Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

X-ray structures of Drosophila dopamine transporter in complex with nisoxetine and reboxetine

Abstract

Most antidepressants elicit their therapeutic benefits through selective blockade of Na+/Cl-coupled neurotransmitter transporters. Here we report X-ray structures of the Drosophila melanogaster dopamine transporter in complexes with the polycyclic antidepressants nisoxetine or reboxetine. The inhibitors stabilize the transporter in an outward-open conformation by occupying the substrate-binding site. These structures explain how interactions between the binding pocket and substituents on the aromatic rings of antidepressants modulate drug-transporter selectivity.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Critical interactions for antidepressant recognition in the binding pocket of dDAT.
Figure 2: Comparison of ligand orientations in antidepressant-bound dDAT structures and predicted interactions in hNET and hDAT.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Torres, G.E., Gainetdinov, R.R. & Caron, M.G. Nat. Rev. Neurosci. 4, 13–25 (2003).

    Article  CAS  Google Scholar 

  2. Rudnick, G. Methods Enzymol. 296, 233–247 (1998).

    Article  CAS  Google Scholar 

  3. Kristensen, A.S. et al. Pharmacol. Rev. 63, 585–640 (2011).

    Article  CAS  Google Scholar 

  4. Glowinski, J. & Axelrod, J. Nature 204, 1318–1319 (1964).

    Article  CAS  Google Scholar 

  5. Stahl, S.M. J. Clin. Psychiatry 59, 5–14 (1998).

    CAS  PubMed  Google Scholar 

  6. Iversen, L. Br. J. Pharmacol. 147, S82–S88 (2006).

    Article  CAS  Google Scholar 

  7. Pörzgen, P. et al. Mol. Pharmacol. 59, 83–95 (2001).

    Article  Google Scholar 

  8. Penmatsa, A., Wang, K.H. & Gouaux, E. Nature 503, 85–90 (2013).

    Article  CAS  Google Scholar 

  9. Singh, S.K., Yamashita, A. & Gouaux, E. Nature 448, 952–956 (2007).

    Article  CAS  Google Scholar 

  10. Lemberger, L., Terman, S., Rowe, H. & Billings, R. Br. J. Clin. Pharmacol. 3, 215–220 (1976).

    Article  CAS  Google Scholar 

  11. Wong, E.H. et al. Biol. Psychiatry 47, 818–829 (2000).

    Article  CAS  Google Scholar 

  12. Wang, K.H., Penmatsa, A. & Gouaux, E. Nature doi:10.1038/nature14431 (11 May 2015).

  13. Piscitelli, C.L., Krishnamurthy, H. & Gouaux, E. Nature 468, 1129–1132 (2010).

    Article  CAS  Google Scholar 

  14. Sørensen, L. et al. J. Biol. Chem. 287, 43694–43707 (2012).

    Article  Google Scholar 

  15. Wang, H. et al. Nature 503, 141–145 (2013).

    Article  CAS  Google Scholar 

  16. Richelson, E. & Pfenning, M. Eur. J. Pharmacol. 104, 277–286 (1984).

    Article  CAS  Google Scholar 

  17. Zhou, J. Drugs Future 29, 1235–1244 (2004).

    Article  CAS  Google Scholar 

  18. Gehlert, D.R., Schober, D.A. & Gackenheimer, S.L. J. Neurochem. 64, 2792–2800 (1995).

    Article  CAS  Google Scholar 

  19. Fleishaker, J.C. Clin. Pharmacokinet. 39, 413–427 (2000).

    Article  CAS  Google Scholar 

  20. Benson, N. et al. Br. J. Pharmacol. 160, 389–398 (2010).

    Article  CAS  Google Scholar 

  21. Reeves, P.J., Callewaert, N., Contreras, R. & Khorana, H.G. Proc. Natl. Acad. Sci. USA 99, 13419–13424 (2002).

    Article  CAS  Google Scholar 

  22. Goehring, A. et al. Nat. Protoc. 9, 2574–2585 (2014).

    Article  CAS  Google Scholar 

  23. Otwinowski, Z. & Minor, W. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  24. Kabsch, W. Acta Crystallogr. D Biol. Crystallogr. 66, 125–132 (2010).

    Article  CAS  Google Scholar 

  25. McCoy, A.J. et al. J. Appl. Crystallogr. 40, 658–674 (2007).

    Article  CAS  Google Scholar 

  26. Afonine, P.V. et al. Acta Crystallogr. D Biol. Crystallogr. 68, 352–367 (2012).

    Article  CAS  Google Scholar 

  27. Emsley, P. & Cowtan, K. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  Google Scholar 

  28. Schwede, T., Kopp, J., Guex, N. & Peitsch, M.C. Nucleic Acids Res. 31, 3381–3385 (2003).

    Article  CAS  Google Scholar 

  29. Pei, J., Kim, B.H. & Grishin, N.V. Nucleic Acids Res. 36, 2295–2300 (2008).

    Article  CAS  Google Scholar 

  30. Quick, M. & Javitch, J.A. Proc. Natl. Acad. Sci. USA 104, 3603–3608 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Coleman and other members of the Gouaux laboratory for helpful discussions, L. Vaskalis for assistance with figures and H. Owen for help with manuscript preparation. We acknowledge the staff of the Northeastern Collaborative Access Team at the Advanced Photon Source for assistance with data collection. This work was supported by a US National Institutes of Health Mental Health (NIH-MH) R. Kirschstein postdoctoral fellowship and a Brain and Behavior Research Foundation Young Investigator research award (K.H.W.); by a postdoctoral fellowship from the American Heart Association (A.P.); by the NIH-MH (E.G.); and by the Methamphetamine Abuse Research Center of the Oregon Health & Science University (P50DA018165 to E.G.). E.G. is supported as an investigator with the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Contributions

A.P., K.H.W. and E.G. designed the project. A.P. and K.H.W. performed protein purification, crystallography and biochemical assays. A.P., K.H.W. and E.G. wrote the manuscript.

Corresponding author

Correspondence to Eric Gouaux.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 FoFc densities for ligands complexed with dDAT.

a, Nisoxetine (2.2 σ); b, reboxetine (2.4 s); Cyan sticks represent (S)-stereoisomer whereas magenta sticks are (R)-stereoisomer for both the drugs.

Supplementary information

Supplementary Text and Figures

Supplementary Figure 1 and Supplementary Tables 1 and 2 (PDF 310 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Penmatsa, A., Wang, K. & Gouaux, E. X-ray structures of Drosophila dopamine transporter in complex with nisoxetine and reboxetine. Nat Struct Mol Biol 22, 506–508 (2015). https://doi.org/10.1038/nsmb.3029

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.3029

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing