Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cross-modal plasticity: where and how?

Key Points

  • Both young and adult brains show a remarkable capacity to be shaped by environmental input, and to be altered by the deprivation of input in one sensory modality (for example, deafness or blindness). However, different areas and functions show different susceptibilities to such plasticity, and different times during the life span of the individual when they are sensitive to such changes.

  • Plastic changes, such as increases in spine density or neuronal density, can occur in the primary cortices that mediate the spared modalities after sensory deprivation in one modality. These changes might underlie reports of behavioural improvements in the spared modalities and/or might result from increased reliance on these modalities.

  • In humans, it is difficult (but not impossible) to distinguish between changes that result from sensory deprivation (for example, deafness) and those that result from altered linguistic experience (for example, using sign language).

  • Improvements in behaviour tend to involve complex processing rather than simple thresholds.

  • Polymodal association areas of cortex can also become reorganized after sensory deprivation. For example, visual deprivation can lead to increased recruitment of parietal cortex and the superior colliculus by the auditory and somatosensory systems. Few studies have investigated the possible critical periods for such reorganization. Studies in deaf and blind humans indicate that recruitment of polymodal association areas might be associated with improved performance in the spared modalities.

  • The primary cortex that is associated with the deprived modality might also undergo plastic changes, in some cases becoming activated by stimuli in the spared modalities. Such activation might result from the persistence of normally pruned polymodal connections, but has been difficult to show in humans.

  • Cross-modal plasticity might result from a variety of mechanisms. Changes in subcortical connectivity might lead to recruitment of the primary visual cortex by auditory inputs, as in the case of the blind mole rat. Other possible mechanisms include alterations in feedback between cortico-cortical connections and the stabilization of long-range connections, such as those found between the primary visual and auditory cortices in the monkey.

  • An understanding of these mechanisms could help in deciding when to provide sensory implants (such as cochlear implants in the deaf or retinal implants in the blind): although some mechanisms might be available throughout life, others seem to be restricted in their time periods of occurrence and in the types of altered experience that they respond to. For example, changes in subcortical connectivity are less likely to occur in the adult and, if they occur at all, might be observed only after major deafferentation. Changes in cortico-cortical connections, however, might be more amenable to changes throughout life and across a variety of altered experiences.

  • Further understanding of the plastic changes that follow sensory deprivation will help to clarify the role of sensory input in specifying cortical responses and behaviour. Such knowledge will also be important for efforts to restore lost sensory modalities by implants or other techniques.

Abstract

Animal studies have shown that sensory deprivation in one modality can have striking effects on the development of the remaining modalities. Although recent studies of deaf and blind humans have also provided convincing behavioural, electrophysiological and neuroimaging evidence of increased capabilities and altered organization of spared modalities, there is still much debate about the identity of the brain systems that are changed and the mechanisms that mediate these changes. Plastic changes across brain systems and related behaviours vary as a function of the timing and the nature of changes in experience. This specificity must be understood in the context of differences in the maturation rates and timing of the associated critical periods, differences in patterns of transiently existing connections, and differences in molecular factors across brain systems.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Possible mechanisms at the system level for cross-modal plasticity.
Figure 2: Auditory responses of primary visual cortical neurons.
Figure 3: Studies of cross-modal plasticity in the deaf have indicated separate effects of altered language experience and of altered sensory experience.

Similar content being viewed by others

References

  1. Zrenner, E. Will retinal implants restore vision? Science 295, 1022–1025 (2002).

    CAS  PubMed  Google Scholar 

  2. Rauschecker, J. P. & Shannon, R. V. Sending sound to the brain. Science 295, 1025–1029 (2002).

    CAS  PubMed  Google Scholar 

  3. Lee, D. S. et al. Cross-modal plasticity and cochlear implants. Nature 409, 149–150 (2001).

    CAS  PubMed  Google Scholar 

  4. Ryugo, D. K. et al. Increased spine density in auditory cortex following visual or somatic deafferentation. Brain Res. 90, 143–146 (1975).

    CAS  PubMed  Google Scholar 

  5. Gyllensten, L., Malmfors, T. & Norrlin, M. L. Growth alteration in the auditory cortex of visually deprived mice. J Comp Neurol. 126, 463–469 (1966).

    CAS  PubMed  Google Scholar 

  6. Kato, N. et al. Plasticity of an aberrant geniculocortical pathway in neonatally lesioned cats. Neuroreport 4, 915–918 (1993).

    CAS  PubMed  Google Scholar 

  7. Innocenti, G. & Clarke, S. Bilateral transitory projection to visual areas from auditory cortex in kittens. Brain Res. 316, 143–148 (1984).

    CAS  PubMed  Google Scholar 

  8. Negyessy, L. et al. Cross-modal plasticity of the corticothalamic circuits in rats enucleated on the first postnatal day. Eur. J. Neurosci. 12, 1654–1668 (2000).

    CAS  PubMed  Google Scholar 

  9. Frost, D. in Cellular Thalamic Mechanisms (eds Bentivoglio, M., Macchi, G. & Spreafico, R.) 447–464 (Elsevier, Amsterdam, 1988).

    Google Scholar 

  10. Rauschecker, J. et al. Crossmodal changes in the somatosensory vibrissa/barrel system of visually deprived animals. Proc. Natl Acad. Sci. USA 89, 5063–5067 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Toldi, J., Farkas, T. & Volgyi, B. Neonatal enucleation induces cross-modal changes in the barrel cortex of rat. A behavioural and electrophysiological study. Neurosci. Lett. 167, 1–4 (1994).

    CAS  PubMed  Google Scholar 

  12. Toldi, J., Rojik, I. & Feher, O. Neonatal monocular enucleation-induced cross-modal effects observed in the cortex of adult rat. Neuroscience 62, 105–114 (1994).

    CAS  PubMed  Google Scholar 

  13. Volgyi, B., Farkas, T. & Toldi, J. Compensation of a sensory deficit inflicted upon newborn and adult animals. A behavioural study. Neuroreport 4, 827–829 (1993).

    CAS  PubMed  Google Scholar 

  14. Sterr, A. et al. Changed perceptions in Braille readers. Nature 391, 134–135 (1998).

    CAS  PubMed  Google Scholar 

  15. Grant, A., Thiagarajah, M. & Sathian, K. Tactile perception in blind Braille readers: a psychophysical study of acuity and hyperacuity using gratings and dot patterns. Percept. Psychophys. 62, 301–312 (2000).

    CAS  PubMed  Google Scholar 

  16. Sterr, A. et al. Perceptual correlates of changes in cortical representation of fingers in blind multifinger Braille readers. J. Neurosci. 18, 4417–4423 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Pascual-Leone, A. & Torres, F. Plasticity of the sensorimotor cortex representation of the reading finger in Braille readers. Brain 116, 39–52 (1993).

    PubMed  Google Scholar 

  18. Giraud, A. et al. Functional plasticity of language-related brain areas after cochlear implantation. Brain 124, 1307–1316 (2001).

    CAS  PubMed  Google Scholar 

  19. Giraud, A. et al. Cross-modal plasticity underpins language recovery after cochlear implantation. Neuron 30, 657–663 (2001).

    CAS  PubMed  Google Scholar 

  20. Bross, M. & Sauerwein, H. Signal detection analysis of visual flicker in deaf and hearing individuals. Percept. Mot. Skills 51, 839–843 (1980).

    CAS  PubMed  Google Scholar 

  21. Bross, M. Residual sensory capacities of the deaf: a signal detection analysis of a visual discrimination task. Percept. Mot. Skills 48, 187–194 (1979).

    CAS  PubMed  Google Scholar 

  22. Finney, E. M. & Dobkins, K. R. Visual contrast sensitivity in deaf versus hearing populations: exploring the perceptual consequences of auditory deprivation and experience with a visual language. Brain Res Cogn Brain Res. 11, 171–183 (2001).

    CAS  PubMed  Google Scholar 

  23. Bosworth, R. & Dobkins, K. R. Left hemisphere dominance for motion processing in deaf signers. Psychol. Sci. 10, 256–262 (1999).

    Google Scholar 

  24. Brozinsky, C. & Bavelier, D. Does early deafness alter motion processing? Soc. Neurosci. Abstr. 27, 961.7 (2001).

    Google Scholar 

  25. Thinus-Blanc, C. & Gaunet, F. Representation of space in blind persons: vision as a spatial sense? Psychol. Bull. 121, 20–42 (1997).

    CAS  PubMed  Google Scholar 

  26. Starlinger, I. & Niemeyer, W. Do the blind hear better? Investigations on auditory processing in congenital or early acquired blindness. I. Peripheral functions. Audiology 20, 503–509 (1981).

    CAS  PubMed  Google Scholar 

  27. Roder, B. & Neville, H. in Handbook of Neuropsychology (eds Grafman, J. & Robertson, I. H.) (Elsevier Science, Amsterdam, in the press).

  28. Axelrod, S. Effects of Early Blindness (American Foundation for the Blind, New York, 1959).

    Google Scholar 

  29. Vidyasagar, T. Possible plasticity in the rat superior colliculus. Nature 275, 140–141 (1978).

    CAS  PubMed  Google Scholar 

  30. Hyvarinen, J., Carlson, S. & Hyvarinen, L. Early visual deprivation alters modality of neuronal responses in area 19 of monkey cortex. Neurosci. Lett. 26, 239–243 (1981).

    CAS  PubMed  Google Scholar 

  31. Hyvarinen, J. et al. Modification of visual functions of the parietal lobe at early age in the monkey. Med. Biol. 56, 103–109 (1978).

    CAS  PubMed  Google Scholar 

  32. Rauschecker, J. Substitution of visual by auditory inputs in the cat's anterior ectosylvian cortex. Prog. Brain Res. 112, 313–323 (1996).

    CAS  PubMed  Google Scholar 

  33. Rauschecker, J. P. Compensatory plasticity and sensory substitution in the cerebral cortex. Trends Neurosci. 18, 36–43 (1995).

    CAS  PubMed  Google Scholar 

  34. Rauschecker, J. & Kniepert, U. Auditory localization behaviour in visually deprived cats. Eur. J. Neurosci. 6, 149–160 (1994).

    CAS  PubMed  Google Scholar 

  35. Rice, C. Early blindness, early experience, and perceptual enhancement. Am. Found. Blind Res. Bull. 22, 1–22 (1970).

    Google Scholar 

  36. Roder, B. et al. Improved auditory spatial tuning in blind humans. Nature 400, 162–166 (1999).

    CAS  PubMed  Google Scholar 

  37. Lessard, N. et al. Early-blind human subjects localize sound sources better than sighted subjects. Nature 395, 278–280 (1998).

    CAS  PubMed  Google Scholar 

  38. Roder, B. et al. Event-related potentials during auditory and somatosensory discrimination in sighted and blind human subjects. Cogn. Brain Res. 4, 77–93 (1996).

    CAS  Google Scholar 

  39. Kujala, T. et al. Auditory and somatosensory event-related brain potentials in early blind humans. Exp. Brain Res. 104, 519–526 (1995).

    CAS  PubMed  Google Scholar 

  40. Niemeyer, W. & Starlinger, I. Do the blind hear better? Investigations on auditory processing in congenital or early acquired blindness. II. Central functions. Audiology 20, 510–515 (1981).

    CAS  PubMed  Google Scholar 

  41. Levanen, S. & Hamdorf, D. Feeling vibrations: enhanced tactile sensitivity in congenitally deaf humans. Neurosci. Lett. 301, 75–77 (2001).

    CAS  PubMed  Google Scholar 

  42. Proksch, J. & Bavelier, D. Changes in the spatial distribution of visual attention after early deafness. J. Cogn. Neurosci. (in the press).

  43. Rettenbach, R., Diller, G. & Sireteanu, R. Do deaf people see better? Texture segmentation and visual search compensate in adult but not in juvenile subjects. J. Cogn. Neurosci. 11, 560–583 (1999).

    CAS  PubMed  Google Scholar 

  44. Bavelier, D. et al. Visual attention to the periphery is enhanced in congenitally deaf individuals. J. Neurosci. 20, 1–6 (2000).

    Google Scholar 

  45. Parasnis, I. & Samar, V. J. Parafoveal attention in congenitally deaf and hearing young adults. Brain Cogn. 4, 313–327 (1985).

    CAS  PubMed  Google Scholar 

  46. Neville, H. J. & Lawson, D. S. Attention to central and peripheral visual space in a movement detection task: an event related potential and behavioral study. II. Congenitally deaf adults. Brain Res. 405, 268–283 (1987).

    CAS  PubMed  Google Scholar 

  47. Loke, W. H. & Song, S. Central and peripheral visual processing in hearing and nonhearing individuals. Bull. Psychon. Soc. 29, 437–440 (1991).

    Google Scholar 

  48. Bavelier, D. et al. Impact of early deafness and early exposure to sign language on the cerebral organization for motion processing. J. Neurosci. 21, 8931–8942 (2001).This work shows the separate effects of deafness and signing on the reorganization of visual functions.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Weeks, R. et al. A positron emission tomographic study of auditory localization in the congenitally blind. J. Neurosci. 20, 2664–2672 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Büchel, C. et al. Different activation patterns in the visual cortex of late and congenitally blind subjects. Brain 121, 409–419 (1998).

    PubMed  Google Scholar 

  51. Calvert, G. Crossmodal processing in the human brain: insights from functional neuroimaging studies. Cereb. Cortex 11, 1110–1123 (2001).

    CAS  PubMed  Google Scholar 

  52. Zangaladze, A. et al. Involvement of visual cortex in tactile discrimination of orientation. Nature 401, 587–590 (1999).

    CAS  PubMed  Google Scholar 

  53. Sathian, K. & Zangaladze, A. Feeling with the mind's eye: the role of visual imagery in tactile perception. Optom. Vis. Sci. 78, 276–281 (2001).

    CAS  PubMed  Google Scholar 

  54. Macaluso, E. & Driver, J. Spatial attention and crossmodal interactions between vision and touch. Neuropsychologia 39, 1304–1316 (2001).

    CAS  PubMed  Google Scholar 

  55. Shams, L., Kamitani, Y. & Shimojo, S. Sound modulates visual evoked potentials in humans. Neuroreport 12, 3849–3852 (2001).References 51–55 show extensive cross-modal interactions in non-deprived humans. Expansions of these cross-modal interactions could mediate, at least in part, cross-modal plasticity after deprivation.

    CAS  PubMed  Google Scholar 

  56. McIntosh, A. R., Rajah, M. N. & Lobaugh, N. J. Interactions of prefrontal cortex in relation to awareness in sensory learning. Science 284, 1531–1533 (1999).

    CAS  PubMed  Google Scholar 

  57. Metin, C. & Frost, D. Visual responses of neurons in somatosensory cortex of hamsters with experimentally induced retinal projections to somatosensory thalamus. Proc. Natl Acad. Sci. USA 86, 357–361 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Sur, M., Garraghty, P. E. & Roe, A. W. Experimentally induced visual projections into auditory thalamus and cortex. Science 242, 1437–1441 (1988).

    CAS  PubMed  Google Scholar 

  59. Ptito, M. et al. When the auditory cortex turns visual. Prog. Brain Res. 134, 447–458 (2001).

    CAS  PubMed  Google Scholar 

  60. von Melchner, L., Pallas, S. & Sur, M. Visual behavior mediated by retinal projections directed to the auditory pathway. Nature 404, 871–876 (2000).

    CAS  PubMed  Google Scholar 

  61. Frost, D. et al. Surgically created neural pathways mediate visual pattern discrimination. Proc. Natl Acad. Sci. USA 97, 11068–11073 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Doron, N. & Wollberg, Z. Cross-modal neuroplasticity in the blind mole rat Spalax ehrenbergi: a WGA–HRP tracing study. Neuroreport 5, 2697–2701 (1994).

    CAS  PubMed  Google Scholar 

  63. Heil, P. et al. Invasion of visual cortex by the auditory system in the naturally blind mole rat. Neuroreport 7, 41–51 (1991).

    Google Scholar 

  64. Yaka, R. et al. Pathological and experimentally induced blindness induces auditory activity in the cat primary visual cortex. Exp. Brain Res. 131, 144–148 (2000).

    CAS  PubMed  Google Scholar 

  65. Bonaventure, N. & Karli, P. Apparition au niveau du cortex visual de potentiels evoqués d'origine auditive chez la souris privèe de photorècepteurs. J. Physiol. (Paris) 60 (Suppl. 2), 407 (1968).

    Google Scholar 

  66. Bonaventure, N. & Karli, P. Nouvelles donnes sur les potentiels d'origine auditive evoques au niveau du cortex visuel chez la Souris. CR Soc. Biol. (Paris) 163, 1705–1708 (1969).

    Google Scholar 

  67. Rebillard, G. et al. Enhancement of visual responses on the primary auditory cortex of the cat after an early destruction of cochlear receptors. Brain Res. 129, 162–164 (1977).References 62–67 are examples of the few animal studies that point to recruitment of the primary cortex of the deprived modality by the spared ones.

    CAS  PubMed  Google Scholar 

  68. Veraart, C. et al. Glucose utilization in human visual cortex is abnormally elevated in blindness of early onset but decreased in blindness of late onset. Brain Res. 510, 115–121 (1990).

    CAS  PubMed  Google Scholar 

  69. Wanet-Defalque, M. C. et al. High metabolic activity in the visual cortex of early blind human subjects. Brain Res. 446, 369–373 (1988).

    CAS  PubMed  Google Scholar 

  70. Sadato, N. et al. Activation of the primary visual cortex by Braille reading in blind subjects. Nature 380, 526–528 (1996).

    CAS  PubMed  Google Scholar 

  71. Levanen, S., Jousmaki, V. & Hari, R. Vibration-induced auditory-cortex activation in a congenitally deaf adult. Curr. Biol. 8, 869–872 (1998).

    CAS  PubMed  Google Scholar 

  72. Catalan-Ahumada, M. et al. High metabolic activity demonstrated by positron emission tomography in human auditory cortex in case of deafness of early onset. Brain Res. 623, 287–292 (1993).

    CAS  PubMed  Google Scholar 

  73. Nishimura, H. et al. Sign language 'heard' in the auditory cortex. Nature 397, 116 (1999).

    CAS  PubMed  Google Scholar 

  74. Finney, E., Fine, I. & Dobkins, K. Visual stimuli activate auditory cortex in the deaf. Nature Neurosci. 4, 1171–1173 (2001).

    CAS  PubMed  Google Scholar 

  75. Cohen, L. et al. Functional relevance of cross-modal plasticity in blind humans. Nature 389, 180–183 (1997).

    CAS  PubMed  Google Scholar 

  76. Brett, M., Johnsrude, I. S. & Owen, A. M. The problem of functional localization in the human brain. Nature Rev. Neurosci. 3, 243–249 (2002).

    CAS  Google Scholar 

  77. Rademacher, J. et al. Topographical variation of the human primary cortices: implications for neuroimaging, brain mapping, and neurobiology. Cereb. Cortex. 3, 313–329 (1993).

    CAS  PubMed  Google Scholar 

  78. Fischl, B. et al. High-resolution inter-subject averaging and a surface-based coordinate system. Hum. Brain Mapp. 8, 272–284 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Roeder, B., Stock. O., Roesler, F., Bien, S. & Neville, H. J. Plasticity of language functions in blind humans: an fMRI study. Cogn. Neurosci. Soc. Abstr. (2001).

  80. Burton, H., Snyder, A., Conturo, T., Akbudak, E., Ollinger, J. & Raichle, M. A fMRI study of verb generation to auditory nouns in early and late blind. Soc. Neurosci. Abstr. (in the press).

  81. Hickok, G. et al. Sensory mapping in a congenitally deaf subject: MEG and fMRI studies of cross-modal non-plasticity. Hum. Brain Mapp. 5, 437–444 (1997).

    CAS  PubMed  Google Scholar 

  82. Rebillard, G. et al. Histo-physiological relationships in the deaf white cat auditory system. Acta Otolaryngol. 82, 48–56 (1976).

    CAS  PubMed  Google Scholar 

  83. Kaas, J. H. in The Cognitive Neurosciences (ed. Gazzaniga, M. S.) 51–71 (MIT Press, Cambridge, Massachusetts, 1995).

    Google Scholar 

  84. Merzenich, M. et al. in Neurobiology of Neocortex (eds Rakic, P. & Singer, W.) 41–67 (Dahlem Konferenzen/John Wiley & Sons/S. Bernhard, New York, 1988).

    Google Scholar 

  85. Das, A. & Gilbert, C. D. Long-range horizontal connections and their role in cortical reorganization revealed by optical recording of cat primary visual cortex. Nature 375, 780–784 (1995).

    CAS  PubMed  Google Scholar 

  86. Florence, S. L., Taub, H. B. & Kaas, J. H. Large-scale sprouting of cortical connections after peripheral injury in adult macaque monkeys. Science 282, 1062–1063 (1998).

    Google Scholar 

  87. Hyde, P. & Knudsen, E. The optic tectum controls visually guided adaptive plasticity in the owl's auditory space map. Nature 415, 73–76 (2002).

    CAS  PubMed  Google Scholar 

  88. Jones, E. & Pons, T. Thalamic and brainstem contributions to large-scale plasticity of primate somatosensory cortex. Science 282, 1062–1063 (1998).

    Google Scholar 

  89. Jain, N. et al. Growth of new brainstem connections in adult monkeys with massive sensory loss. Proc. Natl Acad. Sci. USA 97, 5546–5550 (2000).References 87–89 show that although subcortical structures are often considered to be fixed, recent evidence is converging to establish a role for subcortical circuits in plasticity.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Cooper, H., Herbin, M. & Nevo, E. Visual system of a naturally microphthalmic mammal: the blind mole rat, Spalax ehrenbergi. J. Comp. Neurol. 328, 313–350 (1993).

    CAS  PubMed  Google Scholar 

  91. Rehkamper, G., Necker, R. & Nevo, E. Functional anatomy of the thalamus in the blind mole rat Spalax ehrenbergi: an architectonic and electrophysiologically controlled tracing study. J. Comp. Neurol. 347, 570–584 (1994).

    CAS  PubMed  Google Scholar 

  92. Kudo, M., Moriya, M. & Mizuno, N. Auditory projections from the IC to the SCN by way of the LG in the mole, Mogera. Neuroreport 8, 3405–3409 (1997).

    CAS  PubMed  Google Scholar 

  93. Webster, M. J., Ungerleider, L. G. & Bachevalier, J. Development and plasticity of the neural circuitry underlying visual recognition memory. Can. J. Physiol. Pharmacol. 73, 1364–1371 (1995).

    CAS  PubMed  Google Scholar 

  94. Payne, B. & Lomber, S. Neuroplasticity in the cat's visual system. Exp. Brain Res. 121, 334–349 (1998).

    CAS  PubMed  Google Scholar 

  95. Payne, B. R. System-wide repercussions and adaptive plasticity: the sequelae of immature visual cortex damage. Restor. Neurol. Neurosci. 15, 81–106 (1999).

    CAS  PubMed  Google Scholar 

  96. Kral, A. et al. Delayed maturation and sensitive periods in the auditory cortex. Audiol. Neurootol. 6, 346–362 (2001).

    CAS  PubMed  Google Scholar 

  97. Klinke, R. et al. Recruitment of the auditory cortex in congenitally deaf cats by long-term cochlear electrostimulation. Science 285, 1729–1733 (1999).

    CAS  PubMed  Google Scholar 

  98. Kral, A. et al. Congenital auditory deprivation reduces synaptic activity within the auditory cortex in a layer-specific manner. Cereb. Cortex 10, 714–726 (2000).References 96–98 present exciting work in a cat model of congenital deafness that relies on the combined use of the latest anatomical, physiological and behavioural techniques to evaluate the consequences of congenital deafness on the organization of auditory areas and the conditions in which cochlear implants can be expected to be maximally efficient.

    CAS  PubMed  Google Scholar 

  99. Pascual-Leone, A. & Walsh, V. Fast backprojections from the motion to the primary visual area necessary for visual awareness. Science 292, 510–512 (2001).

    CAS  PubMed  Google Scholar 

  100. Bullier, J. Integrated model of visual processing. Brain Res. Brain Res. Rev. 36, 96–107 (2001).

    CAS  PubMed  Google Scholar 

  101. Bullier, J. et al. The role of feedback connections in shaping the responses of visual cortical neurons. Prog. Brain Res. 134, 193–204 (2001).

    CAS  PubMed  Google Scholar 

  102. Macaluso, E., Frith, C. D. & Driver, J. Modulation of human visual cortex by crossmodal spatial attention. Science 289, 1206–1208 (2000).

    CAS  PubMed  Google Scholar 

  103. Innocenti, G. M. Exuberant development of connections, and its possible permissive role in cortical evolution. Trends Neurosci. 18, 397–402 (1995).

    CAS  PubMed  Google Scholar 

  104. Falchier, A. et al. Extensive projections from the primary auditory cortex and polysensory area STP to peripheral area V1 in the macaque. Soc. Neurosci. Abstr. 27, 511.21 (2001).

    Google Scholar 

  105. Rockland, K. S. & Ojima, H. Calcarine Area V1 as a multimodal convergence area. Soc. Neurosci. Abstr. 27, 511.20 (2001).

    Google Scholar 

  106. Calvert, G. A. et al. Activation of auditory cortex during silent lipreading. Science 276, 593–596 (1997).

    CAS  PubMed  Google Scholar 

  107. Foxe, J. J. & Simpson, G. V. Flow of activation from V1 to frontal cortex in humans. A framework for defining 'early' visual processing. Exp. Brain Res. 142, 139–150 (2002).

    PubMed  Google Scholar 

  108. Spinelli, D. N., Staar, A. & Barrett, T. W. Auditory specificity in unit recordings from cat's visual cortex. Exp. Neurol. 22, 75–84 (1968).

    CAS  PubMed  Google Scholar 

  109. Morrell, F. Visual system's view of acoustic space. Nature 238, 44–46 (1972).

    CAS  PubMed  Google Scholar 

  110. Murata, K., Cramer, H. & Bach-y-Rita, P. Neuronal convergence of noxious, acoustic and visual stimuli in the visual cortex of the cat. J. Neurophysiol. 28, 1223–1240 (1965).

    CAS  PubMed  Google Scholar 

  111. Lomo, T. & Mollica, A. Activity of single units in the primary optic cortex in the unanesthetized rabbit during visual acoustic, olfactory and painful stimuli. Arch. Ital. Biol. 100, 86–120 (1962).

    Google Scholar 

  112. Jung, R., Kornhuber, H. H. & Da Fonseca, J. S. in Progress in Brain Research (eds Moruzzi, G., Fressard, A. & Jasper, H. H.) 207–240 (Elsevier, Amsterdam, 1963).

    Google Scholar 

  113. Horn, G. The effect of somaesthetic and photic stimuli on the activity of units in the striate cortex of unanaesthetized, unrestrained cats. J. Physiol. (Lond.) 179, 263–277 (1965).

    CAS  Google Scholar 

  114. Fishman, M. C. & Michael, C. R. Integration of auditory information in the cat visual cortex. Vision Res. 13, 1415–1419 (1973).

    CAS  PubMed  Google Scholar 

  115. Bental, E., Dafny, N. & Feldman, S. Convergence of auditory and visual stimuli on single cells in the primary visual cortex of unanesthetized unrestrained cats. Exp. Neurol. 20, 341–351 (1968).References 108–115 present evidence for multimodal convergence in the primary cortices of controlled, non-lesioned animals.

    CAS  PubMed  Google Scholar 

  116. Schlaug, G. et al. Hearing with the minds eye. Neuroimage 11, S57 (2000).

    Google Scholar 

  117. Neville, H. J. & Lawson, D. S. Attention to central and peripheral visual space in a movement detection task: an event-related potential and behavioral study. I. Normal hearing adults. Brain Res. 405, 253–267 (1987).

    CAS  PubMed  Google Scholar 

  118. Neville, H. J. & Lawson, D. S. Attention to central and peripheral visual space in a movement decision task. III. Separate effects of auditory deprivation and acquisition of a visual language. Brain Res. 405, 284–294 (1987).

    CAS  PubMed  Google Scholar 

  119. Bosworth, R. G. & Dobkins, K. R. Visual field asymmetries for motion processing in deaf and hearing signers. Brain Cogn. 14 February 2002 (doi:10.1006/brcg.2001.1498).

  120. Stivalet, P. et al. Differences in visual search tasks between congenitally deaf and normally hearing adults. Brain Res Cogn Brain Res. 6, 227–232 (1998).

    CAS  PubMed  Google Scholar 

  121. Rauschecker, J. P. & Marler, P. Imprinting and Cortical Plasticity: Comparative Aspects of Sensitive Periods (Wiley, New York, 1987).

    Google Scholar 

  122. Harwerth, R. et al. Multiple sensitive periods in the development of the primate visual system. Science 232, 235–238 (1986).

    CAS  PubMed  Google Scholar 

  123. Mitchell, D. in Vision: Coding and Efficiency (ed. Blakemore, C.) 234–246 (Cambridge Univ. Press, Cambridge, UK, 1990).

    Google Scholar 

  124. Tychsen, L. in Critical Thinking about Critical Periods (eds Bailey, J. D. B. et al.) 67–80 (Paul Brookes, Baltimore, Maryland, 2001).

    Google Scholar 

  125. Maurer, D. & Lewis, T. Visual acuity: the role of visual input in inducing postnatal change. Clin. Neurosci. Res. 1, 239–247 (2002).This work reviews the development of visual acuity in humans and discusses its sensitive periods, including its periods of development, of susceptibility to injury and of recovery. It highlights the specificity of these changes by considering similar time periods for peripheral light sensitivity and the perception of global direction of motion.

    Google Scholar 

  126. Feldman, D., Nicoll, R. & Malenka, R. Synaptic plasticity at thalamocortical synapses in developing rat somatosensory cortex: LTP, LTD, and silent synapses. J. Neurobiol. 41, 92–101 (1999).

    CAS  PubMed  Google Scholar 

  127. Berardi, N., Pizzorusso, T. & Maffei, L. Critical periods during sensory development. Curr. Opin. Neurobiol. 10, 138–145 (2000).

    CAS  PubMed  Google Scholar 

  128. West, A. et al. Calcium regulation of neuronal gene expression. Proc. Natl Acad. Sci. USA 98, 11024–11031 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Kaas, J. et al. Reorganization of retinotopic cortical maps in adult mammals after lesions of the retina. Science 248, 229–231 (1990).

    CAS  PubMed  Google Scholar 

  130. Merzenich, M. et al. Somatosensory cortical map changes following digit amputation in adult monkeys. J. Comp. Neurol. 224, 591–605 (1984).

    CAS  PubMed  Google Scholar 

  131. Recanzone, G. H., Schreiner, C. E. & Merzenich, M. M. Plasticity in the frequency representation of primary auditory cortex following discrimination training in adult owl monkeys. J. Neurosci. 13, 87–103 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Weinberger, N. & Diamond, D. Physiological plasticity in auditory cortex: rapid induction by learning. Prog. Neurobiol. 29, 1–55 (1987).

    CAS  PubMed  Google Scholar 

  133. Merzenich, M. M. & Jenkins, W. M. Reorganization of cortical representations of the hand following alterations of skin inputs induced by nerve injury, skin island transfers, and experience. J. Hand Ther. 6, 89–104 (1993).

    CAS  PubMed  Google Scholar 

  134. Horton, J. C. & Hocking, D. R. Pattern of ocular dominance columns in human striate cortex in strabismic ambylopia. Vis. Neurosci. 13, 787–795 (1996).

    CAS  PubMed  Google Scholar 

  135. Maurer, D. & Lewis, T. in Cognitive Neuroscience of Attention: a Developmental Perspective (ed. Richards, J. E.) 51–102 (Lawrence Erlbaum Associates, Mahwah, New Jersey, 1998).

    Google Scholar 

  136. Kovacs, I. Human development of perceptual organization. Vision Res. 40, 1301–1310 (2000).

    CAS  PubMed  Google Scholar 

  137. Le Grand, R. et al. Neuroperception. Early visual experience and face processing. Nature 410, 890 (2001).

  138. Vargha-Khadem, F., Gadian, D. & Mishkin, M. Dissociations in cognitive memory: the syndrome of developmental amnesia. Phil. Trans. R. Soc. Lond. B 356, 1435–1440 (2001).

    CAS  Google Scholar 

  139. Eden, G. F. et al. Abnormal processing of visual motion in dyslexia revealed by functional brain imaging. Nature 382, 66–69 (1996).

    CAS  PubMed  Google Scholar 

  140. Spencer, J. et al. Motion processing in autism: evidence for a dorsal stream deficiency. Neuroreport 11, 2765–2767 (2000).

    CAS  PubMed  Google Scholar 

  141. Atkinson, J. et al. Visual and visuospatial development in young children with Williams' syndrome. Dev. Med. Child Neurol. 43, 330–337 (2001).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Institutes of Health to D.B. and H.J.N., and from the James S. McDonnell-Pew Foundation to D.B. We thank B. Röder for insightful comments and advice.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

OMIM

autism

dyslexia

FURTHER INFORMATION

Encyclopedia of Life Sciences

brain imaging: observing ongoing neural activity

cortical plasticity: use-dependent remodelling

magnetic resonance imaging

MIT Encyclopedia of Cognitive Sciences

electrophysiology, electric and magnetic evoked fields

multisensory integration

magnetic resonance imaging

neural plasticity

positron emission tomography

Glossary

NEUROPLASTICITY

The capacity of the nervous system to modify its organization. Such changes can occur as a consequence of many events, including the normal development and maturation of the organism, the acquisition of new skills ('learning') in immature and mature organisms, after damage to the nervous system and as a result of sensory deprivation.

RECRUITMENT

Neurons in an area are observed to be responsive to a certain type of stimulation, and are said to be recruited by that stimulation. This can be measured directly by a change in a neuron's firing rate, or indirectly by a change in the BOLD signal from fMRI, or a change in the scalp potentials from ERP and MEG recordings.

ENUCLEATION

Removal of the eyeballs.

DARK REARING

An experimental condition in which an animal is reared in total darkness so that only endogenous activity is present in the developing visual system.

POST-LINGUALLY DEAF

Individuals who have become deaf after learning to speak and understand their native language.

POLYMODAL ASSOCIATION AREAS

'Higher' areas of cortex that receive and integrate inputs from multiple sensory modalities.

EVENT-RELATED POTENTIALS

Electrical potentials that are generated in the brain as a consequence of the synchronized activation of neuronal networks by external stimuli. These evoked potentials are recorded at the scalp and consist of precisely timed sequences of waves or 'components'.

BRODMANN AREAS

(BA). Korbinian Brodmann (1868–1918) was an anatomist who divided the cerebral cortex into numbered subdivisions on the basis of cell arrangements, types and staining properties (for example, the dorsolateral prefrontal cortex contains subdivisions, including BA 44, BA 45, BA 47 and others). Modern derivatives of his maps are commonly used as the reference system for discussion of brain-imaging findings.

MAGNETOENCEPHALOGRAPHY

(MEG). A non-invasive technique that allows the detection of the changing magnetic fields that are associated with brain activity.

TRANSCRANIAL MAGNETIC STIMULATION

(TMS). A technique that is used to induce a transient interruption of normal activity in a relatively restricted area of the brain. It is based on the generation of a strong magnetic field near the area of interest, which, if changed rapidly enough, will induce an electric field that is sufficient to stimulate neurons.

SENSITIVE/CRITICAL PERIOD

The developmental time period during which experience can significantly alter the organism's behavioural performance, and related aspects of brain structure and/or function.

WILLIAMS' SYNDROME

A hereditary developmental disorder that is characterized by cognitive impairment (usually mild mental retardation), distinctive facial features and cardiovascular disease.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bavelier, D., Neville, H. Cross-modal plasticity: where and how?. Nat Rev Neurosci 3, 443–452 (2002). https://doi.org/10.1038/nrn848

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn848

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing