Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

What are the mechanisms for analogue and digital signalling in the brain?

Abstract

Synaptic transmission in the brain generally depends on action potentials. However, recent studies indicate that subthreshold variation in the presynaptic membrane potential also determines spike-evoked transmission. The informational content of each presynaptic action potential is therefore greater than initially expected. The contribution of this synaptic property, which is a fast (from 0.01 to 10 s) and state-dependent modulation of functional coupling, has been largely underestimated and could have important consequences for our understanding of information processing in neural networks. We discuss here how the membrane voltage of the presynaptic terminal might modulate neurotransmitter release by mechanisms that do not involve a change in presynaptic Ca2+ influx.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Digital, analogue and hybrid (analogue–digital) modes of synaptic transmission
Figure 2: Generic mechanisms for analogue–digital facilitation.

Similar content being viewed by others

References

  1. Alle, H. & Geiger, J. R. Combined analog and action potential coding in hippocampal mossy fibers. Science 311, 1290–1293 (2006).

    Article  CAS  Google Scholar 

  2. Shu, Y., Hasenstaub, A., Duque, A., Yu, Y. & McCormick, D. A. Modulation of intracortical synaptic potentials by presynaptic somatic membrane potential. Nature 441, 761–765 (2006).

    Article  CAS  Google Scholar 

  3. Kole, M. H., Letzkus, J. J. & Stuart, G. J. Axon initial segment Kv1 channels control axonal action potential waveform and synaptic efficacy. Neuron 55, 633–647 (2007).

    Article  CAS  Google Scholar 

  4. Alle, H. & Geiger, J. R. Analog signalling in mammalian cortical axons. Curr. Opin. Neurobiol. 18, 314–320 (2008).

    Article  CAS  Google Scholar 

  5. Kole, M. H. & Stuart, G. J. Signal processing in the axon initial segment. Neuron 73, 235–247 (2012).

    Article  CAS  Google Scholar 

  6. Werblin, F. S. & Dowling, J. E. Organization of the retina of the mudpuppy, Necturus maculosus. II. Intracellular recording. J. Neurophysiol. 32, 339–355 (1969).

    Article  CAS  Google Scholar 

  7. Marder, E. Neurobiology: extending influence. Nature 441, 702–703 (2006).

    Article  CAS  Google Scholar 

  8. de Ruyter van Steveninck, R. R. & Laughlin, S. B. The rate of information transfer at graded-potential synapses. Nature 379, 642–645 (1996).

    Article  CAS  Google Scholar 

  9. Borst, A. & Theunissen, F. E. Information theory and neural coding. Nature Neurosci. 2, 947–957 (1999).

    Article  CAS  Google Scholar 

  10. Heidelberger, R. Mechanisms of tonic, graded release: lessons from the vertebrate photoreceptor. J. Physiol. 585, 663–667 (2007).

    Article  CAS  Google Scholar 

  11. Debanne, D., Campanac, E., Bialowas, A., Carlier, E. & Alcaraz, G. Axon physiology. Physiol. Rev. 91, 555–602 (2011).

    Article  CAS  Google Scholar 

  12. Bucher, D. & Goaillard, J. M. Beyond faithful conduction: short-term dynamics, neuromodulation, and long-term regulation of spike propagation in the axon. Prog. Neurobiol. 94, 307–346 (2011).

    Article  Google Scholar 

  13. Alle, H., Roth, A. & Geiger, J. R. Energy-efficient action potentials in hippocampal mossy fibers. Science 325, 1405–1408 (2009).

    Article  CAS  Google Scholar 

  14. Sengupta, B., Stemmler, M., Laughlin, S. B. & Niven, J. E. Action potential energy efficiency varies among neuron types in vertebrates and invertebrates. PLoS Comput. Biol. 6, e1000840 (2010).

    Article  Google Scholar 

  15. Shimahara, T. & Tauc, L. Multiple interneuronal afferents to the giant cells in Aplysia. J. Physiol. 247, 299–319 (1975).

    Article  CAS  Google Scholar 

  16. Shimahara, T. & Peretz, B. Soma potential of an interneurone controls transmitter release in a monosynaptic pathway in Aplysia. Nature 273, 158–160 (1978).

    Article  CAS  Google Scholar 

  17. Nicholls, J. & Wallace, B. G. Modulation of transmission at an inhibitory synapse in the central nervous system of the leech. J. Physiol. 281, 157–170 (1978).

    Article  CAS  Google Scholar 

  18. Shapiro, E., Castellucci, V. F. & Kandel, E. R. Presynaptic membrane potential affects transmitter release in an identified neuron in Aplysia by modulating the Ca2+ and K+ currents. Proc. Natl Acad. Sci. USA 77, 629–633 (1980).

    Article  CAS  Google Scholar 

  19. Zhu, J., Jiang, M., Yang, M., Hou, H. & Shu, Y. Membrane potential-dependent modulation of recurrent inhibition in rat neocortex. PLoS Biol. 9, e1001032 (2011).

    Article  CAS  Google Scholar 

  20. Christie, J. M., Chiu, D. N. & Jahr, C. E. Ca2+-dependent enhancement of release by subthreshold somatic depolarization. Nature Neurosci. 14, 62–68 (2011).

    Article  CAS  Google Scholar 

  21. Bouhours, B., Trigo, F. F. & Marty, A. Somatic depolarization enhances GABA release in cerebellar interneurons via a calcium/protein kinase C pathway. J. Neurosci. 31, 5804–5815 (2011).

    Article  CAS  Google Scholar 

  22. Debanne, D., Guerineau, N. C., Gahwiler, B. H. & Thompson, S. M. Action-potential propagation gated by an axonal IA-like K+ conductance in hippocampus. Nature 389, 286–289 (1997).

    Article  CAS  Google Scholar 

  23. Rall, W. Distributions of potential in cylindrical coordinates and time constants for a membrane cylinder. Biophys. J. 9, 1509–1541 (1969).

    Article  CAS  Google Scholar 

  24. Sasaki, T., Matsuki, N. & Ikegaya, Y. Effects of axonal topology on the somatic modulation of synaptic outputs. J. Neurosci. 32, 2868–2876 (2012).

    Article  CAS  Google Scholar 

  25. Awatramani, G. B., Price, G. D. & Trussell, L. O. Modulation of transmitter release by presynaptic resting potential and background calcium levels. Neuron 48, 109–121 (2005).

    Article  CAS  Google Scholar 

  26. Shu, Y., Yu, Y., Yang, J. & McCormick, D. A. Selective control of cortical axonal spikes by a slowly inactivating K+ current. Proc. Natl Acad. Sci. USA 104, 11453–11458 (2007).

    Article  CAS  Google Scholar 

  27. Shu, Y., Duque, A., Yu, Y., Haider, B. & McCormick, D. A. Properties of action-potential initiation in neocortical pyramidal cells: evidence from whole cell axon recordings. J. Neurophysiol. 97, 746–760 (2007).

    Article  Google Scholar 

  28. Boudkkazi, S., Fronzaroli-Molinieres, L. & Debanne, D. Presynaptic action potential waveform determines cortical synaptic latency. J. Physiol. 589, 1117–1131 (2011).

    Article  CAS  Google Scholar 

  29. Saviane, C., Mohajerani, M. H. & Cherubini, E. An ID-like current that is downregulated by Ca2+ modulates information coding at CA3–CA3 synapses in the rat hippocampus. J. Physiol. 552, 513–524 (2003).

    Article  CAS  Google Scholar 

  30. Foust, A. J., Yu, Y., Popovic, M., Zecevic, D. & McCormick, D. A. Somatic membrane potential and Kv1 channels control spike repolarization in cortical axon collaterals and presynaptic boutons. J. Neurosci. 31, 15490–15498 (2011).

    Article  CAS  Google Scholar 

  31. Yu, Y., Maureira, C., Liu, X. & McCormick, D. P/Q and N channels control baseline and spike-triggered calcium levels in neocortical axons and synaptic boutons. J. Neurosci. 30, 11858–11869 (2010).

    Article  CAS  Google Scholar 

  32. Sasaki, T., Matsuki, N. & Ikegaya, Y. Action-potential modulation during axonal conduction. Science 331, 599–601 (2011).

    Article  CAS  Google Scholar 

  33. Debanne, D. & Rama, S. Astrocytes shape axonal signaling. Sci. Signal. 4, pe11 (2011).

    Article  Google Scholar 

  34. Li, L., Bischofberger, J. & Jonas, P. Differential gating and recruitment of P/Q-, N-, and R-type Ca2+ channels in hippocampal mossy fiber boutons. J. Neurosci. 27, 13420–13429 (2007).

    Article  CAS  Google Scholar 

  35. Neher, E. & Sakaba, T. Multiple roles of calcium ions in the regulation of neurotransmitter release. Neuron 59, 861–872 (2008).

    CAS  PubMed  Google Scholar 

  36. Zalutsky, R. A. & Nicoll, R. A. Comparison of two forms of long-term potentiation in single hippocampal neurons. Science 248, 1619–1624 (1990).

    Article  CAS  Google Scholar 

  37. Salin, P. A., Malenka, R. C. & Nicoll, R. A. Cyclic AMP mediates a presynaptic form of LTP at cerebellar parallel fiber synapses. Neuron 16, 797–803 (1996).

    Article  CAS  Google Scholar 

  38. Alle, H., Jonas, P. & Geiger, J. R. PTP & LTP at a hippocampal mossy fiber–interneuron synapse. Proc. Natl Acad. Sci. USA 98, 14708–14713 (2001).

    Article  CAS  Google Scholar 

  39. Scott, R., Ruiz, A., Henneberger, C., Kullmann, D. M. & Rusakov, D. A. Analog modulation of mossy fiber transmission is uncoupled from changes in presynaptic Ca2+. J. Neurosci. 28, 7765–7773 (2008).

    Article  CAS  Google Scholar 

  40. Eggermann, E., Bucurenciu, I., Goswami, S. P. & Jonas, P. Nanodomain coupling between Ca2+ channels and sensors of exocytosis at fast mammalian synapses. Nature Rev. Neurosci. 13, 7–21 (2012).

    Article  CAS  Google Scholar 

  41. Felmy, F., Neher, E. & Schneggenburger, R. Probing the intracellular calcium sensitivity of transmitter release during synaptic facilitation. Neuron 37, 801–811 (2003).

    Article  CAS  Google Scholar 

  42. Cooke, J. D., Okamoto, K. & Quastel, D. M. The role of calcium in depolarization-secretion coupling at the motor nerve terminal. J. Physiol. 228, 459–497 (1973).

    Article  CAS  Google Scholar 

  43. Llinas, R., Steinberg, I. Z. & Walton, K. Relationship between presynaptic calcium current and postsynaptic potential in squid giant synapse. Biophys. J. 33, 323–351 (1981).

    Article  CAS  Google Scholar 

  44. Hochner, B., Parnas, H. & Parnas, I. Membrane depolarization evokes neurotransmitter release in the absence of calcium entry. Nature 342, 433–435 (1989).

    Article  CAS  Google Scholar 

  45. Zhang, C. & Zhou, Z. Ca2+-independent but voltage-dependent secretion in mammalian dorsal root ganglion neurons. Nature Neurosci. 5, 425–430 (2002).

    Article  CAS  Google Scholar 

  46. Mochida, S., Yokoyama, C. T., Kim, D. K., Itoh, K. & Catterall, W. A. Evidence for a voltage-dependent enhancement of neurotransmitter release mediated via the synaptic protein interaction site of N-type Ca2+ channels. Proc. Natl Acad. Sci. USA 95, 14523–14528 (1998).

    Article  CAS  Google Scholar 

  47. Felmy, F., Neher, E. & Schneggenburger, R. The timing of phasic transmitter release is Ca2+-dependent and lacks a direct influence of presynaptic membrane potential. Proc. Natl Acad. Sci. USA 100, 15200–15205 (2003).

    Article  CAS  Google Scholar 

  48. Fili, O. et al. Direct interaction of a brain voltage-gated K+ channel with syntaxin 1A: functional impact on channel gating. J. Neurosci. 21, 1964–1974 (2001).

    Article  CAS  Google Scholar 

  49. Feinshreiber, L., Singer-Lahat, D., Ashery, U. & Lotan, I. Voltage-gated potassium channel as a facilitator of exocytosis. Ann. NY Acad. Sci. 1152, 87–92 (2009).

    Article  CAS  Google Scholar 

  50. Feinshreiber, L. et al. Non-conducting function of the Kv2.1 channel enables it to recruit vesicles for release in neuroendocrine and nerve cells. J. Cell Sci. 123, 1940–1947 (2010).

    Article  CAS  Google Scholar 

  51. Parnas, H. & Parnas, I. The chemical synapse goes electric: Ca2+- and voltage-sensitive GPCRs control neurotransmitter release. Trends Neurosci. 30, 54–61 (2007).

    Article  CAS  Google Scholar 

  52. Kupchik, Y. M. et al. A novel fast mechanism for GPCR-mediated signal transduction — control of neurotransmitter release. J. Cell Biol. 192 137–151 (2011).

    Article  CAS  Google Scholar 

  53. Linial, M., Ilouz, N. & Parnas, H. Voltage-dependent interaction between the muscarinic ACh receptor and proteins of the exocytic machinery. J. Physiol. 504, 251–258 (1997).

    Article  CAS  Google Scholar 

  54. Ilouz, N., Branski, L., Parnis, J., Parnas, H. & Linial, M. Depolarization affects the binding properties of muscarinic acetylcholine receptors and their interaction with proteins of the exocytic apparatus. J. Biol. Chem. 274, 29519–29528 (1999).

    Article  CAS  Google Scholar 

  55. Kupchik, Y. M. et al. Molecular mechanisms that control initiation and termination of physiological depolarization-evoked transmitter release. Proc. Natl Acad. Sci. USA 105, 4435–4440 (2008).

    Article  CAS  Google Scholar 

  56. Ohana, L., Barchad, O., Parnas, I. & Parnas, H. The metabotropic glutamate G-protein-coupled receptors mGluR3 and mGluR1a are voltage-sensitive. J. Biol. Chem. 281, 24204–24215 (2006).

    Article  CAS  Google Scholar 

  57. Thompson, S. M. & Gahwiler, B. H. Activity-dependent disinhibition. III. Desensitization & GABAB receptor-mediated presynaptic inhibition in the hippocampus in vitro. J. Neurophysiol. 61, 524–533 (1989).

    Article  CAS  Google Scholar 

  58. Kamiya, H., Shinozaki, H. & Yamamoto, C. Activation of metabotropic glutamate receptor type 2/3 suppresses transmission at rat hippocampal mossy fibre synapses. J. Physiol. 493, 447–455 (1996).

    Article  CAS  Google Scholar 

  59. Moore, K. A., Nicoll, R. A. & Schmitz, D. Adenosine gates synaptic plasticity at hippocampal mossy fiber synapses. Proc. Natl Acad. Sci. USA 100, 14397–14402 (2003).

    Article  CAS  Google Scholar 

  60. He, L. & Wu, L. G. The debate on the kiss-and-run fusion at synapses. Trends Neurosci. 30, 447–455 (2007).

    Article  CAS  Google Scholar 

  61. Richards, D. A. Vesicular release mode shapes the postsynaptic response at hippocampal synapses. J. Physiol. 587, 5073–5080 (2009).

    Article  CAS  Google Scholar 

  62. Zhang, Q., Li, Y. & Tsien, R. W. The dynamic control of kiss-and-run and vesicular reuse probed with single nanoparticles. Science 323, 1448–1453 (2009).

    Article  CAS  Google Scholar 

  63. Blackmer, T. et al. G protein βγ subunit-mediated presynaptic inhibition: regulation of exocytotic fusion downstream of Ca2+ entry. Science 292, 293–297 (2001).

    Article  CAS  Google Scholar 

  64. Chen, X. K. et al. Activation of GPCRs modulates quantal size in chromaffin cells through Gβγ and PKC. Nature Neurosci. 8, 1160–1168 (2005).

    Article  CAS  Google Scholar 

  65. Bucurenciu, I., Bischofberger, J. & Jonas, P. A small number of open Ca2+ channels trigger transmitter release at a central GABAergic synapse. Nature Neurosci. 13, 19–21 (2010).

    Article  CAS  Google Scholar 

  66. Fedchyshyn, M. J. & Wang, L. Y. Developmental transformation of the release modality at the calyx of Held synapse. J. Neurosci. 25, 4131–4140 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are supported by INSERM, Aix-Marseille Université, Centre National de la Recherche Scientifique, Agence Nationale de la Recherche (ANR 11 BSV4 016 01), Fondation pour le Recherche Medicale and the French Ministry of Research. We thank H. Alle, O. El Far, J.-M. Goaillard, V. Marra, M. Seagar and the reviewers for helpful discussion and comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominique Debanne.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Dominique Debanne's homepage

Rights and permissions

Reprints and permissions

About this article

Cite this article

Debanne, D., Bialowas, A. & Rama, S. What are the mechanisms for analogue and digital signalling in the brain?. Nat Rev Neurosci 14, 63–69 (2013). https://doi.org/10.1038/nrn3361

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn3361

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing