Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Distributed synergistic plasticity and cerebellar learning

An Erratum to this article was published on 15 November 2012

This article has been updated

Key Points

  • The cerebellum is involved in motor learning, yet the precise forms of plasticity that may underlie this form of memory formation are still under debate.

  • Recent advances in mouse transgenics and phenomics have provided new pieces of evidence as to how different forms of plasticity at synaptic and extrasynaptic sites in the cerebellar cortex may act together to mediate particular aspects of motor learning.

  • By systematically reviewing all forms of plasticity in the granule cell network and Purkinje cell network and integrating the behavioural phenotypes that can be observed following manipulation of these forms of plasticity, we propose that plasticity in the cerebellar cortex operates in a distributed and synergistic manner.

  • Mediated mainly by input from the mossy fibres, plasticity in the granular layer may serve to spread diversity of coding, while climbing fibre-guided plasticity in the molecular layer may serve to select the appropriate coding required for the specific spatiotemporal demands of the motor learning paradigm involved.

  • Owing to the distributed and synergistic character of cerebellar cortical plasticity guided by common afferent inputs, there is ample room for compensatory mechanisms so as to warrant the consecutive processes of motor performance, motor learning and motor consolidation.

Abstract

Studies on synaptic plasticity in the context of learning have been dominated by the view that a single, particular type of plasticity forms the underlying mechanism for a particular type of learning. However, emerging evidence shows that many forms of synaptic and intrinsic plasticity at different sites are induced conjunctively during procedural memory formation in the cerebellum. Here, we review the main forms of long-term plasticity in the cerebellar cortex that underlie motor learning. We propose that the different forms of plasticity in the granular layer and the molecular layer operate synergistically in a temporally and spatially distributed manner, so as to ultimately create optimal output for behaviour.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Molecular mechanisms underlying plasticity in granule cells.
Figure 2: Spreading diversity and setting time windows in the granule cell network.
Figure 3: Molecular mechanisms underlying plasticity in Purkinje cells.
Figure 4: Creating output by selecting input in the Purkinje cell network.

Similar content being viewed by others

Change history

  • 15 November 2012

    In figure 3 of this article, the arrows indicating AMPA receptor exocytosis and endocytosis in the postsynaptic neuron should have been red and black, respectively.

References

  1. Neves, G., Cooke, S. F. & Bliss, T. V. Synaptic plasticity, memory and the hippocampus: a neural network approach to causality. Nature Rev. Neurosci. 9, 65–75 (2008).

    Article  CAS  Google Scholar 

  2. Ito, M. Cerebellar long-term depression: characterization, signal transduction, and functional roles. Physiol. Rev. 81, 1143–1195 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Kessels, H. W. & Malinow, R. Synaptic AMPA receptor plasticity and behavior. Neuron 61, 340–350 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Collingridge, G. L., Peineau, S., Howland, J. G. & Wang, Y. T. Long-term depression in the CNS. Nature Rev. Neurosci. 11, 459–473 (2010).

    Article  CAS  Google Scholar 

  5. Lüscher, C. & Huber, K. M. Group 1 mGluR-dependent synaptic long-term depression: mechanisms and implications for circuitry and disease. Neuron 65, 445–459 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Griffiths, S. et al. Expression of long-term depression underlies visual recognition memory. Neuron 58, 186–194 (2008).

    Article  CAS  PubMed  Google Scholar 

  7. Feldman, D. E. Synaptic mechanisms for plasticity in neocortex. Annu. Rev. Neurosci. 32, 33–55 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Malenka, R. C. & Bear, M. F. LTP and LTD: an embarrassment of riches. Neuron 44, 5–21 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. Belmeguenai, A. et al. Intrinsic plasticity complements long-term potentiation in parallel fiber input gain control in cerebellar Purkinje cells. J. Neurosci. 30, 13630–13643 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ito, M. & Kano, M. Long-lasting depression of parallel fiber–Purkinje cell transmission induced by conjunctive stimulation of parallel fibers and climbing fibers in the cerebellar cortex. Neurosci. Lett. 33, 253–258 (1982). This highly influential paper showed the first experimental evidence for LTD induction at the parallel fibre–Purkinje cell synapse.

    Article  CAS  PubMed  Google Scholar 

  11. Lev-Ram, V., Wong, S. T., Storm, D. R. & Tsien, R. Y. A new form of cerebellar long-term potentiation is postsynaptic and depends on nitric oxide but not cAMP. Proc. Natl Acad. Sci. USA 99, 8389–8393 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Salin, P. A., Malenka, R. C. & Nicoll, R. A. Cyclic AMP mediates a presynaptic form of LTP at cerebellar parallel fiber synapses. Neuron 16, 797–803 (1996).

    Article  CAS  PubMed  Google Scholar 

  13. Bagnall, M. W. & du Lac, S. A new locus for synaptic plasticity in cerebellar circuits. Neuron 51, 5–7 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Hansel, C., Linden, D. J. & D'Angelo, E. Beyond parallel fiber LTD: the diversity of synaptic and non-synaptic plasticity in the cerebellum. Nature Neurosci. 4, 467–475 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Pugh, J. R. & Raman, I. M. Nothing can be coincidence: synaptic inhibition and plasticity in the cerebellar nuclei. Trends Neurosci. 32, 170–177 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. De Zeeuw, C. I. et al. Spatiotemporal firing patterns in the cerebellum. Nature Rev. Neurosci. 12, 327–344 (2011).

    Article  CAS  Google Scholar 

  17. Kassardjian, C. D. et al. The site of a motor memory shifts with consolidation. J. Neurosci. 25, 7979–7985 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kellett, D. O., Fukunaga, I., Chen-Kubota, E., Dean, P. & Yeo, C. H. Memory consolidation in the cerebellar cortex. PLoS ONE 5, e11737 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Shutoh, F., Ohki, M., Kitazawa, H., Itohara, S. & Nagao, S. Memory trace of motor learning shifts transsynaptically from cerebellar cortex to nuclei for consolidation. Neuroscience 139, 767–777 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Bahn, S., Jones, A. & Wisden, W. Directing gene expression to cerebellar granule cells using γ-aminobutyric acid type A receptor α6 subunit transgenes. Proc. Natl Acad. Sci. USA 94, 9417–9421 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Oberdick, J., Smeyne, R. J., Mann, J. R., Zackson, S. & Morgan, J. I. A promoter that drives transgene expression in cerebellar Purkinje and retinal bipolar neurons. Science 248, 223–226 (1990).

    Article  CAS  PubMed  Google Scholar 

  22. De Zeeuw, C. I. et al. Expression of a protein kinase C inhibitor in Purkinje cells blocks cerebellar LTD and adaptation of the vestibulo-ocular reflex. Neuron 20, 495–508 (1998).

    Article  CAS  PubMed  Google Scholar 

  23. Schonewille, M. et al. Purkinje cell-specific knockout of the protein phosphatase PP2B impairs potentiation and cerebellar motor learning. Neuron 67, 618–628 (2010). This paper indicates that LTP at the parallel fibre–Purkinje cell synapse and intrinsic plasticity of Purkinje cells may contribute to vestibulocerebellar learning.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Seja, P. et al. Raising cytosolic Cl in cerebellar granule cells affects their excitability and vestibulo-ocular learning. EMBO J. 31, 1217–1230 (2012). This paper presents one of the first examples in which granule cells have been manipulated in a cell-specific manner. More specifically, it indicates that controlling intrinsic excitability of granule cells may be relevant for vestibulocerebellar learning.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wulff, P. et al. Synaptic inhibition of Purkinje cells mediates consolidation of vestibulo-cerebellar motor learning. Nature Neurosci. 12, 1042–1049 (2009). This paper shows that inhibition of molecular layer interneurons onto Purkinje cells is not essential for basic motor performance, but it may contribute to some forms of vestibulocerebellar learning and consolidation.

    Article  CAS  PubMed  Google Scholar 

  26. Le Guen, M. C. & De Zeeuw, C. I. Presynaptic plasticity at cerebellar parallel fiber terminals. Funct. Neurol. 25, 141–151 (2010).

    PubMed  Google Scholar 

  27. Hoebeek, F. E. et al. Increased noise level of purkinje cell activities minimizes impact of their modulation during sensorimotor control. Neuron 45, 953–965 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Schonewille, M. et al. Reevaluating the role of LTD in cerebellar motor learning. Neuron 70, 43–50 (2011). By tackling the expression of LTD downstream at the level of the glutamate receptor, this paper provides evidence that LTD at the parallel fibre–Purkinje cell synapses may not be essential for cerebellar motor learning. The behavioural paradigms include VOR adaptation (gain increase, gain decrease and phase reversal), eyeblink conditioning and locomotion conditioning on the Erasmus Ladder.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Voogd, J., Gerrits, N. M. & Ruigrok, T. J. Organization of the vestibulocerebellum. Ann. NY Acad. Sci. 781, 553–579 (1996).

    Article  CAS  PubMed  Google Scholar 

  30. Palay, S. L. & Chan-Palay, V. Cerebellar Cortex: Cytology and Organization (Springer, 1974).

    Book  Google Scholar 

  31. Gall, D. et al. Intracellular calcium regulation by burst discharge determines bidirectional long-term synaptic plasticity at the cerebellum input stage. J. Neurosci. 25, 4813–4822 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Maffei, A., Prestori, F., Rossi, P., Taglietti, V. & D'Angelo, E. Presynaptic current changes at the mossy fiber–granule cell synapse of cerebellum during LTP. J. Neurophysiol. 88, 627–638 (2002).

    Article  PubMed  Google Scholar 

  33. D'Errico, A., Prestori, F. & D'Angelo, E. Differential induction of bidirectional long-term changes in neurotransmitter release by frequency-coded patterns at the cerebellar input. J. Physiol. 587, 5843–5857 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Prestori, F. et al. α7 nicotinic receptor activation enhances neurotransmission and plasticity in the cerebellar glomerulus. Acta Physiol. 200 (Suppl. 681), 75 (2010).

    Google Scholar 

  35. Andreescu, C. E. et al. NR2A subunit of the N-methyl d-aspartate receptors are required for potentiation at the mossy fiber to granule cell synapse and vestibulo-cerebellar motor learning. Neuroscience 176, 274–283 (2011).

    Article  CAS  PubMed  Google Scholar 

  36. Ruediger, S. et al. Learning-related feedforward inhibitory connectivity growth required for memory precision. Nature 473, 514–518 (2011). One of the first demonstrations that behaviourally relevant plasticity in the granular layer of the cerebellum may have a morphological correlate.

    Article  CAS  PubMed  Google Scholar 

  37. Armano, S., Rossi, P., Taglietti, V. & D'Angelo, E. Long-term potentiation of intrinsic excitability at the mossy fiber–granule cell synapse of rat cerebellum. J. Neurosci. 20, 5208–5216 (2000). One of the first demonstrations of LTP in the granular layer of the cerebellum.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. D'Angelo, E. & De Zeeuw, C. I. Timing and plasticity in the cerebellum: focus on the granular layer. Trends Neurosci. 32, 30–40 (2009).

    Article  CAS  PubMed  Google Scholar 

  39. Watanabe, D. et al. Ablation of cerebellar Golgi cells disrupts synaptic integration involving GABA inhibition and NMDA receptor activation in motor coordination. Cell 95, 17–27 (1998). This paper shows that acute removal of synaptic inhibition from Golgi cells onto granule cells results in acute cerebellar motor coordination deficits.

    Article  CAS  PubMed  Google Scholar 

  40. Chadderton, P., Margrie, T. W. & Häusser, M. Integration of quanta in cerebellar granule cells during sensory processing. Nature 428, 856–860 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Dugué, G. P., Dumoulin, A., Triller, A. & Dieudonné, S. Target-dependent use of co-released inhibitory transmitters at central synapses. J. Neurosci. 25, 6490–6498 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Robberechts, Q., Wijnants, M., Giugliano, M. & De Schutter, E. Long-term depression at parallel fiber to Golgi cell synapses. J. Neurophysiol. 104, 3413–3423 (2010). One of the first demonstrations of LTD at the parallel fibre–Golgi cell synapse.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Dieudonné, S. Submillisecond kinetics and low efficacy of parallel fibre–Golgi cell synaptic currents in the rat cerebellum. J. Physiol. 510, 845–866 (1998).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Xu, W. & Edgley, S. A. Climbing fibre-dependent changes in Golgi cell responses to peripheral stimulation. J. Physiol. 586, 4951–4959 (2008). One of the first papers suggesting that plasticity of Golgi cells may be influenced by climbing fibre activity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Jörntell, H. & Ekerot, C. F. Receptive field plasticity profoundly alters the cutaneous parallel fiber synaptic input to cerebellar interneurons in vivo. J. Neurosci. 23, 9620–9631 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Galliano, E. et al. Granule cell output mediates phase reversal learning and consolidation of gain learning by altering the regularity of Purkinje cell firing patterns. Soc. Neurosi. Abstr. 660.2 (Chicago, 17–21 Oct 2009).

  47. Wada, N. et al. Conditioned eyeblink learning is formed and stored without cerebellar granule cell transmission. Proc. Natl Acad. Sci. USA 104, 16690–16695 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Simat, M., Parpan, F. & Fritschy, J. M. Heterogeneity of glycinergic and gabaergic interneurons in the granule cell layer of mouse cerebellum. J. Comp. Neurol. 500, 71–83 (2007).

    Article  CAS  PubMed  Google Scholar 

  49. Rousseau, C. V. et al. Mixed inhibitory synaptic balance correlates with glutamatergic synaptic phenotype in cerebellar unipolar brush cells. J. Neurosci. 32, 4632–4644 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Brickley, S. G., Cull-Candy, S. G. & Farrant, M. Development of a tonic form of synaptic inhibition in rat cerebellar granule cells resulting from persistent activation of GABAA receptors. J. Physiol. 497, 753–759 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Brickley, S. G., Cull-Candy, S. G. & Farrant, M. Single-channel properties of synaptic and extrasynaptic GABAA receptors suggest differential targeting of receptor subtypes. J. Neurosci. 19, 2960–2973 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Nusser, Z., Sieghart, W. & Somogyi, P. Segregation of different GABAA receptors to synaptic and extrasynaptic membranes of cerebellar granule cells. J. Neurosci. 18, 1693–1703 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kulik, A. et al. Distinct localization of GABAB receptors relative to synaptic sites in the rat cerebellum and ventrobasal thalamus. Eur. J. Neurosci. 15, 291–307 (2002).

    Article  PubMed  Google Scholar 

  54. Rossi, D. J. & Hamann, M. Spillover-mediated transmission at inhibitory synapses promoted by high affinity α6 subunit GABAA receptors and glomerular geometry. Neuron 20, 783–795 (1998).

    Article  CAS  PubMed  Google Scholar 

  55. Rossi, D. J., Hamann, M. & Attwell, D. Multiple modes of GABAergic inhibition of rat cerebellar granule cells. J. Physiol. 548, 97–110 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Holtzman, T. et al. Multiple extra-synaptic spillover mechanisms regulate prolonged activity in cerebellar Golgi cell-granule cell loops. J. Physiol. 589, 3837–3854 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lee, S. et al. Channel-mediated tonic GABA release from glia. Science 330, 790–796 (2010).

    Article  CAS  PubMed  Google Scholar 

  58. Roggeri, L., Rivieccio, B., Rossi, P. & D'Angelo, E. Tactile stimulation evokes long-term synaptic plasticity in the granular layer of cerebellum. J. Neurosci. 28, 6354–6359 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Diwakar, S., Lombardo, P., Solinas, S., Naldi, G. & D'Angelo, E. Local field potential modeling predicts dense activation in cerebellar granule cells clusters under LTP and LTD control. PLoS ONE 6, e21928 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Nakanishi, S. Genetic manipulation study of information processing in the cerebellum. Neuroscience 162, 723–731 (2009).

    Article  CAS  PubMed  Google Scholar 

  61. Prsa, M., Dash, S., Catz, N., Dicke, P. W. & Thier, P. Characteristics of responses of Golgi cells and mossy fibers to eye saccades and saccadic adaptation recorded from the posterior vermis of the cerebellum. J. Neurosci. 29, 250–262 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Mugnaini, E., Sekerkova, G. & Martina, M. The unipolar brush cell: a remarkable neuron finally receiving deserved attention. Brain Res. Rev. 66, 220–245 (2011).

    Article  CAS  PubMed  Google Scholar 

  63. Nunzi, M. G. & Mugnaini, E. Unipolar brush cell axons form a large system of intrinsic mossy fibers in the postnatal vestibulocerebellum. J. Comp. Neurol. 422, 55–65 (2000).

    Article  CAS  PubMed  Google Scholar 

  64. Kinney, G. A., Overstreet, L. S. & Slater, N. T. Prolonged physiological entrapment of glutamate in the synaptic cleft of cerebellar unipolar brush cells. J. Neurophysiol. 78, 1320–1333 (1997).

    Article  CAS  PubMed  Google Scholar 

  65. Billups, D., Liu, Y. B., Birnstiel, S. & Slater, N. T. NMDA receptor-mediated currents in rat cerebellar granule and unipolar brush cells. J. Neurophysiol. 87, 1948–1959 (2002).

    Article  CAS  PubMed  Google Scholar 

  66. Rossi, D. J., Alford, S., Mugnaini, E. & Slater, N. T. Properties of transmission at a giant glutamatergic synapse in cerebellum: the mossy fiber–unipolar brush cell synapse. J. Neurophysiol. 74, 24–42 (1995).

    Article  CAS  PubMed  Google Scholar 

  67. Russo, M. J., Yau, H. J., Nunzi, M. G., Mugnaini, E. & Martina, M. Dynamic metabotropic control of intrinsic firing in cerebellar unipolar brush cells. J. Neurophysiol. 100, 3351–3360 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Daoudal, G. & Debanne, D. Long-term plasticity of intrinsic excitability: learning rules and mechanisms. Learn. Mem. 10, 456–465 (2003).

    Article  PubMed  Google Scholar 

  69. Fregnac, Y. Homeostasis or synaptic plasticity? Nature 391, 845–846 (1998).

    Article  CAS  PubMed  Google Scholar 

  70. Barmack, N. H. & Yakhnitsa, V. Functions of interneurons in mouse cerebellum. J. Neurosci. 28, 1140–1152 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Simpson, J. I., Hulscher, H. C., Sabel-Goedknegt, E. & Ruigrok, T. J. Between in and out: linking morphology and physiology of cerebellar cortical interneurons. Prog. Brain Res. 148, 329–340 (2005).

    Article  CAS  PubMed  Google Scholar 

  72. Birnstiel, S., Slater, N. T., McCrimmon, D. R., Mugnaini, E. & Hartell, N. A. Voltage-dependent calcium signaling in rat cerebellar unipolar brush cells. Neuroscience 162, 702–712 (2009).

    Article  CAS  PubMed  Google Scholar 

  73. De Zeeuw, C. I. et al. in Handbook of Auditory Research Ch. 9 (eds Highstein, S. M., Fay, R. R. & Popper, A. N.) 375–423 (Springer, 2004).

    Google Scholar 

  74. Lisberger, S. G. & Fuchs, A. F. Role of primate flocculus during rapid behavioral modification of vestibuloocular reflex. II. Mossy fiber firing patterns during horizontal head rotation and eye movement. J. Neurophysiol. 41, 764–777 (1978).

    Article  CAS  PubMed  Google Scholar 

  75. Arenz, A., Silver, R. A., Schaefer, A. T. & Margrie, T. W. The contribution of single synapses to sensory representation in vivo. Science 321, 977–980 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Coesmans, M., Weber, J. T., De Zeeuw, C. I. & Hansel, C. Bidirectional parallel fiber plasticity in the cerebellum under climbing fiber control. Neuron 44, 691–700 (2004). This paper shows that climbing fibre activation can control the direction of plasticity in Purkinje cells.

    Article  CAS  PubMed  Google Scholar 

  77. Qiu, D. L. & Knopfel, T. Presynaptically expressed long-term depression at cerebellar parallel fiber synapses. Pflugers Arch. 457, 865–875 (2009).

    Article  CAS  PubMed  Google Scholar 

  78. Neher, E. & Sakaba, T. Multiple roles of calcium ions in the regulation of neurotransmitter release. Neuron 59, 861–872 (2008).

    Article  CAS  PubMed  Google Scholar 

  79. Hartell, N. A. Induction of cerebellar long-term depression requires activation of glutamate metabotropic receptors. Neuroreport 5, 913–916 (1994).

    Article  CAS  PubMed  Google Scholar 

  80. Khodakhah, K. & Armstrong, C. M. Induction of long-term depression and rebound potentiation by inositol trisphosphate in cerebellar Purkinje neurons. Proc. Natl Acad. Sci. USA 94, 14009–14014 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Linden, D. J. & Connor, J. A. Participation of postsynaptic PKC in cerebellar long-term depression in culture. Science 254, 1656–1659 (1991).

    Article  CAS  PubMed  Google Scholar 

  82. Wang, S. S., Denk, W. & Häusser, M. Coincidence detection in single dendritic spines mediated by calcium release. Nature Neurosci. 3, 1266–1273 (2000).

    Article  CAS  PubMed  Google Scholar 

  83. Leitges, M., Kovac, J., Plomann, M. & Linden, D. J. A unique PDZ ligand in PKCα confers induction of cerebellar long-term synaptic depression. Neuron 44, 585–594 (2004).

    Article  CAS  PubMed  Google Scholar 

  84. Hansel, C. et al. αCaMKII Is essential for cerebellar LTD and motor learning. Neuron 51, 835–843 (2006).

    Article  CAS  PubMed  Google Scholar 

  85. Chung, H. J., Steinberg, J. P., Huganir, R. L. & Linden, D. J. Requirement of AMPA receptor GluR2 phosphorylation for cerebellar long-term depression. Science 300, 1751–1755 (2003).

    Article  CAS  PubMed  Google Scholar 

  86. Matsuda, S., Mikawa, S. & Hirai, H. Phosphorylation of serine-880 in GluR2 by protein kinase C prevents its C terminus from binding with glutamate receptor-interacting protein. J. Neurochem. 73, 1765–1768 (1999).

    Article  CAS  PubMed  Google Scholar 

  87. Xia, J., Chung, H. J., Wihler, C., Huganir, R. L. & Linden, D. J. Cerebellar long-term depression requires PKC-regulated interactions between GluR2/3 and PDZ domain-containing proteins. Neuron 28, 499–510 (2000).

    Article  CAS  PubMed  Google Scholar 

  88. Wang, Y. T. & Linden, D. J. Expression of cerebellar long-term depression requires postsynaptic clathrin-mediated endocytosis. Neuron 25, 635–647 (2000).

    Article  CAS  PubMed  Google Scholar 

  89. Yamasaki, M. et al. Glutamate receptor δ2 is essential for input pathway-dependent regulation of synaptic AMPAR contents in cerebellar Purkinje cells. J. Neurosci. 31, 3362–3374 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Yawata, S., Tsuchida, H., Kengaku, M. & Hirano, T. Membrane-proximal region of glutamate receptor δ2 subunit is critical for long-term depression and interaction with protein interacting with C kinase 1 in a cerebellar Purkinje neuron. J. Neurosci. 26, 3626–3633 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Lev-Ram, V., Jiang, T., Wood, J., Lawrence, D. S. & Tsien, R. Y. Synergies and coincidence requirements between NO, cGMP, and Ca2+ in the induction of cerebellar long-term depression. Neuron 18, 1025–1038 (1997).

    Article  CAS  PubMed  Google Scholar 

  92. Safo, P. K. & Regehr, W. G. Endocannabinoids control the induction of cerebellar LTD. Neuron 48, 647–659 (2005).

    Article  CAS  PubMed  Google Scholar 

  93. Miyata, M., Okada, D., Hashimoto, K., Kano, M. & Ito, M. Corticotropin-releasing factor plays a permissive role in cerebellar long-term depression. Neuron 22, 763–775 (1999). This paper was one of the first to show that corticotropin-releasing factor may have a permissive role in the induction of LTD; since corticotropin-releasing factor is distributed in particular, but not all, microzones (reference 94), LTD may not be equally functional in all zones.

    Article  CAS  PubMed  Google Scholar 

  94. Sawada, K., Fukui, Y. & Hawkes, R. Spatial distribution of corticotropin-releasing factor immunopositive climbing fibers in the mouse cerebellum: analysis by whole mount immunohistochemistry. Brain Res. 1222, 106–117 (2008).

    Article  CAS  PubMed  Google Scholar 

  95. Hartmann, J. et al. TRPC3 channels are required for synaptic transmission and motor coordination. Neuron 59, 392–398 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Piochon, C., Levenes, C., Ohtsuki, G. & Hansel, C. Purkinje cell NMDA receptors assume a key role in synaptic gain control in the mature cerebellum. J. Neurosci. 30, 15330–15335 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Boyden, E. S. et al. Selective engagement of plasticity mechanisms for motor memory storage. Neuron 51, 823–834 (2006).

    Article  CAS  PubMed  Google Scholar 

  98. Feil, R. et al. Impairment of LTD and cerebellar learning by Purkinje cell-specific ablation of cGMP-dependent protein kinase I. J. Cell Biol. 163, 295–302 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Steinberg, J. P. et al. Targeted in vivo mutations of the AMPA receptor subunit GluR2 and its interacting protein PICK1 eliminate cerebellar long-term depression. Neuron 49, 845–860 (2006). This paper shows that the endocytosis of AMPA receptors is critical for LTD induction, which forms the basis of reference 28.

    Article  CAS  PubMed  Google Scholar 

  100. Miyata, M. et al. Local calcium release in dendritic spines required for long-term synaptic depression. Neuron 28, 233–244 (2000).

    Article  CAS  PubMed  Google Scholar 

  101. Belmeguenai, A. & Hansel, C. A role for protein phosphatases 1, 2A, and 2B in cerebellar long-term potentiation. J. Neurosci. 25, 10768–10772 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Gardner, S. M. et al. Calcium-permeable AMPA receptor plasticity is mediated by subunit-specific interactions with PICK1 and NSF. Neuron 45, 903–915 (2005).

    Article  CAS  PubMed  Google Scholar 

  103. Steinberg, J. P., Huganir, R. L. & Linden, D. J. N-ethylmaleimide-sensitive factor is required for the synaptic incorporation and removal of AMPA receptors during cerebellar long-term depression. Proc. Natl Acad. Sci. USA 101, 18212–18216 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. van Woerden, G. M. et al. βCaMKII controls the direction of plasticity at parallel fiber–Purkinje cell synapses. Nature Neurosci. 12, 823–825 (2009).

    Article  CAS  PubMed  Google Scholar 

  105. Andreescu, C. E. et al. Estradiol improves cerebellar memory formation by activating estrogen receptor β. J. Neurosci. 27, 10832–10839 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Storm, D. R., Hansel, C., Hacker, B., Parent, A. & Linden, D. J. Impaired cerebellar long-term potentiation in type I adenylyl cyclase mutant mice. Neuron 20, 1199–1210 (1998).

    Article  CAS  PubMed  Google Scholar 

  107. Jacoby, S., Sims, R. E. & Hartell, N. A. Nitric oxide is required for the induction and heterosynaptic spread of long-term potentiation in rat cerebellar slices. J. Physiol. 535, 825–839 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Goto, J., Inoue, T., Kuruma, A. & Mikoshiba, K. Short-term potentiation at the parallel fiber–Purkinje cell synapse. Neurosci. Res. 55, 28–33 (2006).

    Article  PubMed  Google Scholar 

  109. van Beugen, B. J., Nagaraja, R. Y. & Hansel, C. Climbing fiber-evoked endocannabinoid signaling heterosynaptically suppresses presynaptic cerebellar long-term potentiation. J. Neurosci. 26, 8289–8294 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Gao, W., Chen, G., Reinert, K. C. & Ebner, T. J. Cerebellar cortical molecular layer inhibition is organized in parasagittal zones. J. Neurosci. 26, 8377–8387 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Bender, V. A., Pugh, J. R. & Jahr, C. E. Presynaptically expressed long-term potentiation increases multivesicular release at parallel fiber synapses. J. Neurosci. 29, 10974–10978 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Rancillac, A. & Crépel, F. Synapses between parallel fibres and stellate cells express long-term changes in synaptic efficacy in rat cerebellum. J. Physiol. 554, 707–720 (2004).

    Article  CAS  PubMed  Google Scholar 

  113. Soler-Llavina, G. J. & Sabatini, B. L. Synapse-specific plasticity and compartmentalized signaling in cerebellar stellate cells. Nature Neurosci. 9, 798–806 (2006). This is one of the first studies to show that aspiny stellate cell dendrites can spatially restrict signalling cascades that lead from Ca2+-permeable AMPA receptor activation to endocannabinoid production and trigger the selective regulation of active synapses.

    Article  CAS  PubMed  Google Scholar 

  114. Liu, S. Q. & Cull-Candy, S. G. Synaptic activity at calcium-permeable AMPA receptors induces a switch in receptor subtype. Nature 405, 454–458 (2000).

    Article  CAS  PubMed  Google Scholar 

  115. Liu, S. J. & Cull-Candy, S. G. Activity-dependent change in AMPA receptor properties in cerebellar stellate cells. J. Neurosci. 22, 3881–3889 (2002). One of the first demonstrations that synaptic plasticity can occur by a rapid and lasting change in the subunit composition and Ca2+ permeability of AMPA receptors; this was shown at cerebellar stellate cell synapses following synaptic activity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Liu, S. J. & Cull-Candy, S. G. Subunit interaction with PICK and GRIP controls Ca2+ permeability of AMPARs at cerebellar synapses. Nature Neurosci. 8, 768–775 (2005).

    Article  CAS  PubMed  Google Scholar 

  117. Sun, L. & June Liu, S. Activation of extrasynaptic NMDA receptors induces a PKC-dependent switch in AMPA receptor subtypes in mouse cerebellar stellate cells. J. Physiol. 583, 537–553 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Liu, Y. et al. A single fear-inducing stimulus induces a transcription-dependent switch in synaptic AMPAR phenotype. Nature Neurosci. 13, 223–231 (2010).

    Article  CAS  PubMed  Google Scholar 

  119. Szapiro, G. & Barbour, B. Multiple climbing fibers signal to molecular layer interneurons exclusively via glutamate spillover. Nature Neurosci. 10, 735–742 (2007).

    Article  CAS  PubMed  Google Scholar 

  120. Jörntell, H. & Ekerot, C. F. Reciprocal bidirectional plasticity of parallel fiber receptive fields in cerebellar Purkinje cells and their afferent interneurons. Neuron 34, 797–806 (2002). An elegant study that provides evidence for synergistic plasticity occurring in Purkinje cells and superimposed interneurons in vivo.

    Article  PubMed  Google Scholar 

  121. Pugh, J. R. & Jahr, C. E. Axonal GABAA receptors increase cerebellar granule cell excitability and synaptic activity. J. Neurosci. 31, 565–574 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Bao, J., Reim, K. & Sakaba, T. Target-dependent feedforward inhibition mediated by short-term synaptic plasticity in the cerebellum. J. Neurosci. 30, 8171–8179 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Satake, S., Saitow, F., Yamada, J. & Konishi, S. Synaptic activation of AMPA receptors inhibits GABA release from cerebellar interneurons. Nature Neurosci. 3, 551–558 (2000).

    Article  CAS  PubMed  Google Scholar 

  124. Satake, S. et al. Characterization of AMPA receptors targeted by the climbing fiber transmitter mediating presynaptic inhibition of GABAergic transmission at cerebellar interneuron–Purkinje cell synapses. J. Neurosci. 26, 2278–2289 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Kano, M., Fukunaga, K. & Konnerth, A. Ca2+-induced rebound potentiation of γ-aminobutyric acid-mediated currents requires activation of Ca2+/calmodulin-dependent kinase II. Proc. Natl Acad. Sci. USA 93, 13351–13356 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Kano, M., Rexhausen, U., Dreessen, J. & Konnerth, A. Synaptic excitation produces a long-lasting rebound potentiation of inhibitory synaptic signals in cerebellar Purkinje cells. Nature 356, 601–604 (1992). Together with reference 10, this study suggests an important role for climbing fibres coordinating multiple forms of plasticity within the cerebellar cortex.

    Article  CAS  PubMed  Google Scholar 

  127. Kawaguchi, S. Y. & Hirano, T. Signaling cascade regulating long-term potentiation of GABAA receptor responsiveness in cerebellar Purkinje neurons. J. Neurosci. 22, 3969–3976 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Kawaguchi, S. Y. & Hirano, T. Sustained structural change of GABAA receptor-associated protein underlies long-term potentiation at inhibitory synapses on a cerebellar Purkinje neuron. J. Neurosci. 27, 6788–6799 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Hashimoto, K. & Kano, M. [Calcium dependent forms of synaptic plasticity in cerebellar Purkinje cells.] Clin. Calcium 11, 1432–1439 (2001) (in Japanese).

    CAS  PubMed  Google Scholar 

  130. Kano, M. Long-Lasting potentiation of GABAergic inhibitory synaptic transmission in cerebellar Purkinje cells: its properties and possible mechanisms. Behav. Brain Sci. 19, 353–361 (1996).

    Google Scholar 

  131. D'Angelo, E. Neural circuits of the cerebellum: hypothesis for function. J. Integr. Neurosci. 10, 317–352 (2011).

    Article  PubMed  Google Scholar 

  132. Bell, C. C., Han, V. Z., Sugawara, Y. & Grant, K. Synaptic plasticity in a cerebellum-like structure depends on temporal order. Nature 387, 278–281 (1997).

    Article  CAS  PubMed  Google Scholar 

  133. Han, V. Z., Grant, K. & Bell, C. C. Reversible associative depression and nonassociative potentiation at a parallel fiber synapse. Neuron 27, 611–622 (2000).

    Article  CAS  PubMed  Google Scholar 

  134. Lisberger, S. G. & Fuchs, A. F. Role of primate flocculus during rapid behavioral modification of vestibuloocular reflex. I. Purkinje cell activity during visually guided horizontal smooth-pursuit eye movements and passive head rotation. J. Neurophysiol. 41, 733–763 (1978).

    Article  CAS  PubMed  Google Scholar 

  135. Miles, F. A., Fuller, J. H., Braitman, D. J. & Dow, B. M. Long-term adaptive changes in primate vestibuloocular reflex. III. Electrophysiological observations in flocculus of normal monkeys. J. Neurophysiol. 43, 1437–1476 (1980).

    Article  CAS  PubMed  Google Scholar 

  136. Badura, A. et al. Disruption in cerebellar circuitry causes more profound impairment than having no cerebellar output at all. 052.3 FENS Abstr. (Amsterdam, 3–7 Jul 2010).

  137. Marr, D. A theory of cerebellar cortex. J. Physiol. 202, 437–470 (1969). References 137–139 form the most influential theoretical works on cerebellar learning; together they provide the Marr–Albus–Ito hypothesis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Albus, J. S. A theory of cerebellar function. Math. Biosci. 10, 25–61 (1971).

    Article  Google Scholar 

  139. Ito, M. Cerebellar