–679.

    Article  CAS  PubMed  Google Scholar 

  72. Games D, Adams D, Alessandrini R, Barbour R, Berthelette P, Blackwell C et al. Alzheimer-type neuropathology in transgenic mice overexpressing V717F beta-amyloid precursor protein. Nature 1995; 373: 523–527.

    Article  CAS  PubMed  Google Scholar 

  73. Chen G, Chen KS, Knox J, Inglis J, Bernard A, Martin SJ et al. A learning deficit related to age and beta-amyloid plaques in a mouse model of Alzheimer's disease. Nature 2000; 408: 975–979.

    Article  CAS  PubMed  Google Scholar 

  74. Larson J, Lynch G, Games D, Seubert P . Alterations in synaptic transmission and long-term potentiation in hippocampal slices from young and aged PDAPP mice. Brain Res 1999; 840: 23–35.

    Article  CAS  PubMed  Google Scholar 

  75. Selkoe DJ . Alzheimer's disease is a synaptic failure. Science 2002; 298: 789–791.

    Article  CAS  PubMed  Google Scholar 

  76. Hsiao K, Chapman P, Nilsen S, Eckman C, Harigaya Y, Younkin S et al. Correlative memory deficits, Abeta elevation, and amyloid plaques in transgenic mice. Science 1996; 274: 99–102.

    Article  CAS  PubMed  Google Scholar 

  77. Sturchler-Pierrat C, Abramowski D, Duke M, Wiederhold KH, Mistl C, Rothacher S et al. Two amyloid precursor protein transgenic mouse models with Alzheimer disease-like pathology. Proc Natl Acad Sci USA 1997; 94: 13287–13292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Stalder M, Phinney A, Probst A, Sommer B, Staufenbiel M, Jucker M . Association of microglia with amyloid plaques in brains of APP23 transgenic mice. Am J Pathol 1999; 154: 1673–1684.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Calhoun ME, Wiederhold KH, Abramowski D, Phinney AL, Probst A, Sturchler-Pierrat C et al. Neuron loss in APP transgenic mice. Nature 1998; 395: 755–756.

    Article  CAS  PubMed  Google Scholar 

  80. Takeuchi A, Irizarry MC, Duff K, Saido TC, Hsiao Ashe K, Hasegawa M et al. Age-related amyloid beta deposition in transgenic mice overexpressing both Alzheimer mutant presenilin 1 and amyloid beta precursor protein Swedish mutant is not associated with global neuronal loss. Am J Pathol 2000; 157: 331–339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Irizarry MC, McNamara M, Fedorchak K, Hsiao K, Hyman BT . APPSw transgenic mice develop age-related A beta deposits and neuropil abnormalities, but no neuronal loss in CA1. J Neuropathol Exp Neurol 1997; 56: 965–973.

    Article  CAS  PubMed  Google Scholar 

  82. Irizarry MC, Soriano F, McNamara M, Page KJ, Schenk D, Games D et al. Abeta deposition is associated with neuropil changes, but not with overt neuronal loss in the human amyloid precursor protein V717F (PDAPP) transgenic mouse. J Neurosci 1997; 17: 7053–7059.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Calhoun ME, Burgermeister P, Phinney AL, Stalder M, Tolnay M, Wiederhold KH et al. Neuronal overexpression of mutant amyloid precursor protein results in prominent deposition of cerebrovascular amyloid. Proc Natl Acad Sci USA 1999; 96: 14088–14093.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Winkler DT, Bondolfi L, Herzig MC, Jann L, Calhoun ME, Wiederhold KH et al. Spontaneous hemorrhagic stroke in a mouse model of cerebral amyloid angiopathy. J Neurosci 2001; 21: 1619–1627.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Boncristiano S, Calhoun ME, Kelly PH, Pfeifer M, Bondolfi L, Stalder M et al. Cholinergic changes in the APP23 transgenic mouse model of cerebral amyloidosis. J Neurosci 2002; 22: 3234–3243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Janus C, Pearson J, McLaurin J, Mathews PM, Jiang Y, Schmidt SD et al. A beta peptide immunization reduces behavioural impairment and plaques in a model of Alzheimer's disease. Nature 2000; 408: 979–982.

    Article  CAS  PubMed  Google Scholar 

  87. Mucke L, Masliah E, Yu GQ, Mallory M, Rockenstein EM, Tatsuno G et al. High-level neuronal expression of abeta 1-42 in wild-type human amyloid protein precursor transgenic mice: synaptotoxicity without plaque formation. J Neurosci 2000; 20: 4050–4058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Shen J, Bronson RT, Chen DF, Xia W, Selkoe DJ, Tonegawa S . Skeletal and CNS defects in presenilin-1-deficient mice. Cell 1997; 89: 629–639.

    Article  CAS  PubMed  Google Scholar 

  89. Qian S, Jiang P, Guan XM, Singh G, Trumbauer ME, Yu H et al. Mutant human presenilin 1 protects presenilin 1 null mouse against embryonic lethality and elevates Abeta1-42/43 expression. Neuron 1998; 20: 611–617.

    Article  CAS  PubMed  Google Scholar 

  90. De Strooper B, Saftig P, Craessaerts K, Vanderstichele H, Guhde G, Annaert W et al. Deficiency of presenilin-1 inhibits the normal cleavage of amyloid precursor protein. Nature 1998; 391: 387–390.

    Article  CAS  PubMed  Google Scholar 

  91. Herreman A, Hartmann D, Annaert W, Saftig P, Craessaerts K, Serneels L et al. Presenilin 2 deficiency causes a mild pulmonary phenotype and no changes in amyloid precursor protein processing but enhances the embryonic lethal phenotype of presenilin 1 deficiency. Proc Natl Acad Sci USA 1999; 96: 11872–11877.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Borchelt DR, Thinakaran G, Eckman CB, Lee MK, Davenport F, Ratovitsky T et al. Familial Alzheimer's disease-linked presenilin 1 variants elevate Abeta1-42/1-40 ratio in vitro and in vivo. Neuron 1996; 17: 1005–1013.

    Article  CAS  PubMed  Google Scholar 

  93. Borchelt DR, Ratovitski T, van Lare J, Lee MK, Gonzales V, Jenkins NA et al. Accelerated amyloid deposition in the brains of transgenic mice coexpressing mutant presenilin 1 and amyloid precursor proteins. Neuron 1997; 19: 939–945.

    Article  CAS  PubMed  Google Scholar 

  94. Duff K, Eckman C, Zehr C, Yu X, Prada CM, Perez-tur J et al. Increased amyloid-beta42(43) in brains of mice expressing mutant presenilin 1. Nature 1996; 383: 710–713.

    Article  CAS  PubMed  Google Scholar 

  95. Citron M, Westaway D, Xia W, Carlson G, Diehl T, Levesque G et al. Mutant presenilins of Alzheimer's disease increase production of 42-residue amyloid beta-protein in both transfected cells and transgenic mice. Nat Med 1997; 3: 67–72.

    Article  CAS  PubMed  Google Scholar 

  96. Holcomb L, Gordon MN, McGowan E, Yu X, Benkovic S, Jantzen P et al. Accelerated Alzheimer-type phenotype in transgenic mice carrying both mutant amyloid precursor protein and presenilin 1 transgenes. Nat Med 1998; 4: 97–100.

    Article  CAS  PubMed  Google Scholar 

  97. Holcomb LA, Gordon MN, Jantzen P, Hsiao K, Duff K, Morgan D . Behavioral changes in transgenic mice expressing both amyloid precursor protein and presenilin-1 mutations: lack of association with amyloid deposits. Behav Genet 1999; 29: 177–185.

    Article  CAS  PubMed  Google Scholar 

  98. Dickey CA, Loring JF, Montgomery J, Gordon MN, Eastman PS, Morgan D . Selectively reduced expression of synaptic plasticity-related genes in amyloid precursor protein+presenilin−1 transgenic mice. J Neurosci 2003; 23: 5219–5226.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Bodendorf U, Danner S, Fischer F, Stefani M, Sturchler-Pierrat C, Wiederhold KH et al. Expression of human beta-secretase in the mouse brain increases the steady-state level of beta-amyloid. J Neurochem 2002; 80: 799–806.

    Article  CAS  PubMed  Google Scholar 

  100. Strittmatter WJ, Roses AD . Apolipoprotein E and Alzheimer's disease. Annu Rev Neurosci 1996; 19: 53–77.

    Article  CAS  PubMed  Google Scholar 

  101. Bales KR, Verina T, Dodel RC, Du Y, Altstiel L, Bender M et al. Lack of apolipoprotein E dramatically reduces amyloid beta-peptide deposition. Nat Genet 1997; 17: 263–264.

    Article  CAS  PubMed  Google Scholar 

  102. Brendza RP, Bales KR, Paul SM, Holtzman DM . Role of apoE/Abeta interactions in Alzheimer's disease: insights from transgenic mouse models. Mol Psychiatry 2002; 7: 132–135.

