Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Pathophysiology of the brain extracellular matrix: a new target for remyelination

Abstract

The extracellular matrix (ECM) occupies a notable proportion of the CNS and contributes to its normal physiology. Alterations to the ECM occur after neural injury (for example, in multiple sclerosis, spinal cord injury or Alzheimer's disease) and can have drastic consequences. Of note, injury-induced changes in chondroitin sulphate proteoglycans (CSPGs) — a family of ECM proteoglycans — can lead to the inhibition of myelin repair. Here, we highlight the pathophysiological roles of the brain's ECM, particularly those of CSPGs, after neural insults and discuss how the ECM can be targeted to promote remyelination.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The three major compartments of the ECM in the CNS.
Figure 2: Strategies to overcome the CSPG- and hyaluronan-mediated inhibition of remyelination.

Similar content being viewed by others

References

  1. Bignami, A., Hosley, M. & Dahl, D. Hyaluronic acid and hyaluronic acid-binding proteins in brain extracellular matrix. Anat. Embryol. 188, 419–433 (1993).

    CAS  PubMed  Google Scholar 

  2. Cragg, B. Brain extracellular space fixed for electron microscopy. Neurosci. Lett. 15, 301–306 (1979).

    CAS  PubMed  Google Scholar 

  3. Bandtlow, C. E. & Zimmermann, D. R. Proteoglycans in the developing brain: new conceptual insights for old proteins. Physiol. Rev. 80, 1267–1290 (2000).

    CAS  PubMed  Google Scholar 

  4. Dityatev, A. & Schachner, M. Extracellular matrix molecules and synaptic plasticity. Nature Rev. Neurosci. 4, 456–468 (2003).

    CAS  Google Scholar 

  5. Kwok, J. C. F., Dick, G., Wang, D. & Fawcett, J. W. Extracellular matrix and perineuronal nets in CNS repair. Dev. Neurobiol. 71, 1073–1089 (2011).

    CAS  PubMed  Google Scholar 

  6. Rauch, U. Brain matrix: structure, turnover and necessity. Biochem. Soc. Trans. 35, 656–660 (2007).

    CAS  PubMed  Google Scholar 

  7. Wang, C. X. & Shuaib, A. Critical role of microvasculature basal lamina in ischemic brain injury. Prog. Neurobiol. 83, 140–148 (2007).

    CAS  PubMed  Google Scholar 

  8. McRae, P. A. & Porter, B. E. The perineuronal net component of the extracellular matrix in plasticity and epilepsy. Neurochem. Int. 61, 963–972 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Bellail, A. C., Hunter, S. B., Brat, D. J., Tan, C. & Van Meir, E. G. Microregional extracellular matrix heterogeneity in brain modulates glioma cell invasion. Int. J. Biochem. Cell Biol. 36, 1046–1069 (2004).

    CAS  PubMed  Google Scholar 

  10. Fukuchi, K., Hart, M. & Li, L. Alzheimer's disease and heparan sulfate proteoglycan. Front. Biosci. 3, d327–d337 (1998).

    CAS  PubMed  Google Scholar 

  11. McKeon, R. J., Schreiber, R. C., Rudge, J. S. & Silver, J. Reduction of neurite outgrowth in a model of glial scarring following CNS injury is correlated with the expression of inhibitory molecules on reactive astrocytes. J. Neurosci. 11, 3398–3411 (1991).

    CAS  PubMed  Google Scholar 

  12. Jones, L. L., Margolis, R. U. & Tuszynski, M. H. The chondroitin sulfate proteoglycans neurocan, brevican, phosphacan, and versican are differentially regulated following spinal cord injury. Exp. Neurol. 182, 399–411 (2003).

    CAS  PubMed  Google Scholar 

  13. Silver, J. & Miller, J. H. Regeneration beyond the glial scar. Nature Rev. Neurosci. 5, 146–156 (2004).

    CAS  Google Scholar 

  14. Bradbury, E. J. et al. Chondroitinase ABC promotes functional recovery after spinal cord injury. Nature 416, 636–640 (2002).

    CAS  PubMed  Google Scholar 

  15. Grimpe, B. & Silver, J. A novel DNA enzyme reduces glycosaminoglycan chains in the glial scar and allows microtransplanted dorsal root ganglia axons to regenerate beyond lesions in the spinal cord. J. Neurosci. 24, 1393–1397 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Sugahara, K. & Mikami, T. Chondroitin/dermatan sulfate in the central nervous system. Curr. Opin. Struct. Biol. 17, 536–545 (2007).

    CAS  PubMed  Google Scholar 

  17. Gilbert, R. J. et al. CS-4,6 is differentially upregulated in glial scar and is a potent inhibitor of neurite extension. Mol. Cell. Neurosci. 29, 545–558 (2005).

    CAS  PubMed  Google Scholar 

  18. Karumbaiah, L. et al. Targeted downregulation of N-acetylgalactosamine 4-sulfate 6-O-sulfotransferase significantly mitigates chondroitin sulfate proteoglycan-mediated inhibition. Glia 59, 981–996 (2011).

    PubMed  PubMed Central  Google Scholar 

  19. Brown, J. M. et al. A sulfated carbohydrate epitope inhibits axon regeneration after injury. Proc. Natl Acad. Sci. USA 109, 4768–4773 (2012).

    CAS  PubMed  Google Scholar 

  20. Shen, Y. et al. PTPσ is a receptor for chondroitin sulfate proteoglycan, an inhibitor of neural regeneration. Science 326, 592–596 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Lin, R., Rosahl, T. W., Whiting, P. J., Fawcett, J. W. & Kwok, J. C. F. 6-Sulphated chondroitins have a positive influence on axonal regeneration. PloS ONE 6, e21499 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Sherman, L. S. & Back, S. A. A 'GAG' reflex prevents repair of the damaged CNS. Trends Neurosci. 31, 44–52 (2008).

    CAS  PubMed  Google Scholar 

  23. Fitch, M. T. & Silver, J. CNS injury, glial scars, and inflammation: inhibitory extracellular matrices and regeneration failure. Exp. Neurol. 209, 294–301 (2008).

    CAS  PubMed  Google Scholar 

  24. Seitz, A., Aglow, E. & Heber-Katz, E. Recovery from spinal cord injury: a new transection model in the C57Bl/6 mouse. J. Neurosci. Res. 67, 337–345 (2002).

    CAS  PubMed  Google Scholar 

  25. van Horssen, J., Bö, L., Dijkstra, C. D. & de Vries, H. E. Extensive extracellular matrix depositions in active multiple sclerosis lesions. Neurobiol. Dis. 24, 484–491 (2006).

    CAS  PubMed  Google Scholar 

  26. Sorokin, L. The impact of the extracellular matrix on inflammation. Nature Rev. Immunol. 10, 712–723 (2010).

    CAS  Google Scholar 

  27. Mohan, H. et al. Extracellular matrix in multiple sclerosis lesions: fibrillar collagens, biglycan and decorin are upregulated and associated with infiltrating immune cells. Brain Pathol. 20, 966–975 (2010).

    CAS  PubMed  Google Scholar 

  28. Gray, E., Thomas, T. L., Betmouni, S., Scolding, N. & Love, S. Elevated matrix metalloproteinase-9 and degradation of perineuronal nets in cerebrocortical multiple sclerosis plaques. J. Neuropathol. Exp. Neurol. 67, 888–899 (2008).

    PubMed  Google Scholar 

  29. Galtrey, C. M. & Fawcett, J. W. The role of chondroitin sulfate proteoglycans in regeneration and plasticity in the central nervous system. Brain Res. Rev. 54, 1–18 (2007).

    CAS  PubMed  Google Scholar 

  30. Yiu, G. & He, Z. Glial inhibition of CNS axon regeneration. Nature Rev. Neurosci. 7, 617–627 (2006).

    CAS  Google Scholar 

  31. Back, S. A. et al. Hyaluronan accumulates in demyelinated lesions and inhibits oligodendrocyte progenitor maturation. Nature Med. 11, 966–972 (2005).

    CAS  PubMed  Google Scholar 

  32. Sobel, R. A. & Ahmed, A. S. White matter extracellular matrix chondroitin sulfate/dermatan sulfate proteoglycans in multiple sclerosis. J. Neuropathol. Exp. Neurol. 60, 1198–1207 (2001).

    CAS  PubMed  Google Scholar 

  33. Marret, S. et al. Expression and effects of hyaluronan and of the hyaluronan-binding protein hyaluronectin in newborn rat brain glial cell cultures. J. Neurochem. 62, 1285–1295 (1994).

    CAS  PubMed  Google Scholar 

  34. Buttery, P. C. & ffrench-Constant, C. Laminin-2/integrin interactions enhance myelin membrane formation by oligodendrocytes. Mol. Cell. Neurosci. 14, 199–212 (1999).

    CAS  PubMed  Google Scholar 

  35. Chun, S. J., Rasband, M. N., Sidman, R. L., Habib, A. A. & Vartanian, T. Integrin-linked kinase is required for laminin-2-induced oligodendrocyte cell spreading and CNS myelination. J. Cell Biol. 163, 397–408 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Milner, R. et al. Expression of αvβ3 and αvβ8 integrins during oligodendrocyte precursor differentiation in the presence and absence of axons. Glia 21, 350–360 (1997).

    CAS  PubMed  Google Scholar 

  37. Colognato, H., Ffrench-Constant, C. & Feltri, M. L. Human diseases reveal novel roles for neural laminins. Trends Neurosci. 28, 480–486 (2005).

    CAS  PubMed  Google Scholar 

  38. Relucio, J., Menezes, M. J., Miyagoe-Suzuki, Y., Takeda, S. & Colognato, H. Laminin regulates postnatal oligodendrocyte production by promoting oligodendrocyte progenitor survival in the subventricular zone. Glia 60, 1451–1467 (2012).

    PubMed  PubMed Central  Google Scholar 

  39. Sisková, Z., Baron, W., de Vries, H. & Hoekstra, D. Fibronectin impedes 'myelin' sheet-directed flow in oligodendrocytes: a role for a beta 1 integrin-mediated PKC signaling pathway in vesicular trafficking. Mol. Cell. Neurosci. 33, 150–159 (2006).

    PubMed  Google Scholar 

  40. Stoffels, J. M. J. et al. Fibronectin aggregation in multiple sclerosis lesions impairs remyelination. Brain 136, 116–131 (2013).

    PubMed  Google Scholar 

  41. van Horssen, J., Dijkstra, C. D. & de Vries, H. E. The extracellular matrix in multiple sclerosis pathology. J. Neurochem. 103, 1293–1301 (2007).

    CAS  PubMed  Google Scholar 

  42. Kippert, A., Fitzner, D., Helenius, J. & Simons, M. Actomyosin contractility controls cell surface area of oligodendrocytes. BMC Cell Biol. 10, 71 (2009).

    PubMed  PubMed Central  Google Scholar 

  43. Lau, L. W. et al. Chondroitin sulfate proteoglycans in demyelinated lesions impair remyelination. Ann. Neurol. 72, 419–432 (2012).

    CAS  PubMed  Google Scholar 

  44. Siebert, J. R. & Osterhout, D. J. The inhibitory effects of chondroitin sulfate proteoglycans on oligodendrocytes. J. Neurochem. 119, 176–188 (2011).

    CAS  PubMed  Google Scholar 

  45. Siebert, J. R., Stelzner, D. J. & Osterhout, D. J. Chondroitinase treatment following spinal contusion injury increases migration of oligodendrocyte progenitor cells. Exp. Neurol. 231, 19–29 (2011).

    CAS  PubMed  Google Scholar 

  46. Karimi-Abdolrezaee, S., Schut, D., Wang, J. & Fehlings, M. G. Chondroitinase and growth factors enhance activation and oligodendrocyte differentiation of endogenous neural precursor cells after spinal cord injury. PloS ONE 7, e37589 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Kuhlmann, T. et al. Differentiation block of oligodendroglial progenitor cells as a cause for remyelination failure in chronic multiple sclerosis. Brain 131, 1749–1758 (2008).

    CAS  PubMed  Google Scholar 

  48. Chang, A. et al. Cortical remyelination: a new target for repair therapies in multiple sclerosis. Ann. Neurol. 72, 918–926 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Watanabe, M., Toyama, Y. & Nishiyama, A. Differentiation of proliferated NG2-positive glial progenitor cells in a remyelinating lesion. J. Neurosci. Res. 69, 826–836 (2002).

    CAS  PubMed  Google Scholar 

  50. Larsen, P. H., Wells, J. E., Stallcup, W. B., Opdenakker, G. & Yong, V. W. Matrix metalloproteinase-9 facilitates remyelination in part by processing the inhibitory NG2 proteoglycan. J. Neurosci. 23, 11127–11135 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Kucharova, K., Chang, Y., Boor, A., Yong, V. W. & Stallcup, W. B. Reduced inflammation accompanies diminished myelin damage and repair in the NG2 null mouse spinal cord. J. Neuroinflammation 8, 158 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Yong, V. W., Krekoski, C. A., Forsyth, P. A., Bell, R. & Edwards, D. R. Matrix metalloproteinases and diseases of the CNS. Trends Neurosci. 21, 75–80 (1998).

    CAS  PubMed  Google Scholar 

  53. Yong, V. W. Metalloproteinases: mediators of pathology and regeneration in the CNS. Nature Rev. Neurosci. 6, 931–944 (2005).

    CAS  Google Scholar 

  54. Sternlicht, M. D. & Werb, Z. How matrix metalloproteinases regulate cell behavior. Annu. Rev. Cell Dev. Biol. 17, 463–516 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Rodríguez, D., Morrison, C. J. & Overall, C. M. Matrix metalloproteinases: what do they not do? New substrates and biological roles identified by murine models and proteomics. Biochim. Biophys. Acta 1803, 39–54 (2010).

    PubMed  Google Scholar 

  56. Hsu, J.-Y. C. et al. Matrix metalloproteinase-2 facilitates wound healing events that promote functional recovery after spinal cord injury. J. Neurosci. 26, 9841–9850 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Pizzi, M. A. & Crowe, M. J. Transplantation of fibroblasts that overexpress matrix metalloproteinase-3 into the site of spinal cord injury in rats. J. Neurotrauma 23, 1750–1765 (2006).

    PubMed  Google Scholar 

  58. Zuo, J., Ferguson, T. A., Hernandez, Y. J., Stetler-Stevenson, W. G. & Muir, D. Neuronal matrix metalloproteinase-2 degrades and inactivates a neurite-inhibiting chondroitin sulfate proteoglycan. J. Neurosci. 18, 5203–5211 (1998).

    CAS  PubMed  Google Scholar 

  59. Sisková, Z. et al. Fibronectin attenuates process outgrowth in oligodendrocytes by mislocalizing MMP-9 activity. Mol. Cell. Neurosci. 42, 234–242 (2009).

    PubMed  Google Scholar 

  60. Apte, S. S. A disintegrin-like and metalloprotease (reprolysin-type) with thrombospondin type 1 motif (ADAMTS) superfamily: functions and mechanisms. J. Biol. Chem. 284, 31493–31497 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Tauchi, R. et al. The endogenous proteoglycan-degrading enzyme ADAMTS-4 promotes functional recovery after spinal cord injury. J. Neuroinflammation 9, 53 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Preston, M. et al. Digestion products of the PH20 hyaluronidase inhibit remyelination. Ann. Neurol. 73, 266–280 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Laabs, T. L. et al. Inhibiting glycosaminoglycan chain polymerization decreases the inhibitory activity of astrocyte-derived chondroitin sulfate proteoglycans. J. Neurosci. 27, 14494–14501 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Gloster, T. M. & Vocadlo, D. J. Developing inhibitors of glycan processing enzymes as tools for enabling glycobiology. Nature Chem. Biol. 8, 683–694 (2012).

    CAS  Google Scholar 

  65. Tan, C. L. et al. Integrin activation promotes axon growth on inhibitory chondroitin sulfate proteoglycans by enhancing integrin signaling. J. Neurosci. 31, 6289–6295 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Snow, D. M., Brown, E. M. & Letourneau, P. C. Growth cone behavior in the presence of soluble chondroitin sulfate proteoglycan (CSPG), compared to behavior on CSPG bound to laminin or fibronectin. Int. J. Dev. Neurosci. 14, 331–349 (1996).

    CAS  PubMed  Google Scholar 

  67. Sharma, K., Selzer, M. E. & Li, S. Scar-mediated inhibition and CSPG receptors in the CNS. Exp. Neurol. 237, 370–378 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Pendleton, J. C. et al. Chondroitin sulfate proteoglycans inhibit oligodendrocyte myelination through PTPσ. Exp. Neurol. 247, 113–121 (2013).

    CAS  PubMed  Google Scholar 

  69. Condic, M. L., Snow, D. M. & Letourneau, P. C. Embryonic neurons adapt to the inhibitory proteoglycan aggrecan by increasing integrin expression. J. Neurosci. 19, 10036–10043 (1999).

    CAS  PubMed  Google Scholar 

  70. Hamby, M. E. & Sofroniew, M. V. Reactive astrocytes as therapeutic targets for CNS disorders. Neurotherapeutics 7, 494–506 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Rolls, A. et al. Two faces of chondroitin sulfate proteoglycan in spinal cord repair: a role in microglia/macrophage activation. PLoS Med. 5, e171 (2008).

    PubMed  PubMed Central  Google Scholar 

  72. Engelhardt, B. Development of the blood–brain barrier. Cell Tissue Res. 314, 119–129 (2003).

    CAS  PubMed  Google Scholar 

  73. Colognato, H. & Yurchenco, P. D. Form and function: the laminin family of heterotrimers. Dev. Dyn. 218, 213–234 (2000).

    CAS  PubMed  Google Scholar 

  74. Engel, M., Maurel, P., Margolis, R. U. & Margolis, R. K. Chondroitin sulfate proteoglycans in the developing central nervous system. I. cellular sites of synthesis of neurocan and phosphacan. J. Comp. Neurol. 366, 34–43 (1996).

    CAS  PubMed  Google Scholar 

  75. Ichijo, H. & Kawabata, I. Roles of the telencephalic cells and their chondroitin sulfate proteoglycans in delimiting an anterior border of the retinal pathway. J. Neurosci. 21, 9304–9314 (2001).

    CAS  PubMed  Google Scholar 

  76. Bekku, Y. et al. Bral1: its role in diffusion barrier formation and conduction velocity in the CNS. J. Neurosci. 30, 3113–3123 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Fisher, D. et al. Leukocyte common antigen-related phosphatase is a functional receptor for chondroitin sulfate proteoglycan axon growth inhibitors. J. Neurosci. 31, 14051–14066 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Koprivica, V. et al. EGFR activation mediates inhibition of axon regeneration by myelin and chondroitin sulfate proteoglycans. Science 310, 106–110 (2005).

    CAS  PubMed  Google Scholar 

  79. Kim, S. et al. Carcinoma-produced factors activate myeloid cells through TLR2 to stimulate metastasis. Nature 457, 102–106 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Dickendesher, T. L. et al. NgR1 and NgR3 are receptors for chondroitin sulfate proteoglycans. Nature Neurosci. 15, 703–712 (2012).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Our studies have been funded by operating grants from the Canadian Institutes of Health Research and the Multiple Sclerosis Society of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Wee Yong.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lau, L., Cua, R., Keough, M. et al. Pathophysiology of the brain extracellular matrix: a new target for remyelination. Nat Rev Neurosci 14, 722–729 (2013). https://doi.org/10.1038/nrn3550

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn3550

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing