Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Resource
  • Published:

Total RNA sequencing reveals nascent transcription and widespread co-transcriptional splicing in the human brain

Abstract

Transcriptome sequencing allows for analysis of mature RNAs at base pair resolution. Here we show that RNA-seq can also be used for studying nascent RNAs undergoing transcription. We sequenced total RNA from human brain and liver and found a large fraction of reads (up to 40%) within introns. Intronic RNAs were abundant in brain tissue, particularly for genes involved in axonal growth and synaptic transmission. Moreover, we detected significant differences in intronic RNA levels between fetal and adult brains. We show that the pattern of intronic sequence read coverage is explained by nascent transcription in combination with co-transcriptional splicing. Further analysis of co-transcriptional splicing indicates a correlation between slowly removed introns and alternative splicing. Our data show that sequencing of total RNA provides unique insight into the transcriptional processes in the cell, with particular importance for normal brain development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A large proportion of RNA-seq reads map to intronic regions.
Figure 2: Nascent transcription and co-transcriptional splicing.
Figure 3: A gradient of RNA levels within introns.
Figure 4: Exonic and intronic RNA levels for NRXN1.
Figure 5: Experimental validation of co-transcriptional splicing in consecutive exons.
Figure 6: Levels of co-transcriptional splicing within genes.

Similar content being viewed by others

References

  1. Marioni, J.C., Mason, C.E., Mane, S.M., Stephens, M. & Gilad, Y. RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. Genome Res. 18, 1509–1517 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mortazavi, A., Williams, B.A., McCue, K., Schaeffer, L. & Wold, B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods 5, 621–628 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Sultan, M. et al. A global view of gene activity and alternative splicing by deep sequencing of the human transcriptome. Science 321, 956–960 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Wetterbom, A., Ameur, A., Feuk, L., Gyllensten, U. & Cavelier, L. Identification of novel exons and transcribed regions by chimpanzee transcriptome sequencing. Genome Biol. 11, R78 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  5. van Bakel, H., Nislow, C., Blencowe, B.J. & Hughes, T.R. Most “dark matter” transcripts are associated with known genes. PLoS Biol. 8, e1000371 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Kapranov, P. et al. The majority of total nuclear-encoded non-ribosomal RNA in a human cell is 'dark matter' un-annotated RNA. BMC Biol. 8, 149 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Blencowe, B.J. Splicing on the brain. Nat. Genet. 37, 796–797 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Churchman, L.S. & Weissman, J.S. Nascent transcript sequencing visualizes transcription at nucleotide resolution. Nature 469, 368–373 (2011).

    Article  CAS  PubMed  Google Scholar 

  9. Core, L.J., Waterfall, J.J. & Lis, J.T. Nascent RNA sequencing reveals widespread pausing and divergent initiation at human promoters. Science 322, 1845–1848 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wada, Y. et al. A wave of nascent transcription on activated human genes. Proc. Natl. Acad. Sci. USA 106, 18357–18361 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bentley, D.L. Rules of engagement: co-transcriptional recruitment of pre-mRNA processing factors. Curr. Opin. Cell Biol. 17, 251–256 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Goldstrohm, A.C., Greenleaf, A.L. & Garcia-Blanco, M.A. Co-transcriptional splicing of pre-messenger RNAs: considerations for the mechanism of alternative splicing. Gene 277, 31–47 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Kornblihtt, A.R., de la Mata, M., Fededa, J.P., Munoz, M.J. & Nogues, G. Multiple links between transcription and splicing. RNA 10, 1489–1498 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Baurén, G. & Wieslander, L. Splicing of Balbiani ring 1 gene pre-mRNA occurs simultaneously with transcription. Cell 76, 183–192 (1994).

    Article  PubMed  Google Scholar 

  15. Beyer, A.L. & Osheim, Y.N. Splice site selection, rate of splicing, and alternative splicing on nascent transcripts. Genes Dev. 2, 754–765 (1988).

    Article  CAS  PubMed  Google Scholar 

  16. Kiseleva, E., Wurtz, T., Visa, N. & Daneholt, B. Assembly and disassembly of spliceosomes along a specific pre-messenger RNP fiber. EMBO J. 13, 6052–6061 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Osheim, Y.N., Miller, O.L. & Beyer, A.L. RNP particles at splice junction sequences on Drosophila chorion transcripts. Cell 43, 143–151 (1985).

    Article  CAS  PubMed  Google Scholar 

  18. Wetterberg, I., Bauren, G. & Wieslander, L. The intranuclear site of excision of each intron in Balbiani ring 3 pre-mRNA is influenced by the time remaining to transcription termination and different excision efficiencies for the various introns. RNA 2, 641–651 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Carrillo Oesterreich, F., Preibisch, S. & Neugebauer, K.M. Global analysis of nascent RNA reveals transcriptional pausing in terminal exons. Mol. Cell 40, 571–581 (2010).

    Article  CAS  PubMed  Google Scholar 

  20. Listerman, I., Sapra, A.K. & Neugebauer, K.M. Cotranscriptional coupling of splicing factor recruitment and precursor messenger RNA splicing in mammalian cells. Nat. Struct. Mol. Biol. 13, 815–822 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Pandya-Jones, A. & Black, D.L. Co-transcriptional splicing of constitutive and alternative exons. RNA 15, 1896–1908 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Singh, J. & Padgett, R.A. Rates of in situ transcription and splicing in large human genes. Nat. Struct. Mol. Biol. 16, 1128–1133 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kim, T.K. et al. Widespread transcription at neuronal activity-regulated enhancers. Nature 465, 182–187 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. de la Mata, M., Lafaille, C. & Kornblihtt, A.R. First come, first served revisited: factors affecting the same alternative splicing event have different effects on the relative rates of intron removal. RNA 16, 904–912 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Polymenidou, M. et al. Long pre-mRNA depletion and RNA missplicing contribute to neuronal vulnerability from loss of TDP-43. Nat. Neurosci. 14, 459–468 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sephton, C.F. et al. Identification of neuronal RNA targets of TDP-43-containing ribonucleoprotein complexes. J. Biol. Chem. 286, 1204–1215 (2011).

    Article  CAS  PubMed  Google Scholar 

  27. Tollervey, J.R. et al. Characterizing the RNA targets and position-dependent splicing regulation by TDP-43. Nat. Neurosci. 14, 452–458 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ule, J. et al. Nova regulates brain-specific splicing to shape the synapse. Nat. Genet. 37, 844–852 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Zhang, C. et al. Integrative modeling defines the Nova splicing-regulatory network and its combinatorial controls. Science 329, 439–443 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. van Bakel, H., Nislow, C., Blencowe, B.J. & Hughes, T.R. Response to “the reality of pervasive transcription”. PLoS Biol. 9, e1001102 (2011).

    Article  CAS  PubMed Central  Google Scholar 

  31. Boutz, P.L. et al. A post-transcriptional regulatory switch in polypyrimidine tract-binding proteins reprograms alternative splicing in developing neurons. Genes Dev. 21, 1636–1652 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Grabowski, P.J. RNA-binding proteins switch gears to drive alternative splicing in neurons. Nat. Struct. Mol. Biol. 14, 577–579 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Li, Q., Lee, J.A. & Black, D.L. Neuronal regulation of alternative pre-mRNA splicing. Nat. Rev. Neurosci. 8, 819–831 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Rabin, S.J. et al. Sporadic ALS has compartment-specific aberrant exon splicing and altered cell-matrix adhesion biology. Hum. Mol. Genet. 19, 313–328 (2010).

    Article  CAS  PubMed  Google Scholar 

  35. Dredge, B.K., Polydorides, A.D. & Darnell, R.B. The splice of life: alternative splicing and neurological disease. Nat. Rev. Neurosci. 2, 43–50 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Kim, H.G. et al. Disruption of neurexin 1 associated with autism spectrum disorder. Am. J. Hum. Genet. 82, 199–207 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Marshall, C.R. et al. Structural variation of chromosomes in autism spectrum disorder. Am. J. Hum. Genet. 82, 477–488 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Walss-Bass, C. et al. Methionine sulfoxide reductase: a novel schizophrenia candidate gene. Am. J. Med. Genet. B. Neuropsychiatr. Genet. 150B, 219–225 (2009).

    Article  CAS  PubMed  Google Scholar 

  39. Kalscheuer, V.M. et al. Mutations in autism susceptibility candidate 2 (AUTS2) in patients with mental retardation. Hum. Genet. 121, 501–509 (2007).

    Article  PubMed  Google Scholar 

  40. Mefford, H.C. et al. Genome-wide copy number variation in epilepsy: novel susceptibility loci in idiopathic generalized and focal epilepsies. PLoS Genet. 6, e1000962 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Rujescu, D. et al. Disruption of the neurexin 1 gene is associated with schizophrenia. Hum. Mol. Genet. 18, 988–996 (2009).

    Article  CAS  PubMed  Google Scholar 

  42. Kirov, G. et al. Comparative genome hybridization suggests a role for NRXN1 and APBA2 in schizophrenia. Hum. Mol. Genet. 17, 458–465 (2008).

    Article  CAS  PubMed  Google Scholar 

  43. Vrijenhoek, T. et al. Recurrent CNVs disrupt three candidate genes in schizophrenia patients. Am. J. Hum. Genet. 83, 504–510 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Elia, J. et al. Rare structural variants found in attention-deficit hyperactivity disorder are preferentially associated with neurodevelopmental genes. Mol. Psychiatry 15, 637–646 (2010).

    Article  CAS  PubMed  Google Scholar 

  45. Mick, E. et al. Family-based genome-wide association scan of attention-deficit/hyperactivity disorder. J. Am. Acad. Child Adolesc. Psychiatry 49, 898–905.e3 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Zaccaria, K.J., Lagace, D.C., Eisch, A.J. & McCasland, J.S. Resistance to change and vulnerability to stress: autistic-like features of GAP43-deficient mice. Genes Brain Behav. 9, 985–996 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kent, W.J. et al. The human genome browser at UCSC. Genome Res. 12, 996–1006 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Enroth, S., Andersson, R., Wadelius, C. & Komorowski, J. SICTIN: Rapid footprinting of massively parallel sequencing data. BioData Min. 3, 4.

  49. Huang da, W., Sherman, B.T. & Lempicki, R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44–57 (2009).

    Article  PubMed  Google Scholar 

  50. Ameur, A., Wetterbom, A., Feuk, L. & Gyllensten, U. Global and unbiased detection of splice junctions from RNA-seq data. Genome Biol. 11, R34 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank B. Röken at the Kolmården Zoo for sharing the chimpanzee tissue sample. We also acknowledge the staff members at the Uppsala Genome Center, who conducted the SOLiD sequencing. Financial support for this project was obtained from the Swedish Foundation for Strategic Research (L.F.), the Marcus Borgström Foundation (L.C. and L.F.) and the Göran Gustafsson Foundation (L.F.).

Author information

Authors and Affiliations

Authors

Contributions

L.C. and L.F. conceived and designed the study. A.A., U.G., L.C. and L.F. coordinated experiments and analysis. A.A., J.H. and A.W. conducted the bioinformatics analysis. A.Z. and L.C. did the sample preparation and experimental analysis. All authors participated in discussions of different parts of the study. A.A., A.Z., L.C. and L.F. wrote the manuscript. All authors read and approved the manuscript.

Corresponding authors

Correspondence to Lucia Cavelier or Lars Feuk.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7, Supplementary Tables 1–10 and Supplementary Methods (PDF 2491 kb)

Supplementary Data 1

Lists of genes with high levels of intronic RNA. (XLS 199 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ameur, A., Zaghlool, A., Halvardson, J. et al. Total RNA sequencing reveals nascent transcription and widespread co-transcriptional splicing in the human brain. Nat Struct Mol Biol 18, 1435–1440 (2011). https://doi.org/10.1038/nsmb.2143

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2143

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing