Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

The orphan G protein-coupled receptor GPR55 promotes cancer cell proliferation via ERK

Abstract

GPR55 is an orphan G protein-coupled receptor that may be engaged by some lipid ligands such as lysophosphatidylinositol and cannabinoid-type compounds. Very little is known about its expression pattern and physio-pathological relevance, and its pharmacology and signaling are still rather controversial. Here we analyzed the expression and function of GPR55 in cancer cells. Our data show that GPR55 expression in human tumors from different origins correlates with their aggressiveness. Moreover, GPR55 promotes cancer cell proliferation, both in cell cultures and in xenografted mice, through the overactivation of the extracellular signal-regulated kinase cascade. These findings reveal the importance of GPR55 in human cancer, and suggest that it could constitute a new biomarker and therapeutic target in oncology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  • Brown AJ, Robin Hiley C . (2009). Is GPR55 an anandamide receptor? Vitam Horm 81: 111–137.

    Article  CAS  Google Scholar 

  • Buchholz M, Braun M, Heidenblut A, Kestler HA, Kloppel G, Schmiegel W et al. (2005). Transcriptome analysis of microdissected pancreatic intraepithelial neoplastic lesions. Oncogene 24: 6626–6636.

    Article  CAS  Google Scholar 

  • Caffarel MM, Sarrio D, Palacios J, Guzman M, Sanchez C . (2006). Delta9-tetrahydrocannabinol inhibits cell cycle progression in human breast cancer cells through Cdc2 regulation. Cancer Res 66: 6615–6621.

    Article  CAS  Google Scholar 

  • Daly C, Ross R, Whyte J, Henstridge C, Irving A, McGrath J . (2010). Fluorescent ligand binding reveals heterogeneous distribution of adrenoceptors and ‘cannabinoid-like’ receptors in small arteries. Br J Pharmacol 159: 787–796.

    Article  CAS  Google Scholar 

  • Dorsam RT, Gutkind JS . (2007). G-protein-coupled receptors and cancer. Nat Rev Cancer 7: 79–94.

    Article  CAS  Google Scholar 

  • Elston EW, Ellis IO . (1993). Method for grading breast cancer. J Clin Pathol 46: 189–190.

    Article  CAS  Google Scholar 

  • Falasca M, Corda D . (1994). Elevated levels and mitogenic activity of lysophosphatidylinositol in k-ras-transformed epithelial cells. Eur J Biochem 221: 383–389.

    Article  CAS  Google Scholar 

  • Falasca M, Iurisci C, Carvelli A, Sacchetti A, Corda D . (1998). Release of the mitogen lysophosphatidylinositol from H-Ras-transformed fibroblasts; a possible mechanism of autocrine control of cell proliferation. Oncogene 16: 2357–2365.

    Article  CAS  Google Scholar 

  • Ford LA, Roelofs AJ, Anavi-Goffer S, Mowat L, Simpson DG, Irving AJ et al. (2010). A role for L-alpha-lysophosphatidylinositol and GPR55 in the modulation of migration, orientation and polarization of human breast cancer cells. Br J Pharmacol 160: 762–771.

    Article  CAS  Google Scholar 

  • Freije WA, Castro-Vargas FE, Fang Z, Horvath S, Cloughesy T, Liau LM et al. (2004). Gene expression profiling of gliomas strongly predicts survival. Cancer Res 64: 6503–6510.

    Article  CAS  Google Scholar 

  • Hazzalin CA, Mahadevan LC . (2002). MAPK-regulated transcription: a continuously variable gene switch? Nat Rev Mol Cell Biol 3: 30–40.

    Article  CAS  Google Scholar 

  • Henstridge CM, Balenga NA, Ford LA, Ross RA, Waldhoer M, Irving AJ . (2009). The GPR55 ligand L-alpha-lysophosphatidylinositol promotes RhoA-dependent Ca2+ signaling and NFAT activation. FASEB J 23: 183–193.

    Article  CAS  Google Scholar 

  • Henstridge CM, Balenga NA, Schroder R, Kargl JK, Platzer W, Martini L et al. (2010). GPR55 ligands promote receptor coupling to multiple signalling pathways. Br J Pharmacol 160: 604–614.

    Article  CAS  Google Scholar 

  • Kapur A, Zhao P, Sharir H, Bai Y, Caron MG, Barak LS et al. (2009). Atypical responsiveness of the orphan receptor GPR55 to cannabinoid ligands. J Biol Chem 284: 29817–29827.

    Article  CAS  Google Scholar 

  • Lauckner JE, Jensen JB, Chen HY, Lu HC, Hille B, Mackie K . (2008). GPR55 is a cannabinoid receptor that increases intracellular calcium and inhibits M current. Proc Natl Acad Sci USA 105: 2699–2704.

    Article  CAS  Google Scholar 

  • Murph M, Tanaka T, Liu S, Mills GB . (2006). Of spiders and crabs: the emergence of lysophospholipids and their metabolic pathways as targets for therapy in cancer. Clin Cancer Res 12: 6598–6602.

    Article  CAS  Google Scholar 

  • Oka S, Kimura S, Toshida T, Ota R, Yamashita A, Sugiura T . (2010). Lysophosphatidylinositol induces rapid phosphorylation of p38 mitogen-activated protein kinase and activating transcription factor 2 in HEK293 cells expressing GPR55 and IM-9 lymphoblastoid cells. J Biochem 147: 671–678.

    Article  CAS  Google Scholar 

  • Oka S, Nakajima K, Yamashita A, Kishimoto S, Sugiura T . (2007). Identification of GPR55 as a lysophosphatidylinositol receptor. Biochem Biophys Res Commun 362: 928–934.

    Article  CAS  Google Scholar 

  • Oka S, Toshida T, Maruyama K, Nakajima K, Yamashita A, Sugiura T . (2009). 2-Arachidonoyl-sn-glycero-3-phosphoinositol: a possible natural ligand for GPR55. J Biochem 145: 13–20.

    Article  CAS  Google Scholar 

  • Pietr M, Kozela E, Levy R, Rimmerman N, Lin YH, Stella N et al. (2009). Differential changes in GPR55 during microglial cell activation. FEBS Lett 583: 2071–2076.

    Article  CAS  Google Scholar 

  • Ross RA . (2009). The enigmatic pharmacology of GPR55. Trends Pharmacol Sci 30: 156–163.

    Article  CAS  Google Scholar 

  • Ryberg E, Larsson N, Sjogren S, Hjorth S, Hermansson NO, Leonova J et al. (2007). The orphan receptor GPR55 is a novel cannabinoid receptor. Br J Pharmacol 152: 1092–1101.

    Article  CAS  Google Scholar 

  • Sawzdargo M, Nguyen T, Lee DK, Lynch KR, Cheng R, Heng HH et al. (1999). Identification and cloning of three novel human G protein-coupled receptor genes GPR52, PsiGPR53 and GPR55: GPR55 is extensively expressed in human brain. Brain Res Mol Brain Res 64: 193–198.

    Article  CAS  Google Scholar 

  • Seno K, Okuno T, Nishi K, Murakami Y, Yamada K, Nakamoto S et al. (2001). Pyrrolidine inhibitors of human cytosolic phospholipase A2. Part 2: synthesis of potent and crystallized 4-triphenylmethylthio derivative ‘pyrrophenone’. Bioorg Med Chem Lett 11: 587–590.

    Article  CAS  Google Scholar 

  • Staton PC, Hatcher JP, Walker DJ, Morrison AD, Shapland EM, Hughes JP et al. (2008). The putative cannabinoid receptor GPR55 plays a role in mechanical hyperalgesia associated with inflammatory and neuropathic pain. Pain 139: 225–236.

    Article  CAS  Google Scholar 

  • Sun L, Hui AM, Su Q, Vortmeyer A, Kotliarov Y, Pastorino S et al. (2006). Neuronal and glioma-derived stem cell factor induces angiogenesis within the brain. Cancer Cell 9: 287–300.

    Article  CAS  Google Scholar 

  • Waldeck-Weiermair M, Zoratti C, Osibow K, Balenga N, Goessnitzer E, Waldhoer M et al. (2008). Integrin clustering enables anandamide-induced Ca2+ signaling in endothelial cells via GPR55 by protection against CB1-receptor-triggered repression. J Cell Sci 121: 1704–1717.

    Article  CAS  Google Scholar 

  • Whyte LS, Ryberg E, Sims NA, Ridge SA, Mackie K, Greasley PJ et al. (2009). The putative cannabinoid receptor GPR55 affects osteoclast function in vitro and bone mass in vivo. Proc Natl Acad Sci USA 106: 16511–16516.

    Article  CAS  Google Scholar 

  • Worzfeld T, Wettschureck N, Offermanns S . (2008). G(12)/G(13)-mediated signalling in mammalian physiology and disease. Trends Pharmacol Sci 29: 582–589.

    Article  CAS  Google Scholar 

  • Xu Y, Xiao YJ, Baudhuin LM, Schwartz BM . (2001). The role and clinical applications of bioactive lysolipids in ovarian cancer. J Soc Gynecol Investig 8: 1–13.

    Article  Google Scholar 

  • Yin H, Chu A, Li W, Wang B, Shelton F, Otero F et al. (2009). Lipid G protein-coupled receptor ligand identification using beta-arrestin PathHunter assay. J Biol Chem 284: 12328–12338.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are indebted to the members of our laboratory for technical support and critical discussions on this work. CA and MMC were recipients of fellowships from Ministerio de Ciencia e Innovación and from Fundación Ferrer para la Investigación, respectively. MS and ML were recipients of contracts (Research Formation and Postdoctoral, respectively) from Comunidad de Madrid. This work was supported by grants from Fondo de Investigaciones Sanitarias (C Sánchez), Fundación Mutua Madrileña (C Sánchez), Ministerio de Ciencia e Innovación (G Velasco and M Guzmán), Comunidad de Madrid (M Guzmán) and GW Pharmaceuticals/Otsuka Pharmaceuticals (C Sánchez).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C Sánchez.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andradas, C., Caffarel, M., Pérez-Gómez, E. et al. The orphan G protein-coupled receptor GPR55 promotes cancer cell proliferation via ERK. Oncogene 30, 245–252 (2011). https://doi.org/10.1038/onc.2010.402

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.402

Keywords

This article is cited by

Search

Quick links