Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Feature Article
  • Published:

Molecular basis of lithium action: integration of lithium-responsive signaling and gene expression networks

Abstract

The clinical efficacy of lithium in the prophylaxis of recurrent affective episodes in bipolar disorder is characterized by a lag in onset and remains for weeks to months after discontinuation. Thus, the long-term therapeutic effect of lithium likely requires reprogramming of gene expression. Protein kinase C and glycogen synthase kinase-3 signal transduction pathways are perturbed by chronic lithium at therapeutically relevant concentrations and have been implicated in modulating synaptic function in nerve terminals. These signaling pathways offer an opportunity to model critical signals for altering gene expression programs that underlie adaptive responses of neurons to long-term lithium exposure. While the precise physiological events critical for the clinical efficacy of lithium remain unknown, we propose that linking lithium-responsive genes as a regulatory network will provide a strategy to identify signature gene expression patterns that distinguish between therapeutic and nontherapeutic actions of lithium.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

References

  1. Goodwin FK, Ghaemi SN . The impact of the discovery of lithium on psychiatric thought and practice in the USA and Europe. Aust NZ J Psychiatry 1999; 33 (Suppl): S54–S64.

    Article  Google Scholar 

  2. Lenox RH, Manji HK . Lithium. In: Nemeroff C, Schatzberg A (eds). APA Textbook of Psychopharmacology. Washington, DC: APA Press, Inc: 1998, pp. 303–314.

    Google Scholar 

  3. Lenox RH, Hahn CG . Overview of the mechanism of action of lithium in the brain: fifty-year update. J Clin Psychiatry 2000; 61: 5–15.

    CAS  PubMed  Google Scholar 

  4. Hudson CJ, Young LT, Li PP, Warsh JJ . CNS signal transduction in the pathophysiology and pharmacotherapy of affective disorders and schizophrenia. Synapse 1993; 13: 278–293.

    Article  CAS  PubMed  Google Scholar 

  5. Lenox RH . Role of receptor coupling to phosphoinositide metabolism in the therapeutic action of lithium. In: Ehrlich Y (ed). Molecular Mechanisms of Neuronal Responsiveness. New York: Plenum. Adv Exp Med 1987; 221: 515–530.

    Chapter  Google Scholar 

  6. Post RM . Transduction of psychosocial stress into the neurobiology of recurrent affective disorder. Am J Psychiatry 1992; 149: 999–1010.

    Article  CAS  PubMed  Google Scholar 

  7. Suppes T, Baldessarini RJ, Faedda GL, Tohen M . Risk of recurrence following discontinuation of lithium treatment in bipolar disorder. Arch Gen Psychiatry 1991; 48: 1082–1088.

    Article  CAS  PubMed  Google Scholar 

  8. Faedda GL, Tondo L, Baldessarini RJ, Suppes T, Tohen M . Outcome after rapid vs gradual discontinuation of lithium treatment in bipolar disorders. Arch Gen Psychiatry 1993; 50: 448–455.

    Article  CAS  PubMed  Google Scholar 

  9. Tondo L, Baldessarini RJ, Hennen J, Floris G . Lithium maintenance treatment of depression and mania in bipolar I and bipolar II disorders. Am J Psychiatry 1998; 155: 638–645.

    Article  CAS  PubMed  Google Scholar 

  10. Lenox RH, McNamara RK, Papke RL, Manji HK . Neurobiology of lithium: an update. J Clin Psychiatry 1998; 59: 37–47.

    CAS  PubMed  Google Scholar 

  11. Manji HK, Lenox RH . Lithium: a molecular transducer of mood-stabilization in the treatment of bipolar disorder. Neuropsychopharmacology 1998; 19: 161–166.

    Article  CAS  PubMed  Google Scholar 

  12. Jope RS . Anti-bipolar therapy: mechanism of action of lithium. Mol Psychiatry 1999; 4: 117–128.

    Article  CAS  PubMed  Google Scholar 

  13. Williams RS, Harwood AJ . Lithium therapy and signal transduction. Trends Pharmacol Sci 2000; 21: 61–64.

    Article  CAS  PubMed  Google Scholar 

  14. Manji HK, Lenox RH . Signaling: cellular insights into the pathophysiology of bipolar disorder [In Process Citation]. Biol Psychiatry 2000; 48: 518–530.

    Article  CAS  PubMed  Google Scholar 

  15. Hyman SE, Nestler EJ . Initiation and adaptation: a paradigm for understanding psychotropic drug action. Am J Psychiatry 1996; 153: 151–162.

    Article  CAS  PubMed  Google Scholar 

  16. York JD, Ponder JW, Majerus PW . Definition of a metal-dependent/Li(+)-inhibited phosphomonoesterase protein family based upon a conserved three-dimensional core structure. Proc Natl Acad Sci USA 1995; 92: 5149–5153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Phiel C, Klein P . Molecular targets of lithium action. Annu Rev Pharmacol Toxicol 2001; 41: 789–813.

    Article  CAS  PubMed  Google Scholar 

  18. Hallcher LM, Sherman WR . The effects of lithium ion and other agents on the activity of myo-inositol-1-phosphatase from bovine brain. J Biol Chem 1980; 255: 10896–10901.

    CAS  PubMed  Google Scholar 

  19. Sherman WR, Gish BG, Honchar MP, Munsell LY . Effects of lithium on phosphoinositide metabolism in vivo. Fed Proc 1986; 45: 2639–2646.

    CAS  PubMed  Google Scholar 

  20. Irvine RF . Nuclear lipid signaling. Sci STKE 2002; 2002: RE13.

  21. Majerus PW . Inositol phosphate biochemistry. Annu Rev Biochem 1992; 61: 225–250.

    Article  CAS  PubMed  Google Scholar 

  22. Acharya JK, Labarca P, Delgado R, Jalink K, Zuker CS . Synaptic defects and compensatory regulation of inositol metabolism in inositol polyphosphate 1-phosphatase mutants. Neuron 1998; 20: 1219–1229.

    Article  CAS  PubMed  Google Scholar 

  23. Manji HK, Lenox RH . Ziskind-Somerfeld Research Award. Protein kinase C signaling in the brain: molecular transduction of mood stabilization in the treatment of manic-depressive illness. Biol Psychiatry 1999; 46: 1328–1351.

    Article  CAS  PubMed  Google Scholar 

  24. Nahorski SR, Ragan CI, Challiss RA . Lithium and the phosphoinositide cycle: an example of uncompetitive inhibition and its pharmacological consequences. Trends Pharmacol Sci 1991; 12: 297–303.

    Article  CAS  PubMed  Google Scholar 

  25. Berridge MJ, Downes CP, Hanley MR . Lithium amplifies agonist-dependent phosphatidylinositol responses in brain and salivary glands. Biochem J 1982; 206: 587–595.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kendall DA, Nahorski SR . Acute and chronic lithium treatments influence agoinst and depolarization-stimulated inositol phospholipid hydrolysis in rat cerebral cortex. J Pharmacol Exp Ther 1987; 241: 1023–1027.

    CAS  PubMed  Google Scholar 

  27. Kennedy ED, Challiss RA, Nahorski SR . Lithium reduces the accumulation of inositol polyphosphate second messengers following cholinergic stimulation of cerebral cortex slices. J Neurochem 1989; 53: 1652–1655.

    Article  CAS  PubMed  Google Scholar 

  28. Kennedy ED, Challiss RA, Ragan CI, Nahorski SR . Reduced inositol polyphosphate accumulation and inositol supply induced by lithium in stimulated cerebral cortex slices. Biochem J 1990; 267: 781–786.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kofman O, Belmaker RH, Grisaru, N, Alpert C, Fuchs I, Katz V, Rigler O . Myo-inositol attenuates two specific behavioral effects of acute lithium in rats. Psychopharmacol Bull 1991; 27: 185–190.

    CAS  PubMed  Google Scholar 

  30. Tricklebank MD, Singh L, Jackson A, Oles RJ . Evidence that a proconvulsant action of lithium is mediated by inhibition of myo-inositol phosphatase in mouse brain. Brain Res 1991; 558: 145–148.

    Article  CAS  PubMed  Google Scholar 

  31. Watson DG, Lenox RH . Chronic lithium-induced down-regulation of MARCKS in immortalized hippocampal cells: potentiation by muscarinic receptor activation. J Neurochem 1996; 67: 767–777.

    Article  CAS  PubMed  Google Scholar 

  32. Fisher SK, Novak JE, Agranoff BW . Inositol and higher inositol phosphates in neural tissues: homeostasis, metabolism and functional significance. J Neurochem 2002; 82: 736–754.

    Article  CAS  PubMed  Google Scholar 

  33. Gani D, Downes CP, Batty I, Bramham J . Lithium and myo-inositol homeostasis. Biochim Biophys Acta 1993; 1177: 253–269.

    Article  CAS  PubMed  Google Scholar 

  34. Moore GJ, Bedchuk JM, Parrish JK, Faulk MW, Arjken CL, Strahl-Bevacqua J, Marji HK . Temporal dissociation between lithium-induced changes in frontal lobe myo-inositol and clinical response in manic-depressive illness. Am J Psychiatry 1999; 156: 1902–1908.

    CAS  PubMed  Google Scholar 

  35. Manji HK, Lenox RH . Long-term action of lithium: a role for transcriptional and posttranscriptional factors regulated by protein kinase C. Synapse 1994; 16: 11–28.

    Article  CAS  PubMed  Google Scholar 

  36. Manji HK, Etcheberrigaray R, Chen G, Olds JL . Lithium decreases membrane-associated protein kinase C in hippocampus: selectivity for the alpha isozyme. J Neurochem 1993; 61: 2303–2310.

    Article  CAS  PubMed  Google Scholar 

  37. Manji HK, Bersudsky Y, Chen G, Belmaker RH, Potter WZ . Modulation of protein kinase C isozymes and substrates by lithium: the role of myo-inositol. Neuropsychopharmacology 1996; 15: 370–381.

    Article  CAS  PubMed  Google Scholar 

  38. Jope RS, Song L . AP-1 and NF-kappaB stimulated by carbachol in human neuroblastoma SH-SY5Y cells are differentially sensitive to inhibition by lithium. Brain Res Mol Brain Res 1997; 50: 171–180.

    Article  CAS  PubMed  Google Scholar 

  39. Wang HY, Markowitz P, Levinson D, Undie AS, Freidman E . Increased membrane-associated protein kinase C activity and translocation in blood platelets from bipolar affective disorder patients. J Psychiatr Res 1999; 33: 171–179.

    Article  CAS  PubMed  Google Scholar 

  40. Soares JC, Chen G, Dippold CS et al. Concurrent measures of protein kinase C and phophoinositides in lithium-treated bipolar patients and healthy individuals: a preliminiary study. Psychiatry Res 2000; 95: 109–118.

    Article  CAS  PubMed  Google Scholar 

  41. Wang H, Freidman E . Increased association of brain protein kinase C with the receptor for activated C kinase-1 (RACK1) in bipolar affective disorder. Biol Psychiatry 2001; 50: 364–370.

    Article  CAS  PubMed  Google Scholar 

  42. Bebchuk JM, Arfken CL, Dolan-Manji S, Murphy J, Hasanat K, Manji HK . A preliminary investigation of a protein kinase C inhibitor in the treatment of acute mania. Arch Gen Psychiatry 2000; 57: 95–97.

    Article  CAS  PubMed  Google Scholar 

  43. Orford K, Crockett C, Jensen JP, Weissman AM, Byers SW . Serine phosphorylation-regulated ubiquitination and degradation of beta-catenin. J Biol Chem 1997; 272: 24735–24738.

    Article  CAS  PubMed  Google Scholar 

  44. Farr III GH, Ferkey DM, Yost C, Pierce SB, Weaver C, Kimelman D . Interaction among GSK-3, GBP, axin, and APC in Xenopus axis specification. J Cell Biol 2000; 148: 691–702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. McKendry R, Hsu SC, Harland RM, Grosschedl R . LEF-1/TCF proteins mediate wnt-inducible transcription from the Xenopus nodal-related 3 promoter. Dev Biol 1997; 192: 420–431.

    Article  CAS  PubMed  Google Scholar 

  46. Brannon M, Gomperts M, Sumoy L, Moon RT, Kimelman D . A beta-catenin/XTcf-3 complex binds to the siamois promoter to regulate drosal axis specification in Xenopus. Genes Dev 1997; 11: 2359–2370.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Riese J, Yu X, Munnerlyn A et al. LEF-1, a nuclear factor coordinating signaling inputs from wingless and decapentaplegic. Cell 1997; 88: 777–787.

    Article  CAS  PubMed  Google Scholar 

  48. Shtutman M, Zhurinsky J, Simcha I et al. The cyclin D1 gene is a target of the beta-catenin/LEF-1 pathway. Proc Natl Acad Sci USA 1999; 96: 5522–5527.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Tetsu O, McCormick F . Beta-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature 1999; 398: 422–426.

    Article  CAS  PubMed  Google Scholar 

  50. He TC, Sparks AB, Rago C et al. Identification of c-MYC as a target of the APC pathway. Science 1998; 281: 1509–1512.

    Article  CAS  PubMed  Google Scholar 

  51. van der Heyden MA, Rook MB, Hermans MM et al. Identification of connexin43 as a functional target for Wnt signalling. J Cell Sci 1998; 111: 1741–1749.

    CAS  PubMed  Google Scholar 

  52. Bradley RS, Cowin P, Brown AM . Expression of Wnt-1 in PC12 cells results in modulation of plakoglobin and E-cadherin and increased cellular adhesion. J Cell Biol 1993; 123: 1857–1865.

    Article  CAS  PubMed  Google Scholar 

  53. Mai L, Jope RS, Li X . BDNF-mediated signal transduction is modulated by GSK3beta and mood stabilizing agents. J Neurochem 2002; 82: 75–83.

    Article  CAS  PubMed  Google Scholar 

  54. Galceran J, Miyashita-Lin EM, Devaney E, Rubenstein JL, Grosschedl R . Hippocampus development and generation of dentate gyrus granule cells is regulated by LEF1. Development 2000; 127: 469–482.

    CAS  PubMed  Google Scholar 

  55. Graef IA, Mermelstein PG, Stankunas K et al. L-type calcium channels and GSK-3 regulate the activity of NF-ATc4 in hippocampal neurons. Nature 1999; 401: 703–708.

    Article  CAS  PubMed  Google Scholar 

  56. Hedgepeth CM, Conrad LJ, Zhang J, Huang HC, Lee VM, Klein PS . Activation of the Wnt signaling pathway: a molecular mechanism for lithium action. Dev Biol 1997; 185: 82–91.

    Article  CAS  PubMed  Google Scholar 

  57. Klein PS, Melton DA . A molecular mechanism for the effect of lithium on development. Proc Natl Acad Sci USA 1996; 93: 8455–8459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Yuan P-X, Huang L-D, Jiang Y-M, Gutkind JS, Manji HK, Chen G . The mood stabilizer valproic acid activates mitogen-activated protein kinases and promotes neurite growth. J Biol Chem 2001; 276: 31674–31683.

    Article  CAS  PubMed  Google Scholar 

  59. Phiel CJ, Zhang F, Huang EY, Guenther MG, Lazar MA, Klein PS . Histone deacetylase is a direct target of valproic acid, a potent anticonvulsant, mood stabilizer, and teratogen. J Biol Chem 2001; 276: 36734–36741.

    Article  CAS  PubMed  Google Scholar 

  60. Hall AC, Brennan A, Goold RG et al. Valproate regulates GSK-3-mediated axonal remodeling and synapsin I clustering in developing neurons. Mol Cell Neurosci 2002; 20: 257–270.

    Article  CAS  PubMed  Google Scholar 

  61. Lovestone S, Davis DR, Webster MT et al. Lithium reduces tau phosphorylation: effects in living cells and in neurons at therapeutic concentrations. Biol Psychiatry 1999; 45: 995–1003.

    Article  CAS  PubMed  Google Scholar 

  62. Hong M, Chen DC, Klein PS, Lee VM . Lithium reduces tau phosphorylation by inhibition of glycogen synthase kinase-3. J Biol Chem 1997; 272: 25326–25332.

    Article  CAS  PubMed  Google Scholar 

  63. Munoz-Montano JR, Moreno FJ, Avila J, Diaz-Nido J . Lithium inhibits Alzheimer's disease-like tau protein phosphorylation in neurons. FEBS Lett 1997; 411: 183–188.

    Article  CAS  PubMed  Google Scholar 

  64. Eldar-Finkelman H . Glycogen synthase kinase 3: an emerging therapeutic target. Trends Mol Med 2002; 8: 126–132.

    Article  CAS  PubMed  Google Scholar 

  65. Goode N, Hughes K, Woodgett JR, Parker PJ . Differential regulation of glycogen synthase kinase-3 beta by protein kinase C isotypes. J Biol Chem 1992; 267: 16878–16882.

    CAS  PubMed  Google Scholar 

  66. Chen RH, Ding WV, McCormick F . Wnt signaling to beta-catenin involves two interactive components. Glycogen synthase kinase-3beta inhibition and activation of protein kinase. C. J Biol Chem 2000; 275: 17894–17899.

    Article  CAS  PubMed  Google Scholar 

  67. Cook D, Fry M, Hughes K, Sumathipala R, Woodgett J, Dale T . Wingless inactivates glycogen synthase kinase-3 via an intracellular signalling pathway which involves a protein kinase C. EMBO J 1996; 15: 4526–4536.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Sheldahl LC, Park M, Malbon CC, Moon RT . Protein kinase C is differentially stimulated by Wnt and Frizzled homologs in a G-protein-dependent manner. Curr Biol 1999; 9: 695–698.

    Article  CAS  PubMed  Google Scholar 

  69. Malbon CC, Wang H, Moon RT . Wnt signaling and heterotrimeric G-proteins: strange bedfellows or a classic romance? Biochem Biophys Res Commun 2001; 287: 589–593.

    Article  CAS  PubMed  Google Scholar 

  70. Liu T, DeCostanzo AJ, Liu X et al. G protein signaling from activated rat frizzled-1 to the beta-catenin-Lef-Tcf pathway. Science 2001; 292: 1718–1722.

    Article  CAS  PubMed  Google Scholar 

  71. Chen G, Hasanat KA, Bebchuk JM, Moore GJ, Glitz D, Manji HK . Regulation of signal transduction pathways and gene expression by mood stabilizers and antidepressants. Psychosom Med 1999; 61: 599–617.

    Article  CAS  PubMed  Google Scholar 

  72. Chen RW, Chuang DM . Long term lithium treatment suppresses p53 and Bax expression but increases Bcl-2 expression. A prominent role in neuroprotection against excitotoxicity. J Biol Chem 1999; 274: 6039–6042.

    CAS  PubMed  Google Scholar 

  73. Chalecka-Franaszek E, Chuang DM . Lithium activates the serine/threonine kinase Akt-1 and suppresses glutamate-induced inhibition of Akt-1 activity in neutrons. Proc Natl Acad Sci USA 1999; 96: 8745–8750.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Berglund K, Midorikawa M, Tachibana M . Increase in the pool size of releasable synaptic vesicles by the activation of protein kinase C in goldfish retinal bipolar cells. J Neurosci 2002; 22: 4776–4785.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Hori T, Takai Y, Takahashi T . Presynaptic mechanism for phorbol ester-induced synaptic potentiation. J Neurosci 1999; 19: 7262–7267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Voets T, Toonen RF, Brain EC et al. Munc18-1 promotes large dense-core vesicle docking. Neuron 2001; 31: 581–591.

    Article  CAS  PubMed  Google Scholar 

  77. Cordeiro ML, Umbach JA, Gundersen CB . Lithium ions enhance cysteine string protein gene expression in vivo and in vitro. J Neurochem 2000; 74: 2365–2372.

    Article  CAS  PubMed  Google Scholar 

  78. Buchner E, Gundersen CB . The DnaJ-like cysteine string protein and exocytotic neurotransmitter release. Trends Neurosci 1997; 20: 223–227.

    Article  CAS  PubMed  Google Scholar 

  79. Heckmann M, Adelsberger H, Dudel J . Evoked transmitter release at neuromuscular junctions in wild type and cysteine string protein null mutant larvae of Drosophila. Neurosci Lett 1997; 228: 167–170.

    Article  CAS  PubMed  Google Scholar 

  80. Aderem A . The MARCKS brothers: a family of protein kinase C substrates. Cell 1992; 71: 713–716.

    Article  CAS  PubMed  Google Scholar 

  81. Blackshear PJ . The MARCKS family of cellular protein kinase C substrates. J Biol Chem 1993; 268: 1501–1504.

    CAS  PubMed  Google Scholar 

  82. Laux T, Fukami K, Thelen M, Golub T, Frey D, Caroni P . GAP43, MARCKS, and CAP23 modulate PI(4,5)P(2) at plasmalemmal rafts, and regulate cell cortex actin dynamics through a common mechanism. J Cell Biol 2000; 149: 1455–1472.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Glaser M, Wanaski S, Buser CA et al. Myristoylated alanine-rich C kinase substrate (MARCKS) produces reversible inhibition of phospholipase C by sequestering phosphatidylinositol 4,5-bisphosphate in lateral domains. J Biol Chem 1996; 271: 26187–26193.

    Article  CAS  PubMed  Google Scholar 

  84. Morash SC, Rose SD, Byers DM, Ridgway ND, Cook HW . Overexpression of myristoylated alanine-rich C-kinase substrate enhances activation of phospholipase D by protein kinase C in SK-N-MC human neuroblastoma cells. Biochem J 1998; 332: 321–327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Goodall AR, Turner NA, Walker JH, Ball SG, Vaughan PF . Activation of protein kinase C-alpha and translocation of the myristoylated alanine-rich C-kinase substrate correlate with phorbol ester-enhanced noradrenaline release from SH-SY5Y human neuroblastoma cells. J Neurochem 1997; 68: 392–401.

    Article  CAS  PubMed  Google Scholar 

  86. Li Y, Martin LD, Spizz G, Adler KB . MARCKS protein is a key molecule regulating MUCIN secretion by human airway epithelial cells in vitro. J Biol Chem 2001; 276: 40982–40990.

    Article  CAS  PubMed  Google Scholar 

  87. Allen LH, Aderem A . A role for MARCKS, the alpha isozyme of protein kinase C and myosin I in zymosan phagocytosis by macrophages. J Exp Med 1995; 182: 829–840.

    Article  CAS  PubMed  Google Scholar 

  88. McNamara RK, Lenox RH . Distribution of the protein kinase C substrates MARCKS and MRP in the postnatal developing rat brain. J Comp Neurol 1998; 397: 337–356.

    Article  CAS  PubMed  Google Scholar 

  89. Stumpo DJ, Bock CB, Tuttle JS, Blackshear PJ . MARCKS deficiency in mice leads to abnormal brain development and perinatal death. Proc Natl Acad Sci USA 1995; 92: 944–948.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Swierczynski SL, Siddhanti SR, Tuttle JS, Blackshear PJ . Nonmyristoylated MARCKS complements some but not all of the developmental defects associated with MARCKS deficiency in mice. Dev Biol 1996; 179: 135–147.

    Article  CAS  PubMed  Google Scholar 

  91. Wang JK, Walaas SI, Sihra TS, Aderem A, Greengard P . Phosphorylation and associated translocation of the 87-kDa protein, a major protein kinase C substrate, in isolated nerve terminals. Proc Natl Acad Sci USA 1989; 86: 2253–2256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Lu D, Yang H, Lenox RH, Raizada MK . Regulation of angiotensin II-induced neuromodulation by MARCKS in brain neurons. J Cell Biol 1998; 142: 217–227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Ouimet CC, Wang JK, Walaas SI, Albert KA, Greengard P . Localization of the MARCKS (87 kDa) protein, a major specific substrate for protein kinase C, in rat brain. J Neurosci 1990; 10: 1683–1698.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Yang H, Wang X, Sumners C, Raizada MK . Obligatory role of protein kinase Cbeta and MARCKS in vesicular trafficking in living neurons. Hypertension 2002; 39: 567–572.

    Article  CAS  PubMed  Google Scholar 

  95. McNamara RK, Stumpo DJ, Morel LM et al. Effect of reduced myristoylated alanine-rich C kinase substrate expression on hippocampal mossy fiber development and spatial learning in mutant mice: transgenic rescue and interactions with gene background. Proc Natl Acad Sci USA 1998; 95: 14517–14522.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Ramakers GM, McNamara RK, Lenox RH, De Graan PN . Differential changes in the phosphorylation of the protein kinase C substrates myristoylated alanine-rich C kinase substrate and growth-associated protein-43/B-50 following Schaffer collateral long-term potentiation and long-term depression. J Neurochem 1999; 73: 2175–2183.

    CAS  PubMed  Google Scholar 

  97. Hussain R, McNamara RK, Stumpo DJ et al. Effect of MARCKS overexpression on hippocampal long-term potentiation and hippocampal-dependent learning in transgenic mice. Soc Neurosci Abstracts 2000; 26: 1511.

    Google Scholar 

  98. Lenox RH, Watson DG, Patel J, Ellis J . Chronic lithium administration alters a prominent PKC substrate in rat hippocampus. Brain Res 1992; 570: 333–340.

    Article  CAS  PubMed  Google Scholar 

  99. Wang L, Liu X, Lenox RH . Transcriptional down-regulation of MARCKS gene expression in immortalized hippocampal cells by lithium. J Neurochem 2001; 79: 816–825.

    Article  CAS  PubMed  Google Scholar 

  100. Watson DG, Wainer BH, Lenox RH . Phorbol ester- and retinoic acid-induced regulation of the protein kinase C substrate MARCKS in immortalized hippocampal cells. J Neurochem 1994; 63: 1666–1674.

    Article  CAS  PubMed  Google Scholar 

  101. Watson DG, Watterson JM, Lenox RH . Sodium valproate down-regulates the myristoylated alanine-rich C kinase substrate (MARCKS) in immortalized hippocampal cells: a property of protein kinase C-mediated mood statilizers. J Pharmacol Exp Ther 1998; 285: 307–316.

    CAS  PubMed  Google Scholar 

  102. Lenox RH, McNamara RK, Watterson JM, Watson DG . Myristoylated alanine-rich C kinase substrate (MARKCS): a molecular target for the therapeutic action of mood stabilizers in the brain? J Clin Psychiatry 1996; 57: 23–31; discussion 32–33.

    CAS  PubMed  Google Scholar 

  103. Williams RS, Cheng L, Mudge AW, Harwood AJ . A common mechanism of action for three mood-stabilizing drugs. Nature 2002; 417: 292–295.

    Article  CAS  PubMed  Google Scholar 

  104. Wang L, Liu X, Lenox RH . Transcriptional regulation of mouse MARCKS promoter in immortalized hippocampal cells. Biochem Biophys Res Commun 2002; 292: 969–979.

    Article  CAS  PubMed  Google Scholar 

  105. Herbert A, Rich A . The biology of left-handed Z-DNA. J Biol Chem 1996; 271: 11595–11598.

    Article  CAS  PubMed  Google Scholar 

  106. Bosetti F, Seemann R, Bell JM et al. Analysis of gene expression with cDNA microarrays in rat brain after 7 and 42 days of oral lithium administration. Brain Res Bull 2002; 57: 205–209.

    Article  CAS  PubMed  Google Scholar 

  107. de la Fuente A, Brazhnik P, Mendes P . Linking the genes: inferring quantitative gene networks from microarray data. Trends Genet 2002; 18: 395–398.

    Article  CAS  PubMed  Google Scholar 

  108. Bowden AC . Metabolic control analysis in biotechnology and medicine. Nat Biotechnol 1999; 17: 641–643.

    Article  CAS  PubMed  Google Scholar 

  109. Iyer VR, Horak CE, Scafe CS, Botstein D, Snyder M, Brown PO . Genomic binding sites of the yeast cell-cycle transcription factors SBF and MBF. Nature 2001; 409: 533–538.

    Article  CAS  PubMed  Google Scholar 

  110. Ren B, Robert F, Wyrick JJ et al. Genome-wide location and function of DNA binding proteins. Science 2000; 290: 2306–2309.

    Article  CAS  PubMed  Google Scholar 

  111. Weinmann AS, Yan PS, Oberley MJ, Huang TH, Famham PJ . Isolating human transcription factor targets by coupling chromatin immunoprecipitation and CpG island microarray analysis. Genes Dev 2002; 16: 235–244.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Horak CE, Mahajan MC, Luscombe NM, Gerstein M, Weissman SM, Snyder M . GATA-1 binding sites mapped in the beta-globin locus by using mammalian chlp–chip analysis. Proc Natl Acad Sci USA 2002; 99: 2924–2929.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Weinmann AS, Farnham PJ . Identification of unknown target genes of human transcription factors using chromatin immunoprecipitation. Methods 2002; 26: 37–47.

    Article  CAS  PubMed  Google Scholar 

  114. Davidson EH, Rast JP, Oliveri P et al. A provisional regulatory gene network for specification of endomesoderm in the sea urchin embryo. Dev Biol 2002; 246: 162–190.

    Article  CAS  PubMed  Google Scholar 

  115. Oliveri P, Carrick DM, Davidson EH . A regulatory gene network that directs micromere specification in the sea urchin embryo. Dev Biol 2002; 246: 209–228.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R H Lenox.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lenox, R., Wang, L. Molecular basis of lithium action: integration of lithium-responsive signaling and gene expression networks. Mol Psychiatry 8, 135–144 (2003). https://doi.org/10.1038/sj.mp.4001306

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4001306

Keywords

This article is cited by

Search

Quick links