    Article  CAS  PubMed  Google Scholar 

  103. Holtzman DM, Bales KR, Wu S, Bhat P, Parsadanian M, Fagan AM et al. Expression of human apolipoprotein E reduces amyloid-beta deposition in a mouse model of Alzheimer's disease. J Clin Invest 1999; 103: R15–R21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Holtzman DM, Bales KR, Tenkova T, Fagan AM, Parsadanian M, Sartorius LJ et al. Apolipoprotein E isoform-dependent amyloid deposition and neuritic degeneration in a mouse model of Alzheimer's disease. Proc Natl Acad Sci USA. 2000; 97: 2892–2897.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Tesseur I, Van Dorpe J, Spittaels K, Van den Haute C, Moechars D, Van Leuven F . Expression of human apolipoprotein E4 in neurons causes hyperphosphorylation of protein tau in the brains of transgenic mice. Am J Pathol 2000; 156: 951–964.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Huang Y, Liu XQ, Wyss-Coray T, Brecht WJ, Sanan DA, Mahley RW . Apolipoprotein E fragments present in Alzheimer's disease brains induce neurofibrillary tangle-like intracellular inclusions in neurons. Proc Natl Acad Sci USA. 2001; 98: 8838–8843.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Harris FM, Brecht WJ, Xu Q, Tesseur I, Kekonius L, Wyss-Coray T et al. Carboxyl-terminal-truncated apolipoprotein E4 causes Alzheimer's disease-like neurodegeneration and behavioral deficits in transgenic mice. Proc Natl Acad Sci USA 2003; 100: 10966–10971.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Wyss-Coray T, Masliah E, Mallory M, McConlogue L, Johnson-Wood K, Lin C et al. Amyloidogenic role of cytokine TGF-beta1 in transgenic mice and in Alzheimer's disease. Nature 1997; 389: 603–606.

    Article  CAS  PubMed  Google Scholar 

  109. Wyss-Coray T, Lin C, Yan F, Yu GQ, Rohde M, McConlogue L et al. TGF-beta1 promotes microglial amyloid-beta clearance and reduces plaque burden in transgenic mice. Nat Med 2001; 7: 612–618.

    Article  CAS  PubMed  Google Scholar 

  110. Gotz J, Probst A, Spillantini MG, Schafer T, Jakes R, Burki K et al. Somatodendritic localization and hyperphosphorylation of tau protein in transgenic mice expressing the longest human brain tau isoform. EMBO J 1995; 14: 1304–1313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Ishihara T, Hong M, Zhang B, Nakagawa Y, Lee MK, Trojanowski JQ et al. Age-dependent emergence and progression of a tauopathy in transgenic mice overexpressing the shortest human tau isoform. Neuron 1999; 24: 751–762.

    Article  CAS  PubMed  Google Scholar 

  112. Spittaels K, Van den Haute C, Van Dorpe J, Bruynseels K, Vandezande K, Laenen I et al. Prominent axonopathy in the brain and spinal cord of transgenic mice overexpressing four-repeat human tau protein. Am J Pathol 1999; 155: 2153–2165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Probst A, Gotz J, Wiederhold KH, Tolnay M, Mistl C, Jaton AL et al. Axonopathy and amyotrophy in mice transgenic for human four-repeat tau protein. Acta Neuropathol (Berl) 2000; 99: 469–481.

    Article  CAS  Google Scholar 

  114. Hirano A, Nakano I, Kurland LT, Mulder DW, Holley PW, Saccomanno G . Fine structural study of neurofibrillary changes in a family with amyotrophic lateral sclerosis. J Neuropathol Exp Neurol 1984; 43: 471–480.

    Article  CAS  PubMed  Google Scholar 

  115. Munoz DG, Greene C, Perl DP, Selkoe DJ . Accumulation of phosphorylated neurofilaments in anterior horn motoneurons of amyotrophic lateral sclerosis patients. J Neuropathol Exp Neurol 1988; 47: 9–18.

    Article  CAS  PubMed  Google Scholar 

  116. Rouleau GA, Clark AW, Rooke K, Pramatarova A, Krizus A, Suchowersky O et al. SOD1 mutation is associated with accumulation of neurofilaments in amyotrophic lateral sclerosis. Ann Neurol 1996; 39: 128–131.

    Article  CAS  PubMed  Google Scholar 

  117. Zhou L, Miller BL, McDaniel CH, Kelly L, Kim OJ, Miller CA . Frontotemporal dementia: neuropil spheroids and presynaptic terminal degeneration. Ann Neurol 1998; 44: 99–109.

    Article  CAS  PubMed  Google Scholar 

  118. Ishihara T, Zhang B, Higuchi M, Yoshiyama Y, Trojanowski JQ, Lee VM . Age-dependent induction of congophilic neurofibrillary tau inclusions in tau transgenic mice. Am J Pathol 2001; 158: 555–562.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Lewis J, McGowan E, Rockwood J, Melrose H, Nacharaju P, Van Slegtenhorst M et al. Neurofibrillary tangles, amyotrophy and progressive motor disturbance in mice expressing mutant (P301L) tau protein. Nat Genet 2000; 25: 402–405.

    Article  CAS  PubMed  Google Scholar 

  120. Gotz J, Chen F, Barmettler R, Nitsch RM . Tau filament formation in transgenic mice expressing P301L tau. J Biol Chem 2001; 276: 529–534.

    Article  CAS  PubMed  Google Scholar 

  121. Tanemura K, Akagi T, Murayama M, Kikuchi N, Murayama O, Hashikawa T et al. Formation of filamentous tau aggregations in transgenic mice expressing V337M human tau. Neurobiol Dis 2001; 8: 1036–1045.

    Article  CAS  PubMed  Google Scholar 

  122. Tatebayashi Y, Miyasaka T, Chui DH, Akagi T, Mishima K, Iwasaki K et al. Tau filament formation and associative memory deficit in aged mice expressing mutant (R406W) human tau. Proc Natl Acad Sci USA 2002; 99: 13896–13901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Allen B, Ingram E, Takao M, Smith MJ, Jakes R, Virdee K et al. Abundant tau filaments and nonapoptotic neurodegeneration in transgenic mice expressing human P301S tau protein. J Neurosci 2002; 22: 9340–9351.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Gotz J, Tolnay M, Barmettler R, Chen F, Probst A, Nitsch RM . Oligodendroglial tau filament formation in transgenic mice expressing G272 V tau. Eur J Neurosci 2001; 13: 2131–2140.

    Article  CAS  PubMed  Google Scholar 

  125. Higuchi M, Ishihara T, Zhang B, Hong M, Andreadis A, Trojanowski J et al. Transgenic mouse model of tauopathies with glial pathology and nervous system degeneration. Neuron 2002; 35: 433–446.

    Article  CAS  PubMed  Google Scholar 

  126. Kins S, Kurosinski P, Nitsch RM, Gotz J . Activation of the ERK and JNK signaling pathways caused by neuron specific inhibition of PP2A in transgenic mice. Am J Pathol 2003; 163: 833–843.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Ferrari A, Hoerndli F, Baechi T, Nitsch RM, Gotz J . Beta-amyloid induces PHF-like tau filaments in tissue culture. J Biol Chem 2003; 278: 40162–40168.

    Article  CAS  PubMed  Google Scholar 

  128. Spittaels K, Van Den Haute C, Van Dorpe J, Geerts H, Mercken M, Bruynseels K et al. Glycogen synthase kinase-3beta phosphorylates protein tau and rescues the axonopathy in the central nervous system of human four-repeat tau transgenic mice. J Biol Chem 2000; 275: 41340–41349.

    Article  CAS  PubMed  Google Scholar 

  129. Ahlijanian MK, Barrezueta NX, Williams RD, Jakowski A, Kowsz KP, McCarthy S et al. Hyperphosphorylated tau and neurofilament and cytoskeletal disruptions in mice overexpressing human p25, an activator of cdk5. Proc Natl Acad Sci USA 2000; 97: 2910–2915.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Kins S, Crameri A, Evans DR, Hemmings BA, Nitsch RM, Gotz J . Reduced PP2A activity induces hyperphosphorylation and altered compartmentalization of tau in transgenic mice. J Biol Chem 2001; 276: 38193–38200.

    Article  CAS  PubMed  Google Scholar 

  131. Van den Haute C, Spittaels K, Van Dorpe J, Lasrado R, Vandezande K, Laenen II et al. Coexpression of human cdk5 and its activator p35 with human/protein tau in neurons in brain of triple transgenic mice. Neurobiol Dis 2001; 8: 32–44.

    Article  CAS  PubMed  Google Scholar 

  132. Bian F, Nath R, Sobocinski G, Booher RN, Lipinski WJ, Callahan MJ et al. Axonopathy, tau abnormalities, and dyskinesia, but no neurofibrillary tangles in p25-transgenic mice. J Comp Neurol 2002; 446: 257–266.

    Article  CAS  PubMed  Google Scholar 

  133. Gotz J, Schild A . Transgenic and knockout models of PP2A. Methods Enzymol 2003; 366: 390–403.

    Article  PubMed  Google Scholar 

  134. Kurosinski P, Gotz J . Glial cells under physiologic and pathological conditions. Arch Neurol 2002; 59: 1524–1528.

    Article  PubMed  Google Scholar 

  135. Lu PJ, Wulf G, Zhou XZ, Davies P, Lu KP . The prolyl isomerase Pin1 restores the function of Alzheimer-associated phosphorylated tau protein. Nature 1999; 399: 784–788.

    Article  CAS  PubMed  Google Scholar 

  136. Lu KP, Liou YC, Vincent I . Proline-directed phosphorylation and isomerization in mitotic regulation and in Alzheimer's disease. BioEssays 2003; 25: 174–181.

    Article  CAS  PubMed  Google Scholar 

  137. Liou YC, Sun A, Ryo A, Zhou XZ, Yu ZX, Huang HK et al. Role of the prolyl isomerase Pin1 in protecting against age-dependent neurodegeneration. Nature 2003; 424: 556–561.

    Article  CAS  PubMed  Google Scholar 

  138. Tanemura K, Murayama M, Akagi T, Hashikawa T, Tominaga T, Ichikawa M et al. Neurodegeneration with tau accumulation in a transgenic mouse expressing V337M human tau. J Neurosci 2002; 22: 133–141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Pennanen L, Welzl H, D'Adamo P, Nitsch RM, Gotz J . Accelerated extinction of conditioned taste aversion in P301L tau transgenic mice. Neurobiol Dis 2003 in press.

  140. LeDoux JE . Emotion circuits in the brain. Annu Rev Neurosci 2000; 23: 155–184.

    Article  CAS  PubMed  Google Scholar 

  141. Welzl H, D'Adamo P, Lipp HP . Conditioned taste aversion as a learning and memory paradigm. Behav Brain Res 2001; 125: 205–213.

    Article  CAS  PubMed  Google Scholar 

  142. Corcoran KA, Lu Y, Turner RS, Maren S . Overexpression of hAPPswe impairs rewarded alternation and contextual fear conditioning in a transgenic mouse model of Alzheimer's disease. Learn Mem 2002; 9: 243–252.

    Article  PubMed  PubMed Central  Google Scholar 

  143. Hamann S, Monarch ES, Goldstein FC . Impaired fear conditioning in Alzheimer's disease. Neuropsychologia 2002; 40: 1187–1195.

    Article  PubMed  Google Scholar 

  144. Broggio E, Pluchon C, Ingrand P, Gil R . Taste impairment in Alzheimer's disease. Rev Neurol (Paris) 2001; 157: 409–413.

    CAS  Google Scholar 

  145. Schiffman SS, Clark CM, Warwick ZS . Gustatory and olfactory dysfunction in dementia: not specific to Alzheimer's disease. Neurobiol Aging 1990; 11: 597–600.

    Article  CAS  PubMed  Google Scholar 

  146. Geula C, Wu CK, Saroff D, Lorenzo A, Yuan M, Yankner BA . Aging renders the brain vulnerable to amyloid beta-protein neurotoxicity (see comments). Nat Med 1998; 4: 827–831.

    Article  CAS  PubMed  Google Scholar 

  147. Oddo S, Caccamo A, Shepherd JD, Murphy MP, Golde TE, Kayed R et al. Triple-transgenic model of Alzheimer's disease with plaques and tangles. Intracellular abeta and synaptic dysfunction. Neuron 2003; 39: 409–421.

    Article  CAS  PubMed  Google Scholar 

  148. Aronov S, Marx R, Ginzburg I . Identification of 3′UTR region implicated in tau mRNA stabilization in neuronal cells. J Mol Neurosci 1999; 12: 131–145.

    Article  CAS  PubMed  Google Scholar 

  149. Duff K, Knight H, Refolo LM, Sanders S, Yu X, Picciano M et al. Characterization of pathology in transgenic mice over-expressing human genomic and cDNA tau transgenes. Neurobiol Dis 2000; 7: 87–98.

    Article  CAS  PubMed  Google Scholar 

  150. Andorfer C, Kress Y, Espinoza M, de Silva R, Tucker KL, Barde YA et al. Hyperphosphorylation and aggregation of tau in mice expressing normal human tau isoforms. J Neurochem 2003; 86: 582–590.

    Article  CAS  PubMed  Google Scholar 

  151. Masliah E, Rockenstein E, Veinbergs I, Mallory M, Hashimoto M, Takeda A et al. Dopaminergic loss and inclusion body formation in alpha-synuclein mice: implications for neurodegenerative disorders. Science 2000; 287: 1265–1269.

    Article  CAS  PubMed  Google Scholar 

  152. Kurosinski P, Guggisberg M, Gotz J . Alzheimer's and Parkinson's disease — overlapping or synergistic pathologies? Trends Mol Med 2002; 8: 3–5.

    Article  CAS  PubMed  Google Scholar 

  153. Kurt MA, Davies DC, Kidd M, Duff K, Hewlett DR . Hyperphosphorylated tau and paired helical filament-like structures in the brains of mice carrying mutant amyloid precursor protein and mutant presenilin-1 transgenes. Neurobiol Dis 2003; 14: 89–97.

    Article  CAS  PubMed  Google Scholar 

  154. Hartley DM, Walsh DM, Ye CP, Diehl T, Vasquez S, Vassilev PM et al. Protofibrillar intermediates of amyloid beta-protein induce acute electrophysiological changes and progressive neurotoxicity in cortical neurons. J Neurosci 1999; 19: 8876–8884.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Zirlinger M, Kreiman G, Anderson DJ . Amygdala-enriched genes identified by microarray technology are restricted to specific amygdaloid subnuclei. Proc Natl Acad Sci USA 2001; 98: 5270–5275.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Gunawardena S, Goldstein LS . Disruption of axonal transport and neuronal viability by amyloid precursor protein mutations in Drosophila. Neuron 2001; 32: 389–401.

    Article  CAS  PubMed  Google Scholar 

  157. Fossgreen A, Bruckner B, Czech C, Masters CL, Beyreuther K, Paro R . Transgenic Drosophila expressing human amyloid precursor protein show gamma-secretase activity and a blistered-wing phenotype. Proc Natl Acad Sci USA 1998; 95: 13703–13708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Wittmann CW, Wszolek MF, Shulman JM, Salvaterra PM, Lewis J, Hutton M et al. Tauopathy in Drosophila: neurodegeneration without neurofibrillary tangles. Science 2001; 293: 711–714.

    Article  CAS  PubMed  Google Scholar 

  159. Gomez-Isla T, Hollister R, West H, Mui S, Growdon JH, Petersen RC et al. Neuronal loss correlates with but exceeds neurofibrillary tangles in Alzheimer's disease. Ann Neurol 1997; 41: 17–24.

    Article  CAS  PubMed  Google Scholar 

  160. Giannakopoulos P, Herrmann FR, Bussiere T, Bouras C, Kovari E, Perl DP et al. Tangle and neuron numbers, but not amyloid load, predict cognitive status in Alzheimer's disease. Neurology 2003; 60: 1495–1500.

    Article  CAS  PubMed  Google Scholar 

  161. Bussiere T, Gold G, Kovari E, Giannakopoulos P, Bouras C, Perl DP et al. Stereologic analysis of neurofibrillary tangle formation in prefrontal cortex area 9 in aging and Alzheimer's disease. Neuroscience 2003; 117: 577–592.

    Article  CAS  PubMed  Google Scholar 

  162. Jackson GR, Wiedau-Pazos M, Sang T-K, Wagle N, Brown CA, Massachi S et al. Human wild-type tau interacts with wingless pathway components and produces neurofibrillary pathology in Drosophila. Neuron 2002; 34: 509–519.

    Article  CAS  PubMed  Google Scholar 

  163. Torroja L, Chu H, Kotovsky I, White K . Neuronal overexpression of APPL, the Drosophila homologue of the amyloid precursor protein (APP), disrupts axonal transport. Curr Biol 1999; 9: 489–492.

    Article  CAS  PubMed  Google Scholar 

  164. Hall GF, Cohen MJ . Extensive dendritic sprouting induced by close axotomy of central neurons in the lamprey. Science 1983; 222: 518–521.

    Article  CAS  PubMed  Google Scholar 

  165. Hall GF, Chu B, Lee G, Yao J . Human tau filaments induce microtubule and synapse loss in an in vivo model of neurofibrillary degenerative disease. J Cell Sci 2000; 113: 1373–1387.

    Article  CAS  PubMed  Google Scholar 

  166. Hall GF, Lee VM, Lee G, Yao J . Staging of neurofibrillary degeneration caused by human tau overexpression in a unique cellular model of human tauopathy. Am J Pathol 2001; 158: 235–246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Hall GF, Lee S, Yao J . Neurofibrillary degeneration can be arrested in an in vivo cellular model of human tauopathy by application of a compound which inhibits tau filament formation in vitro. J Mol Neurosci 2002; 19: 253–260.

    Article  CAS  PubMed  Google Scholar 

  168. Sonnhammer EL, Durbin R . Analysis of protein domain families in Caenorhabditis elegans. Genomics 1997; 46: 200–216.

    Article  CAS  PubMed  Google Scholar 

  169. Baumeister R, Ge L . The worm in us — Caenorhabditis elegans as a model of human disease. Trends Biotechnol 2002; 20: 147–148.

    Article  CAS  PubMed  Google Scholar 

  170. Francis R, McGrath G, Zhang J, Ruddy DA, Sym M, Apfeld J et al. aph-1 and pen-2 are required for Notch pathway signaling, gamma-secretase cleavage of betaAPP, and presenilin protein accumulation. Dev Cell 2002; 3: 85–97.

    Article  CAS  PubMed  Google Scholar 

  171. Levitan D, Doyle TG, Brousseau D, Lee MK, Thinakaran G, Slunt HH et al. Assessment of normal and mutant human presenilin function in Caenorhabditis elegans. Proc Natl Acad Sci USA 1996; 93: 14940–14944.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Wittenburg N, Eimer S, Lakowski B, Rohrig S, Rudolph C, Baumeister R . Presenilin is required for proper morphology and function of neurons in C.elegans. Nature 2000; 406: 306–309.

    Article  CAS  PubMed  Google Scholar 

  173. Kraemer BC, Zhang B, Leverenz JB, Thomas JH, Trojanowski JQ, Schellenberg GD . From the Cover: neurodegeneration and defective neurotransmission in a Caenorhabditis elegans model of tauopathy. Proc Natl Acad Sci USA 2003; 100: 9980–9985.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Masliah E, Rockenstein E, Veinbergs I, Sagara Y, Mallory M, Hashimoto M et al. Beta-amyloid peptides enhance alpha-synuclein accumulation and neuronal deficits in a transgenic mouse model linking Alzheimer's disease and Parkinson's disease. Proc Natl Acad Sci USA 2001; 98: 12245–12250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Lahiri DK, Farlow MR, Sambamurti K, Greig NH, Giacobini E, Schneider LS . A critical analysis of new molecular targets and strategies for drug developments in Alzheimer's disease. Curr Drug Targets 2003; 4: 97–112.

    Article  CAS  PubMed  Google Scholar 

  176. Dovey HF, John V, Anderson JP, Chen LZ, de Saint Andrieu P, Fang LY et al. Functional gamma-secretase inhibitors reduce beta-amyloid peptide levels in brain. J Neurochem 2001; 76: 173–181.

    Article  CAS  PubMed  Google Scholar 

  177. Soto C, Sigurdsson EM, Morelli L, Kumar RA, Castano EM, Frangione B . Beta-sheet breaker peptides inhibit fibrillogenesis in a rat brain model of amyloidosis: implications for Alzheimer's therapy. Nat Med 1998; 4: 822–826.

    Article  CAS  PubMed  Google Scholar 

  178. Permanne B, Adessi C, Saborio GP, Fraga S, Frossard MJ, Van Dorpe J et al. Reduction of amyloid load and cerebral damage in a transgenic mouse model of Alzheimer's disease by treatment with a beta-sheet breaker peptide. FASEB J 2002; 16: 860–862.

    Article  CAS  PubMed  Google Scholar 

  179. Cherny RA, Atwood CS, Xilinas ME, Gray DN, Jones WD, McLean CA et al. Treatment with a copper-zinc chelator markedly and rapidly inhibits beta-amyloid accumulation in Alzheimer's disease transgenic mice. Neuron 2001; 30: 665–676.

    Article  CAS  PubMed  Google Scholar 

  180. Lee JY, Cole TB, Palmiter RD, Suh SW, Koh JY . Contribution by synaptic zinc to the gender-disparate plaque formation in human Swedish mutant APP transgenic mice. Proc Nail Acad Sci USA 2002; 99: 7705–7710.

    Article  CAS  Google Scholar 

  181. Marr RA, Rockenstein E, Mukherjee A, Kindy MS, Hersh LB, Gage FH et al. Neprilysin gene transfer reduces human amyloid pathology in transgenic mice. J Neurosci 2003; 23: 1992–1996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Farris W, Mansourian S, Chang Y, Lindsley L, Eckman EA, Frosch MP et al. Insulin-degrading enzyme regulates the levels of insulin, amyloid beta-protein, and the beta-amyloid precursor protein intracellular domain in vivo. Proc Natl Acad Sci USA 2003; 100: 4162–4167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Puglielli L, Tanzi RE, Kovacs DM . Alzheimer's disease: the cholesterol connection. Nat Neurosci 2003; 6: 345–351.

    Article  CAS  PubMed  Google Scholar 

  184. Weggen S, Eriksen JL, Das P, Sagi SA, Wang R, Pietrzik CU et al. A subset of NSAIDs lower amyloidogenic Abeta42 independently of cyclooxygenase activity. Nature 2001; 414: 212–216.

    Article  CAS  PubMed  Google Scholar 

  185. Di Rosa G, Odrijin T, Nixon RA, Arancio O . Calpain inhibitors: a treatment for Alzheimer's disease. J Mol Neurosci 2002; 19: 135–141.

    Article  CAS  PubMed  Google Scholar 

  186. Hernandez F, Lim F, Lucas JJ, Perez-Martin C, Moreno F, Avila J . Transgenic mouse models with tau pathology to test therapeutic agents for Alzheimer's disease. Mini Rev Med Chem 2002; 2: 51–58.

    Article  CAS  PubMed  Google Scholar 

  187. Li G, Faibushevich A, Turunen BJ, Yoon SO, Georg G, Michaelis ML et al. Stabilization of the cyclin-dependent kinase 5 activator, p35, by paclitaxel decreases beta-amyloid toxicity in cortical neurons. J Neurochem 2003; 84: 347–362.

    Article  CAS  PubMed  Google Scholar 

  188. Phiel CJ, Wilson CA, Lee VM, Klein PS . GSK-3alpha regulates production of Alzheimer's disease amyloid-beta peptides. Nature 2003; 423: 435–439.

    Article  CAS  PubMed  Google Scholar 

  189. Schenk D, Barbour R, Dunn W, Gordon G, Grajeda H, Guido T et al. Immunization with amyloid-beta attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature 1999; 400: 173–177.

    Article  CAS  PubMed  Google Scholar 

  190. Bard F, Cannon C, Barbour R, Burke RL, Games D, Grajeda H et al. Peripherally administered antibodies against amyloid beta-peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer disease. Nat Med 2000; 6: 916–919.

    Article  CAS  PubMed  Google Scholar 

  191. Bacskai BJ, Kajdasz ST, McLellan ME, Games D, Seubert P, Schenk D et al. Non-Fc-mediated mechanisms are involved in clearance of amyloid-beta in vivo by immunotherapy. J Neurosci 2002; 22: 7873–7878.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Games D, Bard F, Grajeda H, Guido T, Khan K, Soriano F et al. Prevention and reduction of AD-type pathology in PDAPP mice immunized with A beta 1-42. Ann NY Acad Sci 2000; 920: 274–284.

    Article  CAS  PubMed  Google Scholar 

  193. Weiner HL, Lemere CA, Maron R, Spooner ET, Grenfell TJ, Mori C et al. Nasal administration of amyloid-beta peptide decreases cerebral amyloid burden in a mouse model of Alzheimer's disease. Ann Neurol 2000; 48: 567–579.

    Article  CAS  PubMed  Google Scholar 

  194. Morgan D, Diamond DM, Gottschall PE, Ugen KB, Dickey C, Hardy J et al. A beta peptide vaccination prevents memory loss in an animal model of Alzheimer's disease. Nature 2000; 408: 982–985.

    Article  CAS  PubMed  Google Scholar 

  195. Dodart JC, Bales KR, Gannon KS, Greene SJ, DeMattos RB, Mathis C et al. Immunization reverses memory deficits without reducing brain Abeta burden in Alzheimer's disease model. Nat Neurosci 2002; 5: 452–457.

    Article  CAS  PubMed  Google Scholar 

  196. Kotilinek LA, Bacskai B, Westerman M, Kawarabayashi T, Younkin L, Hyman BT et al. Reversible memory loss in a mouse transgenic model of Alzheimer's disease. J Neurosci 2002; 22: 6331–6335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Selkoe DJ . Alzheimer's disease: genes, proteins, and therapy. Physiol Rev 2001; 81: 741–766.

    Article  CAS  PubMed  Google Scholar 

  198. Spooner ET, Desai RV, Mori C, Leverone JF, Lemere CA . The generation and characterization of potentially therapeutic Abeta antibodies in mice: differences according to strain and immunization protocol. Vaccine 2002; 21: 290–297.

    Article  CAS  PubMed  Google Scholar 

  199. Schenk D . Amyloid-beta immunotherapy for Alzheimer's disease: the end of the beginning. Nat Rev Neurosci 2002; 3: 824–828.

    Article  CAS  PubMed  Google Scholar 

  200. Orgogozo JM, Gilman S, Dartigue's JF, Laurent B, Fuel M, Kirby LC et al. Subacute meningoencephalitis in a subset of patients with AD after Abeta42 immunization. Neurology 2003; 61: 46–54.

    Article  CAS  PubMed  Google Scholar 

  201. Check E . Nerve inflammation halts trial for Alzheimer's drug. Nature 2002; 415: 462.

    Article  CAS  PubMed  Google Scholar 

  202. Senior K . Dosing in phase II trial of Alzheimer's vaccine suspended. Lancet Neurol 2002; 1: 3.

    Article  PubMed  Google Scholar 

  203. Hock C, Konietzko U, Papassotiropoulos A, Wollmer A, Streffer J, von Rotz RC et al. Generation of antibodies specific for beta-amyloid by vaccination of patients with Alzheimer disease. Nat Med 2002; 8: 1270–1275.

    Article  CAS  PubMed  Google Scholar 

  204. Hock C, Konietzko U, Streffer JR, Tracy J, Signorell A, Muller-Tillmanns B et al. Antibodies against beta-amyloid slow cognitive decline in Alzheimer's disease. Neuron 2003; 38: 547–554.

    Article  CAS  PubMed  Google Scholar 

  205. Nicoll JA, Wilkinson D, Holmes C, Steart P, Markham H, Weller RO . Neuropathology of human Alzheimer disease after immunization with amyloid-beta peptide: a case report. Nat Med 2003; 9: 448–452.

    Article  CAS  PubMed  Google Scholar 

  206. Pfeifer M, Boncristiano S, Bondolfi L, Stalder A, Deller T, Staufenbiel M et al. Cerebral hemorrhage after passive anti-Abeta immunotherapy. Science 2002; 298: 1379.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Jay Tracy for critical reading of the manuscript. This work was supported by grants from the A+D Fonds of the Swiss Academy of Medical Sciences (SAMS), the Olga Mayenfisch Foundation, the Kurt und Senta Herrmann Foundation, and the Swiss National Science Foundation to JG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Götz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Götz, J., Streffer, J., David, D. et al. Transgenic animal models of Alzheimer's disease and related disorders: histopathology, behavior and therapy. Mol Psychiatry 9, 664–683 (2004). https://doi.org/10.1038/sj.mp.4001508

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4001508

Keywords

This article is cited by

Search

Quick links