Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Stimulation mapping of white matter tracts to study brain functional connectivity

Key Points

  • Currently, direct electrical stimulation (DES) is the only technique that allows direct mapping of white matter tracts in vivo in humans

  • Axonal DES has provided new insights into the functional connectivity underlying the sensorimotor, visuospatial, language and sociocognitive systems

  • Interactions between these neural networks and multimodal systems, such as working memory, attention, executive functions and consciousness, can also be investigated by axonal DES

  • Such a connectionist account, supported by axonal DES, improves our understanding of neuroplasticity, even in adults

  • This paradigmatic shift from localizationism to hodotopy could have major clinical implications in brain surgery, neurology, neurorehabilitation and psychiatry

Abstract

Despite advances in the new science of connectomics, which aims to comprehensively map neural connections at both structural and functional levels, techniques to directly study the function of white matter tracts in vivo in humans have proved elusive. Direct electrical stimulation (DES) mapping of the subcortical fibres offers a unique opportunity to investigate the functional connectivity of the brain. This original method permits real-time anatomo-functional correlations, especially with regard to neural pathways, in awake patients undergoing brain surgery. In this article, the goal is to review new insights, gained from axonal DES, into the functional connectivity underlying the sensorimotor, visuospatial, language and sociocognitive systems. Interactions between these neural networks and multimodal systems, such as working memory, attention, executive functions and consciousness, can also be investigated by axonal stimulation. In this networking model of conation and cognition, brain processing is not conceived as the sum of several subfunctions, but results from the integration and potentiation of parallel—though partially overlapping—subnetworks. This hodotopical account, supported by axonal DES, improves our understanding of neuroplasticity and its limitations. The clinical implications of this paradigmatic shift from localizationism to hodotopy, in the context of brain surgery, neurology, neurorehabilitation and psychiatry, are discussed.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Anatomo-functional correlations obtained by intrasurgical corticosubcortical DES and perioperative MRI.
Figure 2: A hodotopical model of functional connectivity in the human brain.

Similar content being viewed by others

References

  1. Lashley, K. In search of the engram. In Society of Experimental Biology Symposium, No. 4: Psychological Mechanisms in Animal Behaviour 454–480 (Cambridge University Press, 1950).

    Google Scholar 

  2. McClelland, J. J. & Rogers, T. T. The parallel distributed processing approach to semantic cognition. Nat. Rev. Neurosci. 4, 310–322 (2003).

    CAS  PubMed  Google Scholar 

  3. Plaut, D. C., McClelland, J. L., Seidenberg, M. S. & Patterson K. Understanding normal and impaired word reading: computational principles in quasi-regular domains. Psychol. Rev. 103, 56–115 (1996).

    CAS  PubMed  Google Scholar 

  4. Shallice, T. From Neuropsychology to Mental Structure (Cambridge University Press, 1988).

    Google Scholar 

  5. Ueno, T., Saito, S., Rogers, T. T. & Lambon Ralph, M. A. Lichtheim 2: synthesizing aphasia and the neural basis of language in a neurocomputational model of the dual dorsal–ventral language pathways. Neuron 72, 385–396 (2011).

    CAS  PubMed  Google Scholar 

  6. Sporns, O. The human connectome: origins and challenges. Neuroimage 80, 53–61 (2013).

    PubMed  Google Scholar 

  7. Honey, C. J., Kötter, R., Breakspear, M. & Sporns, O. Network structure of cerebral cortex shapes functional connectivity on multiple time scales. Proc. Natl Acad. Sci. USA 104, 10240–10245 (2007).

    CAS  PubMed  Google Scholar 

  8. Basset, D. S. & Bullmore, E. T. Human brain networks in health and disease. Curr. Opin. Neurol. 22, 340–347 (2009).

    Google Scholar 

  9. Hutchison, R. M. et al. Dynamic functional connectivity: promise, issues, and interpretations. Neuroimage 80, 360–378 (2013).

    PubMed  Google Scholar 

  10. Duffau, H. The huge plastic potential of adult brain and the role of connectomics: new insights provided by serial mappings in glioma surgery. Cortex 58, 325–337 (2014).

    PubMed  Google Scholar 

  11. Fernandez-Miranda, J. C. et al. High-definition fiber tractography of the human brain: neuroanatomical validation and neurosurgical applications. Neurosurgery 71, 430–453 (2012).

    PubMed  Google Scholar 

  12. Vergani, F. et al. White matter connections of the supplementary motor area in humans. J. Neurol. Neurosurg. Psychiatry 85, 1377–1385 (2014).

    PubMed  Google Scholar 

  13. Van Essen, D. C. et al. The Human Connectome Project: a data acquisition perspective. Neuroimage 62, 2222–2231 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Smith, S. M. et al. Functional connectomics from resting-state fMRI. Trends Cogn. Sci. 17, 666–682 (2013).

    PubMed  PubMed Central  Google Scholar 

  15. Rorden, C., Fridriksson, J. & Karnath, H. O. An evaluation of traditional and novel tools for lesion behavior mapping. Neuroimage 44, 1355–1362 (2009).

    PubMed  Google Scholar 

  16. Thompson, R. H. & Swanson, L. W. Hypothesis-driven structural connectivity analysis supports network over hierarchical model of brain architecture. Proc. Natl Acad. Sci. USA 107, 15235–15239 (2010).

    CAS  PubMed  Google Scholar 

  17. Micheva, K. D., Busse, B., Weiler, N. C., O'Rourke, N. & Smith, S. J. Single-synapse analysis of a diverse synapse population: proteomic imaging methods and markers. Neuron 68, 639–653 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Leergaard, T. B., Hilgetag, C. C. & Sporns, O. Mapping the connectome: multi-level analysis of brain connectivity. Front. Neuroinform. 6, 14 (2012).

    PubMed  PubMed Central  Google Scholar 

  19. Catani, M., Thiebaut de Schotten, M., Slater, D. & Dell'Acqua, F. Connectomic approaches before the connectome. Neuroimage 80, 2–13 (2013).

    CAS  PubMed  Google Scholar 

  20. Duffau, H. The “frontal syndrome” revisited: lessons from electrostimulation mapping studies. Cortex 48, 120–131 (2012).

    PubMed  Google Scholar 

  21. Duffau, H. & Taillandier, L. New concepts in the management of diffuse low-grade gliomas: proposal of a multistage and individualized therapeutic approach. Neuro Oncol. 17, 332–342 (2014).

    PubMed  PubMed Central  Google Scholar 

  22. Duffau, H. (Ed.). Brain Mapping: From Neural Basis of Cognition to Surgical Applications (Springer, 2011).

    Google Scholar 

  23. Duffau, H., Gatignol, P., Mandonnet, E., Capelle, L. & Taillandier, L. Intraoperative subcortical stimulation mapping of language pathways in a consecutive series of 115 patients with grade II glioma in the left dominant hemisphere. J. Neurosurg. 109, 461–471 (2008).

    PubMed  Google Scholar 

  24. Mandonnet, E., Winkler, P. A. & Duffau, H. Direct electrical stimulation as an input gate into brain functional networks: principles, advantages and limitations. Acta Neurochir. (Wien) 152, 185–193 (2010).

    Google Scholar 

  25. Logothetis, N. K. et al. The effects of electrical microstimulation on cortical signal propagation. Nat. Neurosci. 13, 1283–1291 (2010).

    CAS  PubMed  Google Scholar 

  26. Bello, L. et al. Motor and language DTI fiber tracking combined with intraoperative subcortical mapping for surgical removal of gliomas. Neuroimage 39, 369–382 (2008).

    PubMed  Google Scholar 

  27. Duffau, H. et al. New insights into the anatomo-functional connectivity of the semantic system: a study using cortico-subcortical stimulations. Brain 128, 797–810 (2005).

    PubMed  Google Scholar 

  28. Ius, T., Angelini, E., Thiebaut de Schotten, M., Mandonnet, E. & Duffau, H. Evidence for potentials and limitations of brain plasticity using an atlas of functional resectability of WHO grade II gliomas: towards a “minimal common brain”. Neuroimage 56, 992–1000 (2011).

    PubMed  Google Scholar 

  29. Duffau, H. et al. Usefulness of intraoperative electrical subcortical mapping during surgery for low-grade gliomas located within eloquent brain regions: functional results in a consecutive series of 103 patients. J. Neurosurg. 98, 764–778 (2003).

    PubMed  Google Scholar 

  30. Maldonado, I. L. et al. Surgery for gliomas involving the left inferior parietal lobule: new insights into the functional anatomy provided by stimulation mapping in awake patients. J. Neurosurg. 115, 770–779 (2011).

    PubMed  Google Scholar 

  31. Schucht, P., Moritz-Gasser, S., Herbet, G., Raabe, A. & Duffau, H. Subcortical electrostimulation to identify network subserving motor control. Hum. Brain Mapp. 34, 3023–3030 (2013).

    PubMed  Google Scholar 

  32. Rech, F., Herbet, G., Moritz-Gasser, S. & Duffau, H. Disruption of bimanual movement by unilateral subcortical stimulation. Hum. Brain Mapp. 35, 3439–3445 (2014).

    PubMed  Google Scholar 

  33. Kinoshita, M., Menjot de Champfleur, N., Deverdun, J., Herbet, G. & Duffau, H. Role of fronto-striatal tract and frontal aslant tract in movement and speech: an axonal mapping study. Brain Struct. Funct. http://dx.doi.org/10.1007/s00429-014-0863-0.

  34. Alexander, G. E. & Crutcher, M. D. Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends Neurosci. 13, 266–271 (1990).

    CAS  PubMed  Google Scholar 

  35. Almairac, F., Herbet, G., Moritz-Gasser, S. & Duffau, H. Parietal network underlying movement control: disturbances during subcortical electrostimulation. Neurosurg. Rev. 37, 513–516 (2014).

    PubMed  Google Scholar 

  36. Filimon, F. Human cortical control of hand movements: parietofrontal networks for reaching, grasping, and pointing. Neuroscientist 16, 388–407 (2010).

    PubMed  Google Scholar 

  37. Fogassi, L. & Luppino, G. Motor functions of the parietal lobe. Curr. Opin. Neurobiol. 15, 626–631 (2005).

    CAS  PubMed  Google Scholar 

  38. Jackson, S. R. et al. There may be more to reaching than meets the eye: re-thinking optic ataxia. Neuropsychologia 47, 1397–1408 (2009).

    PubMed  Google Scholar 

  39. Duffau, H., Velut, S., Mitchell, M. C., Gatignol, P. & Capelle, L. Intra-operative mapping of the subcortical visual pathways using direct electrical stimulations. Acta Neurochir. (Wien) 146, 265–269 (2004).

    CAS  Google Scholar 

  40. Stenˇo, A. et al. Direct electrical stimulation of the optic radiation in patients with covered eyes. Neurosurg. Rev. 37, 527–533 (2014).

    Google Scholar 

  41. Gras-Combes, G., Moritz-Gasser, S., Herbet, G. & Duffau, H. Intraoperative subcortical electrical mapping of optic radiations in awake surgery for glioma involving visual pathways. J. Neurosurg. 117, 466–473 (2012).

    Google Scholar 

  42. Fernández Coello, A., Duvaux, S., De Benedictis, A., Matsuda, R. & Duffau, H. Involvement of the right inferior longitudinal fascicle in visual hemiagnosia: a brain stimulation mapping study. J. Neurosurg. 118, 202–205 (2013).

    PubMed  Google Scholar 

  43. Thiebaut de Schotten, M. et al. Direct evidence for a parietal–frontal pathway subserving spatial awareness in humans. Science 309, 2226–2228 (2005).

    CAS  PubMed  Google Scholar 

  44. Spena, G., Gatignol, P., Capelle, L. & Duffau, H. Superior longitudinal fasciculus subserves vestibular network in humans. Neuroreport 17, 1403–1406 (2006).

    PubMed  Google Scholar 

  45. Duffau, H., Moritz-Gasser, S. & Mandonnet, E. A re-examination of neural basis of language processing: proposal of a dynamic hodotopical model from data provided by brain stimulation mapping during picture naming. Brain Lang. 131, 1–10 (2014).

    PubMed  Google Scholar 

  46. Hickok, G. & Poeppel, D. The cortical organization of speech processing. Nat. Rev. Neurosci. 8, 393–402 (2007).

    CAS  PubMed  Google Scholar 

  47. Scott, S. K., Blank, C. C., Rosen, S. & Wise, R. J. Identification of a pathway for intelligible speech in the left temporal lobe. Brain 12, 2400–2406 (2000).

    Google Scholar 

  48. Weiller, C., Bormann, T., Saur, D., Musso, M. & Rijntjes, M. How the ventral pathway got lost: and what its recovery might mean. Brain. Lang. 118, 29–39 (2011).

    PubMed  Google Scholar 

  49. Mandonnet, E., Gatignol, P. & Duffau, H. Evidence for an occipito-temporal tract underlying visual recognition in picture naming. Clin. Neurol. Neurosurg. 111, 601–605 (2009).

    PubMed  Google Scholar 

  50. Gil Robles, S. et al. Double dissociation between visual recognition and picture naming: a study of the visual language connectivity using tractography and brain stimulation. Neurosurgery 72, 678–686 (2013).

    PubMed  Google Scholar 

  51. Chan-Seng, E., Moritz-Gasser, S. & Duffau, H. Awake mapping for low-grade gliomas involving the left sagittal stratum: anatomofunctional and surgical considerations. J. Neurosurg. 120, 1069–1077 (2014).

    PubMed  Google Scholar 

  52. Saur, D. et al. Ventral and dorsal pathways for language. Proc. Natl Acad. Sci. USA 105, 18035–18040 (2008).

    CAS  PubMed  Google Scholar 

  53. Maldonado, I. L., Moritz-Gasser, S. & Duffau, H. Does the left superior longitudinal fascicle subserve language semantics? A brain electrostimulation study. Brain Struct. Funct. 216, 263–264 (2011).

    PubMed  Google Scholar 

  54. Catani, M., Jones, D. K. & ffytche, D. H. Perisylvian language networks of the human brain. Ann. Neurol. 57, 8–16 (2005).

    PubMed  Google Scholar 

  55. Duffau, H. et al. Intraoperative mapping of the subcortical language pathways using direct stimulations. An anatomo-functional study. Brain 125, 199–214 (2002).

    PubMed  Google Scholar 

  56. Martino, J. et al. Analysis of the subcomponents and cortical terminations of the perisylvian superior longitudinal fasciculus: a fiber dissection and DTI tractography study. Brain Struct. Funct. 218, 105–121 (2013).

    PubMed  Google Scholar 

  57. Moritz-Gasser, S. & Duffau, H. The anatomo-functional connectivity of word repetition: insights provided by awake brain tumor surgery. Front. Hum. Neurosci. 7, 405 (2013).

    PubMed  PubMed Central  Google Scholar 

  58. Vigneau, M. et al. Meta-analyzing left hemisphere language areas: phonology, semantics, and sentence processing. Neuroimage 30, 1414–1432 (2006).

    CAS  PubMed  Google Scholar 

  59. van Geemen, K., Herbet, G., Moritz-Gasser, S. & Duffau, H. Limited plastic potential of the left ventral premotor cortex in speech articulation: evidence from intraoperative awake mapping in glioma patients. Hum. Brain Mapp. 35, 1587–1596 (2014).

    PubMed  Google Scholar 

  60. Duffau, H., Gatignol, P., Denvil, D., Lopes, M. & Capelle, L. The articulatory loop: study of the subcortical connectivity by electrostimulation. Neuroreport 14, 2005–2008 (2003).

    PubMed  Google Scholar 

  61. Tate, M. C., Herbet, G., Moritz-Gasser, S., Tate, J. E. & Duffau, H. Probabilistic map of critical functional regions of the human cerebral cortex: Broca's area revisited. Brain 137, 2773–2782 (2014).

    PubMed  Google Scholar 

  62. Duffau, H., Herbet, G. & Moritz-Gasser, S. Toward a pluri-component, multimodal, and dynamic organization of the ventral semantic stream in humans: lessons from stimulation mapping in awake patients. Front. Syst. Neurosci. 7, 44 (2013).

    PubMed  PubMed Central  Google Scholar 

  63. Martino, J., Brogna, C., Gil Robles, S., Vergani, F. & Duffau, H. Anatomic dissection of the inferior fronto-occipital fasciculus revisited in the lights of brain stimulation data. Cortex 46, 691–699 (2010).

    PubMed  Google Scholar 

  64. Sarubbo, S., De Benedictis, A., Maldonado, I. L., Basso, G. & Duffau, H. Frontal terminations for the inferior fronto-occipital fascicle: anatomical dissection, DTI study and functional considerations on a multi-component bundle. Brain Struct. Funct. 218, 21–37 (2013).

    PubMed  Google Scholar 

  65. Moritz-Gasser, S., Herbet, G. & Duffau, H. Mapping the connectivity underlying multimodal (verbal and non-verbal) semantic processing: a brain electrostimulation study. Neuropsychologia 51, 1814–1822 (2013).

    PubMed  Google Scholar 

  66. Holland, R. & Lambon-Ralph, M. A. The anterior temporal lobe semantic hub is a part of the language neural network: selective disruption of irregular past tense verb by rTMS. Cereb. Cortex 20, 2771–2775 (2010).

    PubMed  Google Scholar 

  67. Lambon Ralph, M. A., Sage, K., Jones, R. W. & Mayberry, E. J. Coherent concepts are computed in the anterior temporal lobes. Proc. Natl Acad. Sci. USA 107, 2717–2722 (2010).

    CAS  PubMed  Google Scholar 

  68. Lambon Ralph, M. Neurocognitive insights on conceptual knowledge and its breakdown. Philos. Trans. R. Soc. Lond. B Biol. Sci. 369, 20120392 (2013).

    PubMed  Google Scholar 

  69. Mandonnet, E., Nouet, A., Gatignol, P., Capelle, L. & Duffau, H. Does the left inferior longitudinal fasciculus play a role in language? A brain stimulation study. Brain 130, 623–629 (2007).

    PubMed  Google Scholar 

  70. Duffau, H., Gatignol, P., Moritz-Gasser, S. & Mandonnet, E. Is the left uncinate fasciculus essential for language? A cerebral stimulation study. J. Neurol. 256, 382–389 (2009).

    PubMed  Google Scholar 

  71. Han, Z. et al. White matter structural connectivity underlying semantic processing: evidence from brain damaged patients. Brain 136, 2952–2965 (2013).

    PubMed  Google Scholar 

  72. Papagno, C. et al. What is the role of the uncinate fasciculus? Surgical removal and proper name retrieval. Brain 134, 405–414 (2011).

    PubMed  Google Scholar 

  73. Binney, R. J., Parker, G. J. & Lambon Ralph, M. A. Convergent connectivity and graded specialization in the rostral human temporal lobe as revealed by diffusion-weighted imaging probabilistic tractography. J. Cogn. Neurosci. 24, 1998–2014 (2012).

    PubMed  Google Scholar 

  74. Jefferies, E. & Lambon Ralph, M. A. Semantic impairment in stroke aphasia versus semantic dementia: a case-series comparison. Brain 129, 2132–2147 (2006).

    PubMed  Google Scholar 

  75. Makris, N. et al. Human middle longitudinal fascicle: segregation and behavioral–clinical implications of two distinct fiber connections linking temporal pole and superior temporal gyrus with the angular gyrus or superior parietal lobule using multi-tensor tractography. Brain Imaging Behav. 7, 335–352 (2013).

    CAS  PubMed  Google Scholar 

  76. De Witt Hamer, P., Moritz-Gasser, S., Gatignol, P. & Duffau, H. Is the human left middle longitudinal fascicle essential for language? A brain electrostimulation study. Hum. Brain Mapp. 32, 962–973 (2011).

    PubMed  Google Scholar 

  77. Vidorreta, J. G., Garcia, R., Moritz-Gasser, S. & Duffau, H. Double dissociation between syntactic gender and picture naming processing: a brain stimulation mapping study. Hum. Brain Mapp. 32, 331–340 (2011).

    PubMed  Google Scholar 

  78. Shimotake, A. et al. Direct exploration of the role of the ventral anterior temporal lobe in semantic memory: cortical stimulation and local field potential evidence from subdural grid electrodes. Cereb. Cortex http://dx.doi.org/10.1093/cercor/bhu262.

  79. Abel, T. J. et al. Direct physiologic evidence of a heteromodal convergence region for proper naming in human left anterior temporal lobe. J. Neurosci. 35, 1513–1520 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Herbet, G., Lafargue, G., Moritz-Gasser, S., Bonnetblanc, F. & Duffau, H. Interfering with the neural activity of mirror-related frontal areas impairs mentalistic inferences. Brain Struct. Funct. http://dx.doi.org/10.1007/s00429-014-0777-x.

  81. Herbet, G. et al. Inferring a dual-stream model of mentalizing from associative white matter fiber disconnection. Brain 137, 944–959 (2014).

    PubMed  Google Scholar 

  82. Catani, M. & ffytche, D. H. The rises and falls of disconnection syndromes. Brain 128, 2224–2239 (2005).

    PubMed  Google Scholar 

  83. Makris, N. et al. Segmentation of subcomponents within the superior longitudinal fascicle in humans: a quantitative, in vivo, DT-MRI study. Cereb. Cortex 15, 854–869 (2005).

    PubMed  Google Scholar 

  84. Greicius, M. D., Supekar, K., Menon, V. & Dougherty, R. F. Resting-state functional connectivity reflects structural connectivity in the default mode network. Cereb. Cortex 19, 72–78 (2009).

    Google Scholar 

  85. van den Heuvel, M., Mandl, R., Luigjes, J. & Hulshoff Pol, H. Microstructural organization of the cingulum tract and the level of default mode functional connectivity. J. Neurosci. 28, 10844–10851 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. ffytche, D. H. & Catani, M. Beyond localization: from hodology to function. Philos. Trans. R. Soc. Lond. B Biol. Sci. 360, 767–779 (2005).

    PubMed  PubMed Central  Google Scholar 

  87. De Benedictis, A. & Duffau, H. Brain hodotopy: from esoteric concept to practical surgical applications. Neurosurgery 68, 1709–1723 (2011).

    PubMed  Google Scholar 

  88. Moritz-Gasser, S. & Duffau, H. Cognitive processes and neural basis of language switching: proposal of a new model. Neuroreport 20, 1577–1580 (2009).

    PubMed  Google Scholar 

  89. Thiebaut de Schotten, M., Dell'Acqua, F., Valabregue, R. & Catani, M. Monkey to human comparative anatomy of the frontal lobe association tracts. Cortex 48, 82–96 (2012).

    PubMed  Google Scholar 

  90. Gil Robles, S., Gatignol, P., Capelle, L., Mitchell, M. C. & Duffau, H. The role of dominant striatum in language: a study using intraoperative electrical stimulations. J. Neurol. Neurosurg. Psychiatry 76, 940–946 (2005).

    CAS  PubMed  Google Scholar 

  91. Teixidor, P. et al. Assessment of verbal working memory before and after surgery for low-grade glioma. J. Neurooncol. 81, 305–313 (2007).

    PubMed  Google Scholar 

  92. Charras, P. et al. Functional reorganization of the attentional networks in low-grade glioma patients: a longitudinal study. Cortex 63, 27–41 (2014).

    PubMed  Google Scholar 

  93. Fernández Coello, A. et al. Selection of intraoperative tasks for awake mapping based on relationships between tumor location and functional networks. J. Neurosurg. 119, 1380–1394 (2013).

    PubMed  Google Scholar 

  94. Gatignol, P., Capelle, L., Le Bihan, R. & Duffau, H. Double dissociation between picture naming and comprehension: an electrostimulation study. Neuroreport 15, 191–195 (2004).

    PubMed  Google Scholar 

  95. Plaza, M., Gatignol, P., Cohen, H., Berger, B. & Duffau, H. A discrete area within the left dorsolateral prefrontal cortex involved in visual–verbal incongruence judgment. Cereb. Cortex 18, 1253–1259 (2008).

    PubMed  Google Scholar 

  96. Herbet, G. et al. Disrupting posterior cingulate connectivity disconnects consciousness from the external environment. Neuropsychologia 56, 239–244 (2014).

    PubMed  Google Scholar 

  97. Duffau, H. Lessons from brain mapping in surgery for low-grade glioma: insights into associations between tumour and brain plasticity. Lancet Neurol. 4, 476–486 (2005).

    PubMed  Google Scholar 

  98. Duffau, H. Brain plasticity: from pathophysiological mechanisms to therapeutic applications. J. Clin. Neurosci. 13, 885–897 (2006).

    PubMed  Google Scholar 

  99. Desmurget, M., Bonnetblanc, F. & Duffau, H. Contrasting acute and slow growing lesions: a new door to brain plasticity. Brain 130, 898–914 (2007).

    PubMed  Google Scholar 

  100. Benzagmout, M., Gatignol, P. & Duffau, H. Resection of World Health Organization grade II gliomas involving Broca's area: methodological and functional considerations. Neurosurgery 61, 741–752 (2007).

    PubMed  Google Scholar 

  101. Lubrano, V., Draper, L. & Roux, F. E. What makes surgical tumor resection feasible in Broca's area? Insights into intraoperative brain mapping. Neurosurgery 66, 868–875 (2010).

    PubMed  Google Scholar 

  102. Tate, M. C., Herbet, G., Moritz-Gasser, S., Tate, J. E. & Duffau, H. Reply: Probabilistic map of language regions: challenge and implication. Brain 138, e338 (2015).

    PubMed  Google Scholar 

  103. Sarubbo, S., Le Bars, E., Moritz-Gasser, S. & Duffau, H. Complete recovery after surgical resection of left Wernicke's area in awake patient: a brain stimulation and functional MRI study. Neurosurg. Rev. 35, 287–292 (2012).

    PubMed  Google Scholar 

  104. Thiel, A. et al. Essential language function of the right hemisphere in brain tumor patients. Ann. Neurol. 57, 128–131 (2005).

    PubMed  Google Scholar 

  105. Keidel, J. L., Welbourne, S. R. & Lambon Ralph, M. A. Solving the paradox of the equipotential and modular brain: a neurocomputational model of stroke vs. slow-growing glioma. Neuropsychologia 48, 1716–1724 (2010).

    PubMed  Google Scholar 

  106. Papagno, C. et al. Connectivity constraints on cortical reorganization of neural circuits involved in object naming. Neuroimage 55, 1306–1313 (2011).

    PubMed  Google Scholar 

  107. Duffau, H. Does post-lesional subcortical plasticity exist in the human brain? Neurosci. Res. 65, 131–135 (2009).

    PubMed  Google Scholar 

  108. Duffau, H. Do brain tumours allow valid conclusions on the localisation of human brain functions? Cortex 47, 1016–1017 (2011).

    PubMed  Google Scholar 

  109. De Witt Hamer, P. C., Robles, S. G., Zwinderman, A. H., Duffau, H. & Berger, M. S. Impact of intraoperative stimulation brain mapping on glioma surgery outcome: a meta-analysis. J. Clin. Oncol. 30, 2559–2565 (2012).

    PubMed  Google Scholar 

  110. Duffau, H. & Mandonnet, E. The “onco-functional balance” in surgery for diffuse low-grade glioma: integrating the extent of resection with quality of life. Acta Neurochir. (Wien) 155, 951–957 (2013).

    Google Scholar 

  111. Duffau, H., Thiebaut de Schotten, M. & Mandonnet, E. White matter functional connectivity as an additional landmark for dominant temporal lobectomy. J. Neurol. Neurosurg. Psychiatry 79, 492–495 (2008).

    CAS  PubMed  Google Scholar 

  112. Herbet, G., Lafargue, G., Bonnetblanc, F., Moritz-Gasser, S. & Duffau, H. Is the right frontal cortex really crucial in the mentalizing network? A longitudinal study in patients with a slow-growing lesion. Cortex 49, 2711–2727 (2013).

    PubMed  Google Scholar 

  113. Duffau, H. Jazz improvisation, creativity and brain plasticity. World Neurosurg. 81, 508–510 (2014).

    PubMed  Google Scholar 

  114. Mandonnet, E. & Duffau, H. Understanding entangled cerebral networks: a prerequisite for restoring brain function with brain-computer interfaces. Front. Syst. Neurosci. 8, 82 (2014).

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hugues Duffau.

Ethics declarations

Competing interests

The author declares no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duffau, H. Stimulation mapping of white matter tracts to study brain functional connectivity. Nat Rev Neurol 11, 255–265 (2015). https://doi.org/10.1038/nrneurol.2015.51

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2015.51

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer