Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Epileptogenesis in the immature brain: emerging mechanisms

Abstract

Epileptogenesis is defined as the process of developing epilepsy—a disorder characterized by recurrent seizures—following an initial insult. Seizure incidence during the human lifespan is at its highest in infancy and childhood. Animal models of epilepsy and human tissue studies suggest that epileptogenesis involves a cascade of molecular, cellular and neuronal network alterations. Within minutes to days following the initial insult, there are acute early changes in neuronal networks, which include rapid alterations to ion channel kinetics as a result of membrane depolarization, post-translational modifications to existing functional proteins, and activation of immediate early genes. Subacute changes occur over hours to weeks, and include transcriptional events, neuronal death and activation of inflammatory cascades. The chronic changes that follow over weeks to months include anatomical changes, such as neurogenesis, mossy fiber sprouting, network reorganization, and gliosis. These epileptogenic processes are developmentally regulated and might contribute to differences in epileptogenesis between adult and developing brains. Here we review the factors responsible for enhanced seizure susceptibility in the developing brain, and consider age-specific mechanisms of epileptogenesis. An understanding of these factors could yield potential therapeutic targets for the prevention of epileptogenesis and also provide biomarkers for identifying patients at risk of developing epilepsy or for monitoring disease progression.

Key Points

  • Epileptogenesis is defined as the process of developing epilepsy—a disorder characterized by recurrent seizures—following an initial insult, and the process evolves through acute, subacute and chronic phases

  • The currently available therapies for epilepsy are predominantly anticonvulsant and do not modify the epileptogenic process

  • The immature brain exhibits increased excitation and diminished inhibition, and this enhanced excitability increases the propensity for seizures and epileptogenesis in infancy and early childhood compared with later life

  • The epileptogenic process in the immature brain evolves via alterations in molecular, cellular and neuronal network properties; animal models provide valuable insight into this process

  • Targeting the different phases of epileptogenesis with appropriate therapies might help develop disease-modifying antiepileptogenic treatment paradigms

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic depiction of maturational changes in glutamate and GABA receptor function in the developing brain.30
Figure 2: Time course of epileptogenesis.151

Similar content being viewed by others

References

  1. Hauser, W. A., Annegers, J. F. & Kurland, L. T. Incidence of epilepsy and unprovoked seizures in Rochester, Minnesota: 1935–1984. Epilepsia 34, 453–468 (1993).

    CAS  PubMed  Google Scholar 

  2. Volpe, J. J. Neurology of the Newborn 203–244 (Saunders, Philadelphia, 2008).

    Google Scholar 

  3. LaFrance, W. C. Jr, Kanner, A. M. & Hermann, B. Psychiatric comorbidities in epilepsy. Int. Rev. Neurobiol. 83, 347–383 (2008).

    PubMed  Google Scholar 

  4. Temkin, N. R. Antiepileptogenesis and seizure prevention trials with antiepileptic drugs: meta-analysis of controlled trials. Epilepsia 42, 515–524 (2001).

    CAS  PubMed  Google Scholar 

  5. Garga, N. & Lowenstein, D. H. Posttraumatic epilepsy: a major problem in desperate need of major advances. Epilepsy Curr. 6, 1–5 (2006).

    PubMed Central  PubMed  Google Scholar 

  6. Haltiner, A. M., Temkin, N. R. & Dikmen, S. S. Risk of seizure recurrence after the first late posttraumatic seizure. Arch. Phys. Med. Rehabil. 78, 835–840 (1997).

    CAS  PubMed  Google Scholar 

  7. Temkin, N. R. Preventing and treating posttraumatic seizures: the human experience. Epilepsia 50 (Suppl. 2), 10–13 (2009).

    PubMed  Google Scholar 

  8. Shinnar, S. et al. Phenomenology of prolonged febrile seizures: results of the FEBSTAT study. Neurology 71, 170–176 (2008).

    CAS  PubMed  Google Scholar 

  9. Dinner, D. S. & Wyllie, E. In The Treatment of Epilepsy: Principles and Practice (Ed. Wyllie, E.) 654–658 (Lea & Febiger, Philadelphia, 1993).

    Google Scholar 

  10. Ronen, G. M., Buckley, D., Penney, S. & Streiner, D. L. Long-term prognosis in children with neonatal seizures: a population-based study. Neurology 69, 1816–1822 (2007).

    PubMed  Google Scholar 

  11. VanLandingham, K. E., Heinz, E. R., Cavazos, J. E. & Lewis, D. V. Magnetic resonance imaging evidence of hippocampal injury after prolonged focal febrile convulsions. Ann. Neurol. 43, 413–426 (1998).

    CAS  PubMed  Google Scholar 

  12. Kharatishvili, I., Nissinen, J. P., McIntosh, T. K. & Pitkanen, A. A model of posttraumatic epilepsy induced by lateral fluid-percussion brain injury in rats. Neuroscience 140, 685–697 (2006).

    CAS  PubMed  Google Scholar 

  13. Epsztein, J., Ben-Ari, Y., Represa, A. & Crepel, V. Late-onset epileptogenesis and seizure genesis: lessons from models of cerebral ischemia. Neuroscientist 14, 78–90 (2008).

    CAS  PubMed  Google Scholar 

  14. Williams, P. A., Hellier, J. L., White, A. M., Staley, K. J. & Dudek, F. E. Development of spontaneous seizures after experimental status epilepticus: implications for understanding epileptogenesis. Epilepsia 48 (Suppl. 5), 157–163 (2007).

    PubMed  Google Scholar 

  15. Swann, J. W., Brady, R. J. & Martin, D. L. Postnatal development of GABA-mediated synaptic inhibition in rat hippocampus. Neuroscience 28, 551–561 (1989).

    CAS  PubMed  Google Scholar 

  16. Moshe, S. L., Sharpless, N. S. & Kaplan, J. Kindling in developing rats: variability of afterdischarge thresholds with age. Brain Res. 211, 190–195 (1981).

    CAS  PubMed  Google Scholar 

  17. Talos, D. M. et al. Developmental regulation of α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptor subunit expression in forebrain and relationship to regional susceptibility to hypoxic/ischemic injury. I. Rodent cerebral white matter and cortex. J. Comp. Neurol. 497, 42–60 (2006).

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Romijn, H. J., Hofman, M. A. & Gramsbergen, A. At what age is the developing cerebral cortex of the rat comparable to that of the full term newborn baby? Early Hum. Dev. 26, 61–67 (1991).

    CAS  PubMed  Google Scholar 

  19. Jensen, F. E., Applegate, C. D., Holtzman, D., Belin, T. R. & Burchfiel, J. L. Epileptogenic effect of hypoxia in the immature rodent brain. Ann. Neurol. 29, 629–637 (1991).

    CAS  PubMed  Google Scholar 

  20. Koh, S., Tibayan, F. D., Simpson, J. N. & Jensen, F. E. NBQX or topiramate treatment following perinatal hypoxia-induced seizures prevents later increases in seizure-induced neuronal injury. Epilepsia 45, 569–575 (2004).

    CAS  PubMed  Google Scholar 

  21. Mikati, M. A. et al. Long-term effects of acute and of chronic hypoxia on behavior and on hippocampal histology in the developing brain. Brain Res. Dev. Brain Res. 157, 98–102 (2005).

    CAS  PubMed  Google Scholar 

  22. Dube, C. et al. Temporal lobe epilepsy after experimental prolonged febrile seizures: prospective analysis. Brain 129, 911–922 (2006).

    PubMed  Google Scholar 

  23. Zhang, G., Raol, Y. H., Hsu, F. C., Coulter, D. A. & Brooks-Kayal, A. R. Effects of status epilepticus on hippocampal GABAA receptors are age-dependent. Neuroscience 125, 299–303 (2004).

    CAS  PubMed  Google Scholar 

  24. Sogawa, Y. et al. Timing of cognitive deficits following neonatal seizures: relationship to histological changes in the hippocampus. Brain Res. Dev. Brain Res. 131, 73–83 (2001).

    CAS  PubMed  Google Scholar 

  25. Stafstrom, C. E., Thompson, J. L. & Holmes, G. L. Kainic acid seizures in the developing brain: status epilepticus and spontaneous recurrent seizures. Brain Res. Dev. Brain Res. 65, 227–236 (1992).

    CAS  PubMed  Google Scholar 

  26. Lee, C. L., Hrachovy, R. A., Smith, K. L., Frost, J. D. Jr & Swann, J. W. Tetanus toxin-induced seizures in infant rats and their effects on hippocampal excitability in adulthood. Brain Res. 677, 97–109 (1995).

    CAS  PubMed  Google Scholar 

  27. Sanchez, R. M. & Jensen, F. E. Maturational aspects of epilepsy mechanisms and consequences for the immature brain. Epilepsia 42, 577–585 (2001).

    CAS  PubMed  Google Scholar 

  28. Huttenlocher, P. R., deCourten, C., Garey, L. J. & Van der Loos, H. Synaptogenesis in human visual cortex—evidence for synapse elimination during normal development. Neurosci. Lett. 33, 247–252 (1982).

    CAS  PubMed  Google Scholar 

  29. Rakic, P., Bourgeois, J. P., Eckenhoff, M. F., Zecevic, N. & Goldman-Rakic, P. S. Concurrent overproduction of synapses in diverse regions of primate cortex. Science 232, 232–235 (1986).

    CAS  PubMed  Google Scholar 

  30. Silverstein, F. S. & Jensen, F. E. Neonatal seizures. Ann. Neurol. 62, 112–120 (2007).

    PubMed  Google Scholar 

  31. Jensen, F. E. Role of glutamate receptors in periventricular leukomalacia. J. Child Neurol. 20, 950–959 (2005).

    PubMed  Google Scholar 

  32. Lau, C. G. & Zukin, R. S. NMDA receptor trafficking in synaptic plasticity and neuropsychiatric disorders. Nat. Rev. Neurosci. 8, 413–426 (2007).

    CAS  PubMed  Google Scholar 

  33. Shepherd, J. D. & Huganir, R. L. The cell biology of synaptic plasticity: AMPA receptor trafficking. Annu. Rev. Cell Dev. Biol. 23, 613–643 (2007).

    CAS  PubMed  Google Scholar 

  34. Pinheiro, P. & Mulle, C. Kainate receptors. Cell Tissue Res. 326, 457–482 (2006).

    CAS  PubMed  Google Scholar 

  35. Nakanishi, S. Metabotropic glutamate receptors: synaptic transmission, modulation, and plasticity. Neuron 13, 1031–1037 (1994).

    CAS  PubMed  Google Scholar 

  36. Sanchez, R. M. et al. Decreased glutamate receptor 2 expression and enhanced epileptogenesis in immature rat hippocampus after perinatal hypoxia-induced seizures. J. Neurosci. 21, 8154–8163 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Kumar, S. S., Bacci, A., Kharazia, V. & Huguenard, J. R. A developmental switch of AMPA receptor subunits in neocortical pyramidal neurons. J. Neurosci. 22, 3005–3015 (2002).

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Talos, D. M. et al. Developmental regulation of α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptor subunit expression in forebrain and relationship to regional susceptibility to hypoxic/ischemic injury. II. Human cerebral white matter and cortex. J. Comp. Neurol. 497, 61–77 (2006).

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Mares, P. & Mikulecka, A. Different effects of two N-methyl-D-aspartate receptor antagonists on seizures, spontaneous behavior, and motor performance in immature rats. Epilepsy Behav. 14, 32–39 (2009).

    PubMed  Google Scholar 

  40. Chen, H. S. et al. Neuroprotective concentrations of the N-methyl-D-aspartate open-channel blocker memantine are effective without cytoplasmic vacuolation following post-ischemic administration and do not block maze learning or long-term potentiation. Neuroscience 86, 1121–1132 (1998).

    CAS  PubMed  Google Scholar 

  41. Wallis, R. A., Panizzon, K. L., Fairchild, M. D. & Wasterlain, C. G. Protective effects of felbamate against hypoxia in the rat hippocampal slice. Stroke 23, 547–551 (1992).

    CAS  PubMed  Google Scholar 

  42. Aujla, P. K., Fetell, M. & Jensen, F. E. Talampanel suppresses the acute and chronic effects of seizures in a rodent neonatal seizure model. Epilepsia 50, 694–701 (2009).

    PubMed Central  PubMed  Google Scholar 

  43. Avallone, J., Gashi, E., Magrys, B. & Friedman, L. K. Distinct regulation of metabotropic glutamate receptor (mGluR1α) in the developing limbic system following multiple early-life seizures. Exp. Neurol. 202, 100–111 (2006).

    CAS  PubMed  Google Scholar 

  44. Ure, J., Baudry, M. & Perassolo, M. Metabotropic glutamate receptors and epilepsy. J. Neurol. Sci. 247, 1–9 (2006).

    CAS  PubMed  Google Scholar 

  45. Brooks-Kayal, A. R. et al. γ-Aminobutyric acidA receptor subunit expression predicts functional changes in hippocampal dentate granule cells during postnatal development. J. Neurochem. 77, 1266–1278 (2001).

    CAS  PubMed  Google Scholar 

  46. Loturco, J. J., Owens, D. F., Heath, M. J., Davis, M. B. & Kriegstein, A. R. GABA and glutamate depolarize cortical progenitor cells and inhibit DNA synthesis. Neuron 15, 1287–1298 (1995).

    CAS  PubMed  Google Scholar 

  47. Dzhala, V. I. et al. NKCC1 transporter facilitates seizures in the developing brain. Nat. Med. 11, 1205–1213 (2005).

    CAS  PubMed  Google Scholar 

  48. Galanopoulou, A. S. Dissociated gender-specific effects of recurrent seizures on GABA signaling in CA1 pyramidal neurons: role of GABAA receptors. J. Neurosci. 28, 1557–1567 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Rivera, C. et al. BDNF-induced TrkB activation down-regulates the K+-Cl cotransporter KCC2 and impairs neuronal Cl extrusion. J. Cell Biol. 159, 747–752 (2002).

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Dzhala, V. I., Brumback, A. C. & Staley, K. J. Bumetanide enhances phenobarbital efficacy in a neonatal seizure model. Ann. Neurol. 63, 222–235 (2008).

    CAS  PubMed  Google Scholar 

  51. Iwasaki, S., Momiyama, A., Uchitel, O. D. & Takahashi, T. Developmental changes in calcium channel types mediating central synaptic transmission. J. Neurosci. 20, 59–65 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Noebels, J. L. The biology of epilepsy genes. Annu. Rev. Neurosci. 26, 599–625 (2003).

    CAS  PubMed  Google Scholar 

  53. Cooper, E. C. & Jan, L. Y. M-channels: neurological diseases, neuromodulation, and drug development. Arch. Neurol. 60, 496–500 (2003).

    PubMed  Google Scholar 

  54. Yue, C. & Yaari, Y. KCNQ/M channels control spike afterdepolarization and burst generation in hippocampal neurons. J. Neurosci. 24, 4614–4624 (2004).

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Pape, H. C. Queer current and pacemaker: the hyperpolarization-activated cation current in neurons. Annu. Rev. Physiol 58, 299–327 (1996).

    CAS  PubMed  Google Scholar 

  56. Chen, K. et al. Persistently modified h-channels after complex febrile seizures convert the seizure-induced enhancement of inhibition to hyperexcitability. Nat. Med. 7, 331–337 (2001).

    CAS  PubMed Central  PubMed  Google Scholar 

  57. Bender, R. A. & Baram, T. Z. Hyperpolarization activated cyclic-nucleotide gated (HCN) channels in developing neuronal networks. Prog. Neurobiol. 86, 129–140 (2008).

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Catterall, W. A., Dib-Hajj, S., Meisler, M. H. & Pietrobon, D. Inherited neuronal ion channelopathies: new windows on complex neurological diseases. J. Neurosci. 28, 11768–11777 (2008).

    CAS  PubMed Central  PubMed  Google Scholar 

  59. Catterall, W. A. From ionic currents to molecular mechanisms: the structure and function of voltage-gated sodium channels. Neuron 26, 13–25 (2000).

    CAS  PubMed  Google Scholar 

  60. Meisler, M. H. & Kearney, J. A. Sodium channel mutations in epilepsy and other neurological disorders. J. Clin. Invest. 115, 2010–2017 (2005).

    CAS  PubMed Central  PubMed  Google Scholar 

  61. Kearney, J. A. et al. Recurrent de novo mutations of SCN1A in severe myoclonic epilepsy of infancy. Pediatr. Neurol. 34, 116–120 (2006).

    PubMed  Google Scholar 

  62. Escayg, A. et al. Mutations of SCN1A, encoding a neuronal sodium channel, in two families with GEFS+2. Nat. Genet. 24, 343–345 (2000).

    CAS  PubMed  Google Scholar 

  63. Burgess, D. L. et al. Mutation of a new sodium channel gene, Scn8a, in the mouse mutant 'motor endplate disease'. Nat. Genet. 10, 461–465 (1995).

    CAS  PubMed  Google Scholar 

  64. Kearney, J. A. et al. A gain-of-function mutation in the sodium channel gene Scn2a results in seizures and behavioral abnormalities. Neuroscience 102, 307–317 (2001).

    CAS  PubMed  Google Scholar 

  65. Kearney, J. A. et al. Severe epilepsy resulting from genetic interaction between Scn2a and Kcnq2. Hum. Mol. Genet. 15, 1043–1048 (2006).

    CAS  PubMed  Google Scholar 

  66. Martin, M. S. et al. The voltage-gated sodium channel Scn8a is a genetic modifier of severe myoclonic epilepsy of infancy. Hum. Mol. Genet. 16, 2892–2899 (2007).

    CAS  PubMed  Google Scholar 

  67. Glasscock, E., Qian, J., Yoo, J. W. & Noebels, J. L. Masking epilepsy by combining two epilepsy genes. Nat. Neurosci. 10, 1554–1558 (2007).

    CAS  PubMed  Google Scholar 

  68. Shapiro, L. A., Wang, L. & Ribak, C. E. Rapid astrocyte and microglial activation following pilocarpine-induced seizures in rats. Epilepsia 49 (Suppl. 2), 33–41 (2008).

    CAS  PubMed  Google Scholar 

  69. Vezzani, A., Balosso, S. & Ravizza, T. The role of cytokines in the pathophysiology of epilepsy. Brain Behav. Immun. 22, 797–803 (2008).

    CAS  PubMed  Google Scholar 

  70. Billiards, S. S. et al. Development of microglia in the cerebral white matter of the human fetus and infant. J. Comp. Neurol. 497, 199–208 (2006).

    PubMed  Google Scholar 

  71. Dalmau, I., Vela, J. M., Gonzalez, B., Finsen, B. & Castellano, B. Dynamics of microglia in the developing rat brain. J. Comp. Neurol. 458, 144–157 (2003).

    PubMed  Google Scholar 

  72. Stevens, B. et al. The classical complement cascade mediates CNS synapse elimination. Cell 131, 1164–1178 (2007).

    CAS  PubMed  Google Scholar 

  73. Lechpammer, M. et al. Minocycline treatment following hypoxic/ischaemic injury attenuates white matter injury in a rodent model of periventricular leucomalacia. Neuropathol. Appl. Neurobiol. 34, 379–393 (2008).

    CAS  PubMed Central  PubMed  Google Scholar 

  74. Heo, K. et al. Minocycline inhibits caspase-dependent and -independent cell death pathways and is neuroprotective against hippocampal damage after treatment with kainic acid in mice. Neurosci. Lett. 398, 195–200 (2006).

    CAS  PubMed  Google Scholar 

  75. Herdegen, T. & Leah, J. D. Inducible and constitutive transcription factors in the mammalian nervous system: control of gene expression by Jun, Fos and Krox, and CREB/ATF proteins. Brain Res. Brain Res. Rev. 28, 370–490 (1998).

    CAS  PubMed  Google Scholar 

  76. Greer, P. L. & Greenberg, M. E. From synapse to nucleus: calcium-dependent gene transcription in the control of synapse development and function. Neuron 59, 846–860 (2008).

    CAS  PubMed  Google Scholar 

  77. MacGibbon, G. A. et al. Expression of Fos, Jun, and Krox family proteins in Alzheimer's disease. Exp. Neurol. 147, 316–332 (1997).

    CAS  PubMed  Google Scholar 

  78. Rakhade, S. N. et al. A common pattern of persistent gene activation in human neocortical epileptic foci. Ann. Neurol. 58, 736–747 (2005).

    CAS  PubMed  Google Scholar 

  79. Rakhade, S. N. et al. Activity-dependent gene expression correlates with interictal spiking in human neocortical epilepsy. Epilepsia 48 (Suppl. 5), 86–95 (2007).

    CAS  PubMed  Google Scholar 

  80. Jensen, F. E., Firkusny, I. R. & Mower, G. D. Differences in c-fos immunoreactivity due to age and mode of seizure induction. Brain Res. Mol. Brain Res. 17, 185–193 (1993).

    CAS  PubMed  Google Scholar 

  81. Dube, C. et al. C-Fos, Jun D and HSP72 immunoreactivity, and neuronal injury following lithium-pilocarpine induced status epilepticus in immature and adult rats. Brain Res. Mol. Brain Res. 63, 139–154 (1998).

    CAS  PubMed  Google Scholar 

  82. Hyde, P., Stafstrom, C. E., Firkusny, I. R., Holmes, G. L. & Jensen, F. E. Parallel age-dependent c-fos immunoreactivity and seizure characteristics induced by kainic acid. Epilepsia 33, 44–44 (1992).

    Google Scholar 

  83. Bramham, C. R., Worley, P. F., Moore, M. J. & Guzowski, J. F. The immediate early gene arc/arg3.1: regulation, mechanisms, and function. J. Neurosci. 28, 11760–11767 (2008).

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Matsuzaki, M., Honkura, N., Ellis-Davies, G. C. & Kasai, H. Structural basis of long-term potentiation in single dendritic spines. Nature 429, 761–766 (2004).

    CAS  PubMed Central  PubMed  Google Scholar 

  85. Bourne, J. N. & Harris, K. M. Balancing structure and function at hippocampal dendritic spines. Annu. Rev. Neurosci. 31, 47–67 (2008).

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Bredt, D. S. & Nicoll, R. A. AMPA receptor trafficking at excitatory synapses. Neuron 40, 361–379 (2003).

    CAS  PubMed  Google Scholar 

  87. Sanchez, R. M., Dai, W., Levada, R. E., Lippman, J. J. & Jensen, F. E. AMPA/kainate receptor-mediated downregulation of GABAergic synaptic transmission by calcineurin after seizures in the developing rat brain. J. Neurosci. 25, 3442–3451 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Kurz, J. E. et al. A significant increase in both basal and maximal calcineurin activity in the rat pilocarpine model of status epilepticus. J. Neurochem. 78, 304–315 (2001).

    CAS  PubMed  Google Scholar 

  89. Khalilov, I., Holmes, G. L. & Ben Ari, Y. In vitro formation of a secondary epileptogenic mirror focus by interhippocampal propagation of seizures. Nat. Neurosci. 6, 1079–1085 (2003).

    CAS  PubMed  Google Scholar 

  90. Blair, R. E., Sombati, S., Lawrence, D. C., McCay, B. D. & DeLorenzo, R. J. Epileptogenesis causes acute and chronic increases in GABAA receptor endocytosis that contributes to the induction and maintenance of seizures in the hippocampal culture model of acquired epilepsy. J. Pharmacol. Exp. Ther. 310, 871–880 (2004).

    CAS  PubMed  Google Scholar 

  91. Bernard, C. et al. Acquired dendritic channelopathy in temporal lobe epilepsy. Science 305, 532–535 (2004).

    CAS  PubMed  Google Scholar 

  92. Rakhade, S. N. et al. Early alterations of AMPA receptors mediate synaptic potentiation induced by neonatal seizures. J. Neurosci. 28, 7979–7990 (2008).

    CAS  PubMed Central  PubMed  Google Scholar 

  93. Jiang, X. et al. Activated Src kinases interact with the N-methyl-D-aspartate receptor after neonatal brain ischemia. Ann. Neurol. 63, 632–641 (2008).

    CAS  PubMed  Google Scholar 

  94. Cavazos, J. E., Golarai, G. & Sutula, T. P. Mossy fiber synaptic reorganization induced by kindling: time course of development, progression, and permanence. J. Neurosci. 11, 2795–2803 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Patrylo, P. R. & Dudek, F. E. Physiological unmasking of new glutamatergic pathways in the dentate gyrus of hippocampal slices from kainate-induced epileptic rats. J. Neurophysiol. 79, 418–429 (1998).

    CAS  PubMed  Google Scholar 

  96. Holmes, G. L., Khazipov, R. & Ben Ari, Y. Seizure-induced damage in the developing human: relevance of experimental models. Prog. Brain Res. 135, 321–334 (2002).

    PubMed  Google Scholar 

  97. Wasterlain, C. G. et al. Seizure-induced neuronal death in the immature brain. Prog. Brain Res. 135, 335–353 (2002).

    PubMed  Google Scholar 

  98. Toth, Z., Yan, X. X., Haftoglu, S., Ribak, C. & Baram, T. Z. Seizure-induced neuronal injury: vulnerability to febrile seizures in an immature rat model. J. Neurosci. 18, 4285–4294 (1998).

    CAS  PubMed Central  PubMed  Google Scholar 

  99. Kinney, H. C., Haynes, R. L., Folkerth, R. D., Golden, J. A. & Harding, B. In Pathology and Genetics: Acquired and Inherited Diseases of the Developing Nervous System 20, 29–40 (ISN Neuropathology Press, Basel, 2004).

    Google Scholar 

  100. Kanold, P. O., Kara, P., Reid, R. C. & Shatz, C. J. Role of subplate neurons in functional maturation of visual cortical columns. Science 301, 521–525 (2003).

    CAS  PubMed  Google Scholar 

  101. McQuillen, P. S., Sheldon, R. A., Shatz, C. J. & Ferriero, D. M. Selective vulnerability of subplate neurons after early neonatal hypoxia-ischemia. J. Neurosci. 23, 3308–3315 (2003).

    CAS  PubMed Central  PubMed  Google Scholar 

  102. Mikati, M. A., El Hokayem, J. A. & El Sabban, M. E. Effects of a single dose of erythropoietin on subsequent seizure susceptibility in rats exposed to acute hypoxia at P10. Epilepsia 48, 175–181 (2007).

    CAS  PubMed  Google Scholar 

  103. Tandon, P. et al. Neuroprotective effects of brain-derived neurotrophic factor in seizures during development. Neuroscience 91, 293–303 (1999).

    CAS  PubMed  Google Scholar 

  104. Scharfman, H. E., Goodman, J. H., Sollas, A. L. & Croll, S. D. Spontaneous limbic seizures after intrahippocampal infusion of brain-derived neurotrophic factor. Exp. Neurol. 174, 201–214 (2002).

    CAS  PubMed  Google Scholar 

  105. McNamara, J. O., Huang, Y. Z. & Leonard, A. S. Molecular signaling mechanisms underlying epileptogenesis. Sci. STKE re12 (2006).

  106. Dube, C., Vezzani, A., Behrens, M., Bartfai, T. & Baram, T. Z. Interleukin-1β contributes to the generation of experimental febrile seizures. Ann. Neurol. 57, 152–155 (2005).

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Choi, J. & Koh, S. Role of brain inflammation in epileptogenesis. Yonsei Med. J. 49, 1–18 (2008).

    PubMed Central  PubMed  Google Scholar 

  108. Viviani, B. et al. Interleukin-1β enhances NMDA receptor-mediated intracellular calcium increase through activation of the Src family of kinases. J. Neurosci. 23, 8692–8700 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Calderone, A. et al. Ischemic insults derepress the gene silencer REST in neurons destined to die. J. Neurosci. 23, 2112–2121 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Cornejo, B. J., Mesches, M. H., Coultrap, S., Browning, M. D. & Benke, T. A. A single episode of neonatal seizures permanently alters glutamatergic synapses. Ann. Neurol. 61, 411–426 (2007).

    CAS  PubMed  Google Scholar 

  111. Brooks-Kayal, A. R., Shumate, M. D., Jin, H., Rikhter, T. Y. & Coulter, D. A. Selective changes in single cell GABAA receptor subunit expression and function in temporal lobe epilepsy. Nat. Med. 4, 1166–1172 (1998).

    CAS  PubMed  Google Scholar 

  112. Hu, Y. et al. Surface expression of GABAA receptors is transcriptionally controlled by the interplay of cAMP-response element-binding protein and its binding partner inducible cAMP early repressor. J. Biol. Chem. 283, 9328–9340 (2008).

    CAS  PubMed Central  PubMed  Google Scholar 

  113. Shah, P., Riphagen, S., Beyene, J. & Perlman, M. Multiorgan dysfunction in infants with post-asphyxial hypoxic-ischaemic encephalopathy. Arch. Dis. Child Fetal Neonatal Ed. 89, F152–F155 (2004).

    CAS  PubMed Central  PubMed  Google Scholar 

  114. Zhang, K., Peng, B. W. & Sanchez, R. M. Decreased IH in hippocampal area CA1 pyramidal neurons after perinatal seizure-inducing hypoxia. Epilepsia 47, 1023–1028 (2006).

    PubMed  Google Scholar 

  115. Chen, K. et al. Prevention of plasticity of endocannabinoid signaling inhibits persistent limbic hyperexcitability caused by developmental seizures. J. Neurosci. 27, 46–58 (2007).

    PubMed  PubMed Central  Google Scholar 

  116. Ludanyi, A. et al. Downregulation of the CB1 cannabinoid receptor and related molecular elements of the endocannabinoid system in epileptic human hippocampus. J. Neurosci. 28, 2976–2990 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Toyoda, I. & Buckmaster, P. S. Prolonged infusion of cycloheximide does not block mossy fiber sprouting in a model of temporal lobe epilepsy. Epilepsia 46, 1017–1020 (2005).

    CAS  PubMed  Google Scholar 

  118. Meikle, L. et al. Response of a neuronal model of tuberous sclerosis to mammalian target of rapamycin (mTOR) inhibitors: effects on mTORC1 and Akt signaling lead to improved survival and function. J. Neurosci. 28, 5422–5432 (2008).

    CAS  PubMed Central  PubMed  Google Scholar 

  119. Holmes, G. L., Gaiarsa, J. L., Chevassus- Au-Louis, N. & Ben-Ari, Y. Consequences of neonatal seizures in the rat: morphological and behavioral effects. Ann. Neurol. 44, 845–857 (1998).

    CAS  PubMed  Google Scholar 

  120. Takei, H., Wilfong, A., Yoshor, D., Armstrong, D. L. & Bhattacharjee, M. B. Evidence of increased cell proliferation in the hippocampus in children with Ammon's horn sclerosis. Pathol. Int. 57, 76–81 (2007).

    CAS  PubMed  Google Scholar 

  121. Sankar, R., Shin, D., Liu, H., Katsumori, H. & Wasterlain, C. G. Granule cell neurogenesis after status epilepticus in the immature rat brain. Epilepsia 41 (Suppl. 6), S53–S56 (2000).

    PubMed  Google Scholar 

  122. Lemmens, E. M., Lubbers, T., Schijns, O. E., Beuls, E. A. & Hoogland, G. Gender differences in febrile seizure-induced proliferation and survival in the rat dentate gyrus. Epilepsia 46, 1603–1612 (2005).

    PubMed  Google Scholar 

  123. Schmid, R., Tandon, P., Stafstrom, C. E. & Holmes, G. L. Effects of neonatal seizures on subsequent seizure-induced brain injury. Neurology 53, 1754–1761 (1999).

    CAS  PubMed  Google Scholar 

  124. Jabs, R., Seifert, G. & Steinhauser, C. Astrocytic function and its alteration in the epileptic brain. Epilepsia 49 (Suppl. 2), 3–12 (2008).

    CAS  PubMed  Google Scholar 

  125. Sperber, E. F., Haas, K. Z., Romero, M. T. & Stanton, P. K. Flurothyl status epilepticus in developing rats: behavioral, electrographic histological and electrophysiological studies. Brain Res. Dev. Brain Res. 116, 59–68 (1999).

    CAS  PubMed  Google Scholar 

  126. Rizzi, M. et al. Glia activation and cytokine increase in rat hippocampus by kainic acid-induced status epilepticus during postnatal development. Neurobiol. Dis. 14, 494–503 (2003).

    CAS  PubMed  Google Scholar 

  127. Furuta, A., Rothstein, J. D. & Martin, L. J. Glutamate transporter subtypes are expressed differentially during rat CNS development. J. Neurosci. 17, 8363–8375 (1997).

    CAS  PubMed Central  PubMed  Google Scholar 

  128. Roch, C., Leroy, C., Nehlig, A. & Namer, I. J. Predictive value of cortical injury for the development of temporal lobe epilepsy in 21-day-old rats: an MRI approach using the lithium-pilocarpine model. Epilepsia 43, 1129–1136 (2002).

    PubMed  Google Scholar 

  129. Dube, C., Yu, H., Nalcioglu, O. & Baram, T. Z. Serial MRI after experimental febrile seizures: altered T2 signal without neuronal death. Ann. Neurol. 56, 709–714 (2004).

    PubMed Central  PubMed  Google Scholar 

  130. Kimiwada, T. et al. Hippocampal and thalamic diffusion abnormalities in children with temporal lobe epilepsy. Epilepsia 47, 167–175 (2006).

    PubMed  Google Scholar 

  131. Lin, J. J. et al. Reduced neocortical thickness and complexity mapped in mesial temporal lobe epilepsy with hippocampal sclerosis. Cereb. Cortex 17, 2007–2018 (2007).

    PubMed  Google Scholar 

  132. Tyvaert, L. et al. Different structures involved during ictal and interictal epileptic activity in malformations of cortical development: an EEG-fMRI study. Brain 131, 2042–2060 (2008).

    CAS  PubMed  Google Scholar 

  133. Kagawa, K. et al. Epilepsy surgery outcome in children with tuberous sclerosis complex evaluated with α-[11C]methyl-L-tryptophan positron emission tomography (PET). J. Child Neurol. 20, 429–438 (2005).

    PubMed  Google Scholar 

  134. Bragin, A., Wilson, C. L., Fields, T., Fried, I. & Engel, J. Jr. Analysis of seizure onset on the basis of wideband EEG recordings. Epilepsia 46 (Suppl. 5), 59–63 (2005).

    PubMed  Google Scholar 

  135. Engel, J. Jr. Progress in epilepsy: reducing the treatment gap and the promise of biomarkers. Curr Opin Neurol 21, 150–154 (2008).

    PubMed  Google Scholar 

  136. Williams, P. A., Dou, P. & Dudek, F. E. Epilepsy and synaptic reorganization in a perinatal rat model of hypoxia-ischemia. Epilepsia 45, 1210–1218 (2004).

    PubMed  Google Scholar 

  137. Rakhade, S. N. et al. Early life hypoxia induced seizures lead to spontaneous epilepsy in a rodent model [abstract]. Epilepsia 49 (S7), 327 (2008).

    Google Scholar 

  138. Anderson, A. E., Hrachovy, R. A., Antalffy, B. A., Armstrong, D. L. & Swann, J. W. A chronic focal epilepsy with mossy fiber sprouting follows recurrent seizures induced by intrahippocampal tetanus toxin injection in infant rats. Neuroscience 92, 73–82 (1999).

    CAS  PubMed  Google Scholar 

  139. Kubova, H. et al. Status epilepticus in immature rats leads to behavioural and cognitive impairment and epileptogenesis. Eur. J. Neurosci. 19, 3255–3265 (2004).

    PubMed  Google Scholar 

  140. Mateffyova, A., Otahal, J., Tsenov, G., Mares, P. & Kubova, H. Intrahippocampal injection of endothelin-1 in immature rats results in neuronal death, development of epilepsy and behavioral abnormalities later in life. Eur. J. Neurosci. 24, 351–360 (2006).

    PubMed  Google Scholar 

  141. D'Ambrosio, R. et al. Post-traumatic epilepsy following fluid percussion injury in the rat. Brain 127, 304–314 (2004).

    PubMed  Google Scholar 

  142. Nadler, J. V., Perry, B. W. & Cotman, C. W. Intraventricular kainic acid preferentially destroys hippocampal pyramidal cells. Nature 271, 676–677 (1978).

    CAS  PubMed  Google Scholar 

  143. Ben-Ari, Y. & Lagowska, J. Epileptogenic action of intra-amygdaloid injection of kainic acid [French]. C. R. Acad. Sci. Hebd. Seances Acad. Sci. D 287, 813–816 (1978).

    CAS  PubMed  Google Scholar 

  144. Jope, R. S., Morrisett, R. A. & Snead, O. C. Characterization of lithium potentiation of pilocarpine-induced status epilepticus in rats. Exp. Neurol. 91, 471–480 (1986).

    CAS  PubMed  Google Scholar 

  145. Turski, W. A. et al. Limbic seizures produced by pilocarpine in rats: behavioural, electroencephalographic and neuropathological study. Behav. Brain Res. 9, 315–335 (1983).

    CAS  PubMed  Google Scholar 

  146. Mazarati, A. M., Wasterlain, C. G., Sankar, R. & Shin, D. Self-sustaining status epilepticus after brief electrical stimulation of the perforant path. Brain Res. 801, 251–253 (1998).

    CAS  PubMed  Google Scholar 

  147. Nissinen, J., Halonen, T., Koivisto, E. & Pitkanen, A. A new model of chronic temporal lobe epilepsy induced by electrical stimulation of the amygdala in rat. Epilepsy Res. 38, 177–205 (2000).

    CAS  PubMed  Google Scholar 

  148. Karhunen, H., Jolkkonen, J., Sivenius, J. & Pitkanen, A. Epileptogenesis after experimental focal cerebral ischemia. Neurochem. Res. 30, 1529–1542 (2005).

    CAS  PubMed  Google Scholar 

  149. Misonou, H. et al. Regulation of ion channel localization and phosphorylation by neuronal activity. Nat. Neurosci. 7, 711–718 (2004).

    CAS  PubMed  Google Scholar 

  150. Cross, D. J. & Cavazos, J. E. Synaptic reorganization in subiculum and CA3 after early-life status epilepticus in the kainic acid rat model. Epilepsy Res. 73, 156–165 (2007).

    CAS  PubMed  Google Scholar 

  151. Jensen, F. E. Post-traumatic epilepsy: treatable epileptogenesis. Epilepsia 50 (Suppl. 2), 1–3 (2009).

    PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by funding from the National Institutes of Health (grants RO1 NS31718 and DP1 OD003347 to F. E. Jensen), the Epilepsy Therapy Development Project (F. E. Jensen), and a grant from the Parents Against Childhood Epilepsy (S. N. Rakhade and F. E. Jensen). Additional support was provided from the National Institutes of Health Mental Retardation and Developmental Disabilities Center (P30 HD18655).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frances E. Jensen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rakhade, S., Jensen, F. Epileptogenesis in the immature brain: emerging mechanisms. Nat Rev Neurol 5, 380–391 (2009). https://doi.org/10.1038/nrneurol.2009.80

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2009.80

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing