Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Disturbance of endoplasmic reticulum proteostasis in neurodegenerative diseases

Key Points

  • Equilibrated protein homeostasis (referred to as proteostasis) requires the dynamic coordination of efficient folding of newly synthesized proteins, quality control and degradative mechanisms to reduce the load of unfolded and/or misfolded proteins and thereby prevent abnormal protein aggregation. In response to proteostasis perturbations, the folding and/or degrading capacity of the endoplasmic reticulum (ER) is dynamically adjusted by the induction of a complex signalling network known as the unfolded protein response (UPR).

  • Most neurodegenerative diseases are considered to be protein misfolding disorders. They have distinct clinical manifestations, but they all involve the accumulation of abnormally folded proteins in the form of small oligomers, aggregates or large-protein inclusions. Disturbance of several aspects of proteostasis contributes to the progression of these neurodegenerative diseases.

  • Perturbation of ER function or the UPR may be part of the aetiology of several diseases; that is, disease proteins may directly or indirectly perturb the UPR machinery and alter the function of the secretory pathway at different levels, resulting in irreversible alterations in neuronal proteostasis and degeneration.

  • UPR activation can either enhance or reduce neurodegeneration. UPR adaptive responses or pro-apoptotic programmes are possibly triggered depending on the load of misfolded proteins and the specific UPR signalling mechanisms that are activated.

  • An ER adaptive response can engage a preconditioning stage by adjusting proteostasis in neurons but can also propagate cell-non-autonomously in the whole organism to maintain global proteostasis and limit ageing. Physiological perturbation of the ER through the engagement of adaptive ER-hormetic mechanisms could be exploited to develop therapeutic strategies that attenuate neurodegeneration.

  • UPR pathways have physiological functions in different aspects of brain development and function, such as CNS development, learning, memory and hypothalamic functions.

Abstract

The unfolded protein response (UPR) is a homeostatic mechanism by which cells regulate levels of misfolded proteins in the endoplasmic reticulum (ER). Although it is well characterized in non-neuronal cells, a proliferation of papers over the past few years has revealed a key role for the UPR in normal neuronal function and as an important driver of neurodegenerative diseases. A complex scenario is emerging in which distinct UPR signalling modules have specific and even opposite effects on neurodegeneration depending on the disease context. Here, we provide an overview of the most recent findings addressing the biological relevance of ER stress in the nervous system.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: UPR signalling pathways in mammals.
Figure 2: UPR signalling outputs and neurodegeneration.
Figure 3: Disturbance of ER homeostasis in neurodegenerative diseases.
Figure 4: The role of the UPR in brain physiology.

Similar content being viewed by others

References

  1. Balch, W. E., Morimoto, R. I., Dillin, A. & Kelly, J. W. Adapting proteostasis for disease intervention. Science 319, 916–919 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Hartl, F. U., Bracher, A. & Hayer-Hartl, M. Molecular chaperones in protein folding and proteostasis. Nature 475, 324–332 (2011).

    Article  CAS  PubMed  Google Scholar 

  3. Braakman, I. & Bulleid, N. J. Protein folding and modification in the mammalian endoplasmic reticulum. Annu. Rev. Biochem. 80, 71–99 (2011).

    Article  CAS  PubMed  Google Scholar 

  4. Hetz, C. The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nature Rev. Mol. Cell Biol. 13, 89–102 (2012).

    Article  CAS  Google Scholar 

  5. Walter, P. & Ron, D. The unfolded protein response: from stress pathway to homeostatic regulation. Science 334, 1081–1086 (2011).

    Article  CAS  PubMed  Google Scholar 

  6. Wang, S. & Kaufman, R. J. The impact of the unfolded protein response on human disease. J. Cell Biol. 197, 857–867 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hetz, C., Martinon, F., Rodriguez, D. & Glimcher, L. H. The unfolded protein response: integrating stress signals through the stress sensor IRE1α. Physiol. Rev. 91, 1219–1243 (2011).

    Article  CAS  PubMed  Google Scholar 

  8. Shoulders, M. D. et al. Stress-independent activation of XBP1s and/or ATF6 reveals three functionally diverse ER proteostasis environments. Cell Rep. 3, 1279–1292 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Scorrano, L. et al. BAX and BAK regulation of endoplasmic reticulum Ca2+: a control point for apoptosis. Science 300, 135–139 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Tabas, I. & Ron, D. Integrating the mechanisms of apoptosis induced by endoplasmic reticulum stress. Nature Cell Biol. 13, 184–190 (2011).

    Article  CAS  PubMed  Google Scholar 

  11. Shore, G. C., Papa, F. R. & Oakes, S. A. Signaling cell death from the endoplasmic reticulum stress response. Curr. Opin. Cell Biol. 23, 143–149 (2011).

    Article  CAS  PubMed  Google Scholar 

  12. Urra, H., Dufey, E., Lisbona, F., Rojas-Rivera, D. & Hetz, C. When ER stress reaches a dead end. Biochim. Biophys. Acta 1833, 3507–3517 (2013).

    Article  CAS  PubMed  Google Scholar 

  13. Han, J. et al. ER-stress-induced transcriptional regulation increases protein synthesis leading to cell death. Nature Cell Biol. 15, 481–490 (2013).

    Article  CAS  PubMed  Google Scholar 

  14. Harding, H. P., Zhang, Y., Bertolotti, A., Zeng, H. & Ron, D. Perk is essential for translational regulation and cell survival during the unfolded protein response. Mol. Cell 5, 897–904 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Urano, F. et al. Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science 287, 664–666 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Soto, C. Unfolding the role of protein misfolding in neurodegenerative diseases. Nature Rev. Neurosci. 4, 49–60 (2003).

    Article  CAS  Google Scholar 

  17. Selkoe, D. J. Folding proteins in fatal ways. Nature 426, 900–904 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Haass, C. & Selkoe, D. J. Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer's amyloid β-peptide. Nature Rev. Mol. Cell Biol. 8, 101–112 (2007).

    Article  CAS  Google Scholar 

  19. Martin, I., Dawson, V. L. & Dawson, T. M. Recent advances in the genetics of Parkinson's disease. Annu. Rev. Genomics Hum. Genet. 12, 301–325 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Uversky, V. N. Neuropathology, biochemistry, and biophysics of α-synuclein aggregation. J. Neurochem. 103, 17–37 (2007).

    CAS  PubMed  Google Scholar 

  21. Andersen, P. M. & Al-Chalabi, A. Clinical genetics of amyotrophic lateral sclerosis: what do we really know? Nature Rev. Neurol. 7, 603–615 (2011).

    Article  CAS  Google Scholar 

  22. Arrasate, M. & Finkbeiner, S. Protein aggregates in Huntington's disease. Exp. Neurol. 238, 1–11 (2012).

    Article  CAS  PubMed  Google Scholar 

  23. Prusiner, S. B. Prions. Proc. Natl Acad. Sci. USA 95, 13363–13383 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lindquist, S. L. & Kelly, J. W. Chemical and biological approaches for adapting proteostasis to ameliorate protein misfolding and aggregation diseases: progress and prognosis. Cold Spring Harb. Perspect. Biol. 3, a004507 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Roussel, B. D. et al. Endoplasmic reticulum dysfunction in neurological disease. Lancet Neurol. 12, 105–118 (2013).

    Article  CAS  PubMed  Google Scholar 

  26. Duran-Aniotz, C., Martínez, G. & Hetz, C. Memory loss in Alzheimer's disease: are the alterations in the UPR network involved in the cognitive impairment? Front. Aging Neurosci. 8, 6 (2014).

    Google Scholar 

  27. Mercado, G., Valdes, P. & Hetz, C. An ERcentric view of Parkinson's disease. Trends Mol. Med. 19, 165–175 (2013).

    Article  CAS  PubMed  Google Scholar 

  28. Matus, S., Valenzuela, V., Medinas, D. B. & Hetz, C. ER dysfunction and protein folding stress in ALS. Int. J. Cell Biol. 2013, 674751 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Vidal, R., Caballero, B., Couve, A. & Hetz, C. Converging pathways in the occurrence of endoplasmic reticulum (ER) stress in Huntington's disease. Curr. Mol. Med. 11, 1–12 (2011).

    Article  CAS  PubMed  Google Scholar 

  30. Nardo, G. et al. Amyotrophic lateral sclerosis multiprotein biomarkers in peripheral blood mononuclear cells. PLoS ONE 6, e25545 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Atkin, J. D. et al. Endoplasmic reticulum stress and induction of the unfolded protein response in human sporadic amyotrophic lateral sclerosis. Neurobiol. Dis. 30, 400–407 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. Chung, C. Y. et al. Identification and rescue of α-synuclein toxicity in Parkinson patient-derived neurons. Science 342, 983–987 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hashida, K. et al. ATF6α promotes astroglial activation and neuronal survival in a chronic mouse model of Parkinson's disease. PLoS ONE 7, e47950 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Egawa, N. et al. The endoplasmic reticulum stress sensor, ATF6α, protects against neurotoxin-induced dopaminergic neuronal death. J. Biol. Chem. 286, 7947–7957 (2011).

    Article  CAS  PubMed  Google Scholar 

  35. Gorbatyuk, M. S. et al. Glucose regulated protein 78 diminishes α-synuclein neurotoxicity in a rat model of Parkinson disease. Mol. Ther. 20, 1327–1337 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Colla, E. et al. Endoplasmic reticulum stress is important for the manifestations of α-synucleinopathy in vivo. J. Neurosci. 32, 3306–3320 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Boyce, M. et al. A selective inhibitor of eIF2α dephosphorylation protects cells from ER stress. Science 307, 935–939 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Silva, R. M. et al. CHOP/GADD153 is a mediator of apoptotic death in substantia nigra dopamine neurons in an in vivo neurotoxin model of parkinsonism. J. Neurochem. 95, 974–986 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Saxena, S., Cabuy, E. & Caroni, P. A role for motoneuron subtype-selective ER stress in disease manifestations of FALS mice. Nature Neurosci. 12, 627–636 (2009). This study indicates that one of the major early alterations that may explain the differential neuronal vulnerability observed in ALS is ER stress.

    Article  CAS  PubMed  Google Scholar 

  40. Wang, L., Popko, B. & Roos, R. P. The unfolded protein response in familial amyotrophic lateral sclerosis. Hum. Mol. Genet. 20, 1008–1015 (2011).

    Article  CAS  PubMed  Google Scholar 

  41. Matus, S., Lopez, E., Valenzuela, V. & Hetz, C. Functional role of the transcription factor ATF4 in the pathogenesis of amyotrophic lateral sclerosis. PLoS ONE 8, e66672 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hetz, C. et al. The proapoptotic BCL-2 family member BIM mediates motoneuron loss in a model of amyotrophic lateral sclerosis. Cell Death Differ. 14, 1386–1389 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Kieran, D., Woods, I., Villunger, A., Strasser, A. & Prehn, J. H. Deletion of the BH3-only protein puma protects motoneurons from ER stress-induced apoptosis and delays motoneuron loss in ALS mice. Proc. Natl Acad. Sci. USA 104, 20606–20611 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Nishitoh, H. et al. ALS-linked mutant SOD1 induces ER stress- and ASK1-dependent motor neuron death by targeting Derlin-1. Genes Dev. 22, 1451–1464 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Vaccaro, A. et al. Pharmacological reduction of ER stress protects against TDP-43 neuronal toxicity in vivo. Neurobiol. Dis. 55, 64–75 (2013).

    Article  CAS  PubMed  Google Scholar 

  46. Hetz, C. et al. XBP-1 deficiency in the nervous system protects against amyotrophic lateral sclerosis by increasing autophagy. Genes Dev. 23, 2294–2306 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Vidal, R. L. et al. Targeting the UPR transcription factor XBP1 protects against Huntington's disease through the regulation of FoxO1 and autophagy. Hum. Mol. Genet. 21, 2245–2262 (2012). References 46, 47 and 161 report, for the first time, an interconnection between the UPR and autophagy in the context of neurodegeneration in vivo.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhao, Y. et al. XBP-1u suppresses autophagy by promoting the degradation of FoxO1 in cancer cells. Cell Res. 23, 491–507 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Goedert, M., Clavaguera, F. & Tolnay, M. The propagation of prion-like protein inclusions in neurodegenerative diseases. Trends Neurosci. 33, 317–325 (2010).

    Article  CAS  PubMed  Google Scholar 

  50. Soto, C. Transmissible proteins: expanding the prion heresy. Cell 149, 968–977 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hetz, C. et al. The disulfide isomerase Grp58 is a protective factor against prion neurotoxicity. J. Neurosci. 25, 2793–2802 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hetz, C., Russelakis-Carneiro, M., Maundrell, K., Castilla, J. & Soto, C. Caspase-12 and endoplasmic reticulum stress mediate neurotoxicity of pathological prion protein. EMBO J. 22, 5435–5445 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hetz, C. et al. Unfolded protein response transcription factor XBP-1 does not influence prion replication or pathogenesis. Proc. Natl Acad. Sci. USA 105, 757–762 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Steele, A. D. et al. Prion pathogenesis is independent of caspase-12. Prion 1, 243–247 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Moreno, J. A. et al. Sustained translational repression by eIF2α-P mediates prion neurodegeneration. Nature 485, 507–511 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Moreno, J. A. et al. Oral treatment targeting the unfolded protein response prevents neurodegeneration and clinical disease in prion-infected mice. Sci. Transl. Med. 5, 206ra138 (2013).

    Article  CAS  PubMed  Google Scholar 

  57. Cornejo, V. H. & Hetz, C. The unfolded protein response in Alzheimer's disease. Semin. Immunopathol. 35, 277–292 (2013).

    Article  CAS  PubMed  Google Scholar 

  58. Casas-Tinto, S. et al. The ER stress factor XBP1s prevents amyloid-β neurotoxicity. Hum. Mol. Genet. 20, 2144–2160 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Yoon, S. O. et al. JNK3 perpetuates metabolic stress induced by Aβ peptides. Neuron 75, 824–837 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Safra, M., Ben-Hamo, S., Kenyon, C. & Henis-Korenblit, S. The ire-1 ER stress-response pathway is required for normal secretory-protein metabolism in C. elegans. J. Cell Sci. 126, 4136–4146 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ma, T. et al. Suppression of eIF2α kinases alleviates Alzheimer's disease-related plasticity and memory deficits. Nature Neurosci. 16, 1299–1305 (2013). This article, along with references 167 and 168, provides genetic evidence indicating a crucial role for eIF2α kinases in learning and memory.

    Article  CAS  PubMed  Google Scholar 

  62. Lourenco, M. V. et al. TNF-α mediates PKR-dependent memory impairment and brain IRS-1 inhibition induced by Alzheimer's β-amyloid oligomers in mice and monkeys. Cell. Metab. 18, 831–843 (2013).

    Article  CAS  PubMed  Google Scholar 

  63. Mendes, C. S. et al. ER stress protects from retinal degeneration. EMBO J. 28, 1296–1307 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ryoo, H. D., Domingos, P. M., Kang, M. J. & Steller, H. Unfolded protein response in a Drosophila model for retinal degeneration. EMBO J. 26, 242–252 (2007).

    Article  CAS  PubMed  Google Scholar 

  65. Gorbatyuk, M. S. et al. Restoration of visual function in P23H rhodopsin transgenic rats by gene delivery of BiP/Grp78. Proc. Natl Acad. Sci. USA 107, 5961–5966 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Valenzuela, V. et al. Activation of the unfolded protein response enhances motor recovery after spinal cord injury. Cell Death Dis. 3, e272 (2012).

    Article  CAS  PubMed  Google Scholar 

  67. Ohri, S. S., Hetman, M. & Whittemore, S. R. Restoring endoplasmic reticulum homeostasis improves functional recovery after spinal cord injury. Neurobiol. Dis. 58, 29–37 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Wang, Z. et al. C/EBP homologous protein (CHOP) mediates neuronal apoptosis in rats with spinal cord injury. Exp. Ther. Med. 5, 107–111 (2013).

    Article  PubMed  Google Scholar 

  69. Ohri, S. S. et al. Attenuating the endoplasmic reticulum stress response improves functional recovery after spinal cord injury. Glia 59, 1489–1502 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Ohri, S. S. et al. Deletion of the pro-apoptotic endoplasmic reticulum stress response effector CHOP does not result in improved locomotor function after severe contusive spinal cord injury. J. Neurotrauma 29, 579–588 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Hu, Y. et al. Differential effects of unfolded protein response pathways on axon injury-induced death of retinal ganglion cells. Neuron 73, 445–452 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Sokka, A. L. et al. Endoplasmic reticulum stress inhibition protects against excitotoxic neuronal injury in the rat brain. J. Neurosci. 27, 901–908 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kudo, T. et al. A molecular chaperone inducer protects neurons from ER stress. Cell Death Differ. 15, 364–375 (2008).

    Article  CAS  PubMed  Google Scholar 

  74. Kraskiewicz, H. & FitzGerald, U. InterfERing with endoplasmic reticulum stress. Trends Pharmacol. Sci. 33, 53–63 (2012).

    Article  CAS  PubMed  Google Scholar 

  75. Qi, X., Hosoi, T., Okuma, Y., Kaneko, M. & Nomura, Y. Sodium 4-phenylbutyrate protects against cerebral ischemic injury. Mol. Pharmacol. 66, 899–908 (2004).

    Article  CAS  PubMed  Google Scholar 

  76. Mizukami, T. et al. Sodium 4-phenylbutyrate protects against spinal cord ischemia by inhibition of endoplasmic reticulum stress. J. Vasc. Surg. 52, 1580–1586 (2010).

    Article  PubMed  Google Scholar 

  77. Lin, W. & Popko, B. Endoplasmic reticulum stress in disorders of myelinating cells. Nature Neurosci. 12, 379–385 (2009).

    Article  CAS  PubMed  Google Scholar 

  78. Lin, W. et al. Interferon-γ inhibits central nervous system remyelination through a process modulated by endoplasmic reticulum stress. Brain 129, 1306–1318 (2006).

    Article  PubMed  Google Scholar 

  79. Lin, W. et al. Enhanced integrated stress response promotes myelinating oligodendrocyte survival in response to interferon-γ. Am. J. Pathol. 173, 1508–1517 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Lin, W. et al. The integrated stress response prevents demyelination by protecting oligodendrocytes against immune-mediated damage. J. Clin. Invest. 117, 448–456 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Lin, W. et al. Oligodendrocyte-specific activation of PERK signaling protects mice against experimental autoimmune encephalomyelitis. J. Neurosci. 33, 5980–5991 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Southwood, C. M., Garbern, J., Jiang, W. & Gow, A. The unfolded protein response modulates disease severity in Pelizaeus-Merzbacher disease. Neuron 36, 585–596 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. D'Antonio, M. et al. Resetting translational homeostasis restores myelination in Charcot-Marie-Tooth disease type 1B mice. J. Exp. Med. 210, 821–838 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Pennuto, M. et al. Ablation of the UPR-mediator CHOP restores motor function and reduces demyelination in Charcot-Marie-Tooth 1B mice. Neuron 57, 393–405 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Fu, S., Watkins, S. M. & Hotamisligil, G. S. The role of endoplasmic reticulum in hepatic lipid homeostasis and stress signaling. Cell. Metab. 15, 623–634 (2012).

    Article  CAS  PubMed  Google Scholar 

  86. Cao, S. S. & Kaufman, R. J. Targeting endoplasmic reticulum stress in metabolic disease. Expert Opin. Ther. Targets 17, 437–448 (2013).

    Article  CAS  PubMed  Google Scholar 

  87. Platt, F. M., Boland, B. & van der Spoel, A. C. The cell biology of disease: lysosomal storage disorders: the cellular impact of lysosomal dysfunction. J. Cell Biol. 199, 723–734 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Wei, H. et al. ER and oxidative stresses are common mediators of apoptosis in both neurodegenerative and non-neurodegenerative lysosomal storage disorders and are alleviated by chemical chaperones. Hum. Mol. Genet. 17, 469–477 (2008).

    Article  CAS  PubMed  Google Scholar 

  89. Zhang, Z. et al. Palmitoyl-protein thioesterase-1 deficiency mediates the activation of the unfolded protein response and neuronal apoptosis in INCL. Hum. Mol. Genet. 15, 337–346 (2006).

    Article  CAS  PubMed  Google Scholar 

  90. Tessitore, A. et al. GM1-ganglioside-mediated activation of the unfolded protein response causes neuronal death in a neurodegenerative gangliosidosis. Mol. Cell 15, 753–766 (2004).

    Article  CAS  PubMed  Google Scholar 

  91. Sano, R. et al. GM1-ganglioside accumulation at the mitochondria-associated ER membranes links ER stress to Ca2+-dependent mitochondrial apoptosis. Mol. Cell 36, 500–511 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Katayama, T. et al. Presenilin-1 mutations downregulate the signalling pathway of the unfolded-protein response. Nature Cell Biol. 1, 479–485 (1999).

    Article  CAS  PubMed  Google Scholar 

  93. Nishitoh, H. et al. ASK1 is essential for endoplasmic reticulum stress-induced neuronal cell death triggered by expanded polyglutamine repeats. Genes Dev. 16, 1345–1355 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Nakagawa, T. et al. Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-β. Nature 403, 98–103 (2000).

    Article  CAS  PubMed  Google Scholar 

  95. Xu, K. & Zhu, X. P. Endoplasmic reticulum stress and prion diseases. Rev. Neurosci. 23, 79–84 (2012).

    Article  CAS  PubMed  Google Scholar 

  96. Ugolino, J., Fang, S., Kubisch, C. & Monteiro, M. J. Mutant Atp13a2 proteins involved in parkinsonism are degraded by ER-associated degradation and sensitize cells to ER-stress induced cell death. Hum. Mol. Genet. 20, 3565–3577 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Griciuc, A., Aron, L. & Ueffing, M. ER stress in retinal degeneration: a target for rational therapy? Trends Mol. Med. 17, 442–451 (2011).

    Article  CAS  PubMed  Google Scholar 

  98. Colla, E. et al. Accumulation of toxic α-synuclein oligomer within endoplasmic reticulum occurs in α-synucleinopathy in vivo. J. Neurosci. 32, 3301–3305 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Bellucci, A. et al. Induction of the unfolded protein response by α-synuclein in experimental models of Parkinson's disease. J. Neurochem. 116, 588–605 (2011).

    Article  CAS  PubMed  Google Scholar 

  100. Atkin, J. D. et al. Induction of the unfolded protein response in familial amyotrophic lateral sclerosis and association of protein-disulfide isomerase with superoxide dismutase 1. J. Biol. Chem. 281, 30152–30165 (2006).

    Article  CAS  PubMed  Google Scholar 

  101. Kikuchi, H. et al. Spinal cord endoplasmic reticulum stress associated with a microsomal accumulation of mutant superoxide dismutase-1 in an ALS model. Proc. Natl Acad. Sci. USA 103, 6025–6030 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Urushitani, M., Ezzi, S. A., Matsuo, A., Tooyama, I. & Julien, J. P. The endoplasmic reticulum–Golgi pathway is a target for translocation and aggregation of mutant superoxide dismutase linked to ALS. FASEB J. 22, 2476–2487 (2008).

    Article  CAS  PubMed  Google Scholar 

  103. Urushitani, M. et al. Chromogranin-mediated secretion of mutant superoxide dismutase proteins linked to amyotrophic lateral sclerosis. Nature Neurosci. 9, 108–118 (2006).

    Article  CAS  PubMed  Google Scholar 

  104. Turner, B. J. et al. Impaired extracellular secretion of mutant superoxide dismutase 1 associates with neurotoxicity in familial amyotrophic lateral sclerosis. J. Neurosci. 25, 108–117 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Farg, M. A. et al. Mutant FUS induces endoplasmic reticulum stress in amyotrophic lateral sclerosis and interacts with protein disulfide-isomerase. Neurobiol. Aging 33, 2855–2868 (2012).

    Article  CAS  PubMed  Google Scholar 

  106. Walker, A. K. et al. ALS-associated TDP-43 induces endoplasmic reticulum stress, which drives cytoplasmic TDP-43 accumulation and stress granule formation. PLoS ONE 8, e81170 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Watts, J. C. et al. Interactome analyses identify ties of PrP and its mammalian paralogs to oligomannosidic N-glycans and endoplasmic reticulum-derived chaperones. PLoS Pathog. 5, e1000608 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Walker, A. K. et al. Protein disulphide isomerase protects against protein aggregation and is S-nitrosylated in amyotrophic lateral sclerosis. Brain 133, 105–116 (2010).

    Article  PubMed  Google Scholar 

  109. Uehara, T. et al. S-nitrosylated protein-disulphide isomerase links protein misfolding to neurodegeneration. Nature 441, 513–517 (2006).

    Article  CAS  PubMed  Google Scholar 

  110. Hoffstrom, B. G. et al. Inhibitors of protein disulfide isomerase suppress apoptosis induced by misfolded proteins. Nature Chem. Biol. 6, 900–906 (2010).

    Article  CAS  Google Scholar 

  111. Duennwald, M. L. & Lindquist, S. Impaired ERAD and ER stress are early and specific events in polyglutamine toxicity. Genes Dev. 22, 3308–3319 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Yang, H. et al. Huntingtin interacts with the cue domain of gp78 and inhibits gp78 binding to ubiquitin and p97/VCP. PLoS ONE 5, e8905 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Abisambra, J. F. et al. Tau accumulation activates the unfolded protein response by impairing endoplasmic reticulum-associated degradation. J. Neurosci. 33, 9498–9507 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Brocker, C., Engelbrecht-Vandre, S. & Ungermann, C. Multisubunit tethering complexes and their role in membrane fusion. Curr. Biol. 20, R943–R952 (2010).

    Article  CAS  PubMed  Google Scholar 

  115. Gitler, A. D. et al. The Parkinson's disease protein α-synuclein disrupts cellular Rab homeostasis. Proc. Natl Acad. Sci. USA 105, 145–150 (2008).

    Article  PubMed  Google Scholar 

  116. Cooper, A. A. et al. α-synuclein blocks ER-Golgi traffic and Rab1 rescues neuron loss in Parkinson's models. Science 313, 324–328 (2006). This article uncovers one of the mechanisms explaining why α-synuclein induces ER stress and its relevance to dopaminergic neuron loss.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Thayanidhi, N. et al. α-synuclein delays endoplasmic reticulum (ER)-to-Golgi transport in mammalian cells by antagonizing ER/Golgi SNAREs. Mol. Biol. Cell 21, 1850–1863 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Usenovic, M. et al. Identification of novel ATP13A2 interactors and their role in α-synuclein misfolding and toxicity. Hum. Mol. Genet. 21, 3785–3794 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Kuijpers, M. et al. The ALS8 protein VAPB interacts with the ER–Golgi recycling protein YIF1A and regulates membrane delivery into dendrites. EMBO J. 32, 2056–2072 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Moustaqim-Barrette, A. et al. The amyotrophic lateral sclerosis 8 protein, VAP, is required for ER protein quality control. Hum. Mol. Genet. http://dx.doi.org/10.1093/hmg/ddt594 (2013).

  121. del Toro, D. et al. Mutant huntingtin impairs the post-Golgi trafficking of brain-derived neurotrophic factor but not its Val66Met polymorphism. J. Neurosci. 26, 12748–12757 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Vidal, R. L. & Hetz, C. Crosstalk between the UPR and autophagy pathway contributes to handling cellular stress in neurodegenerative disease. Autohpagy 8, 970–972 (2012).

    CAS  Google Scholar 

  123. Fasana, E. et al. A VAPB mutant linked to amyotrophic lateral sclerosis generates a novel form of organized smooth endoplasmic reticulum. FASEB J. 24, 1419–1430 (2010).

    Article  CAS  PubMed  Google Scholar 

  124. Omi, K. & Hachiya, N. S., Tokunaga, K. & Kaneko, K. siRNA-mediated inhibition of endogenous Huntington disease gene expression induces an aberrant configuration of the ER network in vitro. Biochem. Biophys. Res. Commun. 338, 1229–1235 (2005).

    Article  CAS  PubMed  Google Scholar 

  125. Liu, S. Y. et al. Polymorphism −116C/G of human X-box-binding protein 1 promoter is associated with risk of Alzheimer's disease. CNS Neurosci. Ther. 19, 229–234 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Kakiuchi, C. et al. Impaired feedback regulation of XBP1 as a genetic risk factor for bipolar disorder. Nature Genet. 35, 171–175 (2003). This study is the first to identify a genetic alteration in UPR components in a brain disorder.

    Article  CAS  PubMed  Google Scholar 

  127. Kwok, C. T. et al. Association studies indicate that protein disulfide isomerase is a risk factor in amyotrophic lateral sclerosis. Free Radic. Biol. Med. 58, 81–86 (2013).

    Article  CAS  PubMed  Google Scholar 

  128. Deng, H. X. et al. Mutations in UBQLN2 cause dominant X-linked juvenile and adult-onset ALS and ALS/dementia. Nature 477, 211–215 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Teyssou, E. et al. Mutations in SQSTM1 encoding p62 in amyotrophic lateral sclerosis: genetics and neuropathology. Acta Neuropathol. 125, 511–522 (2013).

    Article  CAS  PubMed  Google Scholar 

  130. Gkogkas, C. et al. VAPB interacts with and modulates the activity of ATF6. Hum. Mol. Genet. 17, 1517–1526 (2008).

    Article  CAS  PubMed  Google Scholar 

  131. Fernandez-Fernandez, M. R., Ferrer, I. & Lucas, J. J. Impaired ATF6α processing, decreased Rheb and neuronal cell cycle re-entry in Huntington's disease. Neurobiol. Dis. 41, 23–32 (2011).

    Article  CAS  PubMed  Google Scholar 

  132. Kanekura, K., Nishimoto, I., Aiso, S. & Matsuoka, M. Characterization of amyotrophic lateral sclerosis-linked P56S mutation of vesicle-associated membrane protein-associated protein B (VAPB/ALS8). J. Biol. Chem. 281, 30223–30233 (2006).

    Article  CAS  PubMed  Google Scholar 

  133. Suzuki, H. et al. ALS-linked P56S-VAPB, an aggregated loss-of-function mutant of VAPB, predisposes motor neurons to ER stress-related death by inducing aggregation of co-expressed wild-type VAPB. J. Neurochem. 108, 973–985 (2009).

    Article  CAS  PubMed  Google Scholar 

  134. Yuan, Y. et al. Dysregulated LRRK2 signaling in response to endoplasmic reticulum stress leads to dopaminergic neuron degeneration in C. elegans. PLoS ONE 6, e22354 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Samann, J. et al. Caenorhabditits elegans LRK-1 and PINK-1 act antagonistically in stress response and neurite outgrowth. J. Biol. Chem. 284, 16482–16491 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Niwa, M., Sidrauski, C., Kaufman, R. J. & Walter, P. A role for presenilin-1 in nuclear accumulation of Ire1 fragments and induction of the mammalian unfolded protein response. Cell 99, 691–702 (1999).

    Article  CAS  PubMed  Google Scholar 

  137. Mekahli, D., Bultynck, G., Parys, J. B., De Smedt, H. & Missiaen, L. Endoplasmic-reticulum calcium depletion and disease. Cold Spring Harbor Persp. Biol. 3, a004317 (2011).

    Google Scholar 

  138. Tang, T. S. et al. Huntingtin and huntingtin-associated protein 1 influence neuronal calcium signaling mediated by inositol-(1,4,5) triphosphate receptor type 1. Neuron 39, 227–239 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Higo, T. et al. Mechanism of ER stress-induced brain damage by IP3 receptor. Neuron 68, 865–878 (2010).

    Article  CAS  PubMed  Google Scholar 

  140. Chen, X. et al. Dantrolene is neuroprotective in Huntington's disease transgenic mouse model. Mol. Neurodegener. 6, 81 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Belal, C. et al. The homocysteine-inducible endoplasmic reticulum (ER) stress protein Herp counteracts mutant α-synuclein-induced ER stress via the homeostatic regulation of ER-resident calcium release channel proteins. Hum. Mol. Genet. 21, 963–977 (2012).

    Article  CAS  PubMed  Google Scholar 

  142. Selvaraj, S. et al. Neurotoxin-induced ER stress in mouse dopaminergic neurons involves downregulation of TRPC1 and inhibition of AKT/mTOR signaling. J. Clin. Invest. 122, 1354–1367 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Ong, D. S., Mu, T. W., Palmer, A. E. & Kelly, J. W. Endoplasmic reticulum Ca2+ increases enhance mutant glucocerebrosidase proteostasis. Nature Chem. Biol. 6, 424–432 (2010).

    Article  CAS  Google Scholar 

  144. Torres, M. et al. Prion protein misfolding affects calcium homeostasis and sensitizes cells to endoplasmic reticulum stress. PLoS ONE 5, e15658 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Acosta-Alvear, D. et al. XBP1 controls diverse cell type- and condition-specific transcriptional regulatory networks. Mol. Cell 27, 53–66 (2007).

    Article  CAS  PubMed  Google Scholar 

  146. Domingues, S. C., Henriques, A. G., Wu, W., Da Cruz e Silva, E. F. & Da Cruz e Silva, O. A. Altered subcellular distribution of the Alzheimer's amyloid precursor protein under stress conditions. Ann. NY Acad. Sci. 1096, 184–195 (2007).

    Article  CAS  PubMed  Google Scholar 

  147. Yang, Y., Turner, R. S. & Gaut, J. R. The chaperone BiP/GRP78 binds to amyloid precursor protein and decreases Aβ40 and Aβ42 secretion. J. Biol. Chem. 273, 25552–25555 (1998).

    Article  CAS  PubMed  Google Scholar 

  148. O'Connor, T. et al. Phosphorylation of the translation initiation factor eIF2α increases BACE1 levels and promotes amyloidogenesis. Neuron 60, 988–1009 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Mitsuda, T., Hayakawa, Y., Itoh, M., Ohta, K. & Nakagawa, T. ATF4 regulates γ-secretase activity during amino acid imbalance. Biochem. Biophys. Res. Commun. 352, 722–727 (2007).

    Article  CAS  PubMed  Google Scholar 

  150. Ohta, K. et al. Endoplasmic reticulum stress enhances γ-secretase activity. Biochem. Biophys. Res. Commun. 416, 362–366 (2011).

    Article  CAS  PubMed  Google Scholar 

  151. Bouman, L. et al. Parkin is transcriptionally regulated by ATF4: evidence for an interconnection between mitochondrial stress and ER stress. Cell Death Differ. 18, 769–782 (2011).

    Article  CAS  PubMed  Google Scholar 

  152. Duplan, E. et al. ER-stress-associated functional link between Parkin and DJ-1 via a transcriptional cascade involving the tumor suppressor p53 and the spliced X-box binding protein XBP-1. J. Cell Sci. 126, 2124–2133 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Mattson, M. P. Hormesis defined. Ageing Res. Rev. 7, 1–7 (2008).

    Article  CAS  PubMed  Google Scholar 

  154. Calabrese, E. J., Iavicoli, I. & Calabrese, V. Hormesis: its impact on medicine and health. Hum. Exp. Toxicol. 32, 120–152 (2013).

    Article  CAS  PubMed  Google Scholar 

  155. Kloner, R. A. Clinical application of remote ischemic preconditioning. Circulation 119, 776–778 (2009).

    Article  PubMed  Google Scholar 

  156. Matus, S., Castillo, K. & Hetz, C. Hormesis: protecting neurons against cellular stress in Parkinson disease. Autophagy 8, 997–1001 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Mollereau, B. Establishing links between ER-hormesis and cancer. Mol. Cell Biol. 33, 2372–2374 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Cullinan, S. B. et al. Nrf2 is a direct PERK substrate and effector of PERK-dependent cell survival. Mol. Cell. Biol. 23, 7198–7209 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Higa, A. & Chevet, E. Redox signaling loops in the unfolded protein response. Cell Signal 24, 1548–1555 (2012).

    Article  CAS  PubMed  Google Scholar 

  160. Petrovski, G. et al. Cardioprotection by endoplasmic reticulum stress-induced autophagy. Antioxid. Redox Signal. 14, 2191–2200 (2011).

    Article  CAS  PubMed  Google Scholar 

  161. Fouillet, A. et al. ER stress inhibits neuronal death by promoting autophagy. Autophagy 8, 915–926 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Griciuc, A. et al. Inactivation of VCP/ter94 suppresses retinal pathology caused by misfolded rhodopsin in Drosophila. PLoS Genet. 6, e1001075 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Mao, X. R. & Crowder, C. M. Protein misfolding induces hypoxic preconditioning via a subset of the unfolded protein response machinery. Mol. Cell. Biol. 30, 5033–5042 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Matus, S., Nassif, M., Glimcher, L. H. & Hetz, C. XBP-1 deficiency in the nervous system reveals a homeostatic switch to activate autophagy. Autophagy 5, 1226–1228 (2009).

    Article  PubMed  Google Scholar 

  165. Costa-Mattioli, M., Sossin, W. S., Klann, E. & Sonenberg, N. Translational control of long-lasting synaptic plasticity and memory. Neuron 61, 10–26 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Costa-Mattioli, M. et al. eIF2α phosphorylation bidirectionally regulates the switch from short- to long-term synaptic plasticity and memory. Cell 129, 195–206 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Costa-Mattioli, M. et al. Translational control of hippocampal synaptic plasticity and memory by the eIF2α kinase GCN2. Nature 436, 1166–1173 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Zhu, P. J. et al. Suppression of PKR promotes network excitability and enhanced cognition by interferon-γ-mediated disinhibition. Cell 147, 1384–1396 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Stern, E., Chinnakkaruppan, A., David, O., Sonenberg, N. & Rosenblum, K. Blocking the eIF2α kinase (PKR) enhances positive and negative forms of cortex-dependent taste memory. J. Neurosci. 33, 2517–2525 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Sidrauski, C. et al. Pharmacological brake-release of mRNA translation enhances cognitive memory. eLife 2, e00498 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Trinh, M. A. et al. Brain-specific disruption of the eIF2α kinase PERK decreases ATF4 expression and impairs behavioral flexibility. Cell Rep. 1, 676–688 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Rampon, C. et al. Effects of environmental enrichment on gene expression in the brain. Proc. Natl Acad. Sci. USA 97, 12880–12884 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Park-York, M., Kim, Y. & York, D. A. Cage food location alters energy balance and endoplasmic reticulum stress in the brain of mice. Physiol. Behav. 106, 158–163 (2012).

    Article  CAS  PubMed  Google Scholar 

  174. Kim, Y., Park, M., Boghossian, S. & York, D. A. Three weeks voluntary running wheel exercise increases endoplasmic reticulum stress in the brain of mice. Brain Res. 1317, 13–23 (2010).

    Article  CAS  PubMed  Google Scholar 

  175. Toda, H. et al. Behavioral stress and activated serotonergic neurotransmission induce XBP-1 splicing in the rat brain. Brain Res. 1112, 26–32 (2006).

    Article  CAS  PubMed  Google Scholar 

  176. Hayashi, A. et al. The role of brain-derived neurotrophic factor (BDNF)-induced XBP1 splicing during brain development. J. Biol. Chem. 282, 34525–34534 (2007).

    Article  CAS  PubMed  Google Scholar 

  177. Hayashi, A., Kasahara, T., Kametani, M. & Kato, T. Attenuated BDNF-induced upregulation of GABAergic markers in neurons lacking Xbp1. Biochem. Biophys. Res. Commun. 376, 758–763 (2008).

    Article  CAS  PubMed  Google Scholar 

  178. Shim, J., Umemura, T., Nothstein, E. & Rongo, C. The unfolded protein response regulates glutamate receptor export from the endoplasmic reticulum. Mol. Biol. Cell 15, 4818–4828 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Coehlo, D. S. et al. Xbp-1independent Ire1 signaling is required for photoreceptor differentiation and rhabdomere morphogenesis in Drosophila. Cell Rep. 5, 791–801 (2013).

    Article  CAS  Google Scholar 

  180. Takata, A., Kakiuchi, C., Ishiwata, M., Kanba, S. & Kato, T. Behavioral and gene expression analyses in heterozygous XBP1 knockout mice: possible contribution of chromosome 11qA1 locus to prepulse inhibition. Neurosci. Res. 68, 250–255 (2010).

    Article  CAS  PubMed  Google Scholar 

  181. Dourlen, P. et al. Drosophila fatty acid transport protein regulates rhodopsin-1 metabolism and is required for photoreceptor neuron survival. PLoS Genet. 8, e1002833 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Hotamisligil, G. S. Endoplasmic reticulum stress and the inflammatory basis of metabolic disease. Cell 140, 900–917 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Ozcan, L. et al. Endoplasmic reticulum stress plays a central role in development of leptin resistance. Cell. Metab. 9, 35–51 (2009).

    Article  CAS  PubMed  Google Scholar 

  184. Schneeberger, M. et al. Mitofusin 2 in POMC neurons connects ER stress with leptin resistance and energy imbalance. Cell 155, 172–187 (2013).

    Article  CAS  PubMed  Google Scholar 

  185. Hatori, M. et al. Light-dependent and circadian clock-regulated activation of sterol regulatory element-binding protein, X-box-binding protein 1, and heat shock factor pathways. Proc. Natl Acad. Sci. USA 108, 4864–4869 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  186. Methippara, M., Mitrani, B., Schrader, F. X., Szymusiak, R. & McGinty, D. Salubrinal, an endoplasmic reticulum stress blocker, modulates sleep homeostasis and activation of sleep- and wake-regulatory neurons. Neuroscience 209, 108–118 (2012).

    Article  CAS  PubMed  Google Scholar 

  187. Martinez, G. & Hetz, C. Cell-nonautonomous control of the UPR. EMBO Rep. 13, 767–768 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Ben-Zvi, A., Miller, E. A. & Morimoto, R. I. Collapse of proteostasis represents an early molecular event in Caenorhabditis elegans aging. Proc. Natl Acad. Sci. USA 106, 14914–14919 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  189. Sun, J., Liu, Y. & Aballay, A. Organismal regulation of XBP-1-mediated unfolded protein response during development and immune activation. EMBO Rep. 13, 855–860 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Taylor, R. C. & Dillin, A. XBP-1 is a cell-nonautonomous regulator of stress resistance and longevity. Cell 153, 1435–1447 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Henis-Korenblit, S. et al. Insulin/IGF-1 signaling mutants reprogram ER stress response regulators to promote longevity. Proc. Natl Acad. Sci. USA 107, 9730–9735 (2010). This is the first study to demonstrate a role for XBP-1 in ageing through a cell-non-autonomous mechanism.

    Article  PubMed  PubMed Central  Google Scholar 

  192. van Oosten-Hawle, P., Porter, R. S. & Morimoto, R. I. Regulation of organismal proteostasis by transcellular chaperone signaling. Cell 153, 1366–1378 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Rutkowski, D. T. & Hegde, R. S. Regulation of basal cellular physiology by the homeostatic unfolded protein response. J. Cell Biol. 189, 783–794 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Cornejo, V. H., Pihan, P., Vidal, R. L. & Hetz, C. Role of the unfolded protein response in organ physiology: lessons from mouse models. IUBMB Life 65, 962–975 (2013).

    Article  CAS  PubMed  Google Scholar 

  195. Martinon, F. & Glimcher, L. H. Regulation of innate immunity by signaling pathways emerging from the endoplasmic reticulum. Curr. Opin. Immunol. 23, 35–40 (2011).

    Article  CAS  PubMed  Google Scholar 

  196. Hetz, C., Chevet, E. & Harding, H. P. Targeting the unfolded protein response in disease. Nature Rev. Drug Discov. 12, 703–719 (2013).

    Article  CAS  Google Scholar 

  197. Hoozemans, J. J. & Scheper, W. Endoplasmic reticulum: the unfolded protein response is tangled in neurodegeneration. Int. J. Biochem. Cell Biol. 44, 1295–1298 (2012).

    Article  CAS  PubMed  Google Scholar 

  198. Honjo, Y., Ito, H., Horibe, T., Takahashi, R. & Kawakami, K. Protein disulfide isomerase-immunopositive inclusions in patients with Alzheimer disease. Brain Res. 1349, 90–96 (2010).

    Article  CAS  PubMed  Google Scholar 

  199. Reinhardt, S. et al. Unfolded protein response signaling by transcription factor XBP-1 regulates ADAM10 and is affected in Alzheimer's disease. FASEB J. 28, 978–997 (2014).

    Article  CAS  PubMed  Google Scholar 

  200. Nijholt, D. A., van Haastert, E. S., Rozemuller, A. J., Scheper, W. & Hoozemans, J. J. The unfolded protein response is associated with early tau pathology in the hippocampus of tauopathies. J. Pathol. 226, 693–702 (2012).

    Article  CAS  PubMed  Google Scholar 

  201. Conn, K. J. et al. Identification of the protein disulfide isomerase family member PDIp in experimental Parkinson's disease and Lewy body pathology. Brain Res. 1022, 164–172 (2004).

    Article  CAS  PubMed  Google Scholar 

  202. Hoozemans, J. J. et al. Activation of the unfolded protein response in Parkinson's disease. Biochem. Biophys. Res. Commun. 354, 707–711 (2007).

    Article  CAS  PubMed  Google Scholar 

  203. Slodzinski, H. et al. Homocysteine-induced endoplasmic reticulum protein (herp) is up-regulated in parkinsonian substantia nigra and present in the core of Lewy bodies. Clin. Neuropathol. 28, 333–343 (2009).

    CAS  PubMed  Google Scholar 

  204. Ilieva, E. V. et al. Oxidative and endoplasmic reticulum stress interplay in sporadic amyotrophic lateral sclerosis. Brain 130, 3111–3123 (2007).

    Article  PubMed  Google Scholar 

  205. Ito, Y. et al. Involvement of CHOP, an ER-stress apoptotic mediator, in both human sporadic ALS and ALS model mice. Neurobiol. Dis. 36, 470–476 (2009).

    Article  CAS  PubMed  Google Scholar 

  206. Sasaki, S. Endoplasmic reticulum stress in motor neurons of the spinal cord in sporadic amyotrophic lateral sclerosis. J. Neuropathol. Exp. Neurol. 69, 346–355 (2010).

    Article  PubMed  Google Scholar 

  207. Yoo, B. C. et al. Overexpressed protein disulfide isomerase in brains of patients with sporadic Creutzfeldt-Jakob disease. Neurosci. Lett. 334, 196–200 (2002).

    Article  CAS  PubMed  Google Scholar 

  208. Unterberger, U. et al. Endoplasmic reticulum stress features are prominent in Alzheimer disease but not in prion diseases in vivo. J. Neuropathol. Exp. Neurol. 65, 348–357 (2006).

    Article  CAS  PubMed  Google Scholar 

  209. Sado, M. et al. Protective effect against Parkinson's disease-related insults through the activation of XBP1. Brain Res. 1257, 16–24 (2009).

    Article  CAS  PubMed  Google Scholar 

  210. Zuleta, A. et al. AAV-mediated delivery of the transcription factor XBP1s into the striatum reduces mutant Huntingtin aggregation in a mouse model of Huntington's disease. Biochem. Biophys. Res. Commun. 420, 558–563 (2012).

    Article  CAS  PubMed  Google Scholar 

  211. Ohri, S. et al. Restoring endoplasmic reticulum homeostasis improves functional recovery after spinal cord injury. Neurobiol. Dis. 58, 29–37 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Nashine, S. et al. Ablation of C/EBP homologous protein does not protect T17M RHO mice from retinal degeneration. PLoS ONE 8, e63205 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors apologize to all colleagues whose work could not be cited owing to space limitations. We thank G. Martinez, V. H. Cornejo and C. Levet for the initial figure design. This work was funded by FONDECYT 1140549, Millennium Institute No. P09-015-F, Ring Initiative ACT1109, FONDEF grant No. D11I1007, CONICYT grant USA2013-0003, ECOS-CONICYTC13S02, the ALS Therapy Alliance, the Muscular Dystrophy Association and the Alzheimer´s Disease Association (C.H.), in addition to grants from the CNRS (ANR LipidinRetina and Ire1-PD), the Fondation de France and the Fondation ARC pour la recherche sur le cancer (B.M.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Claudio Hetz or Bertrand Mollereau.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hetz, C., Mollereau, B. Disturbance of endoplasmic reticulum proteostasis in neurodegenerative diseases. Nat Rev Neurosci 15, 233–249 (2014). https://doi.org/10.1038/nrn3689

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn3689

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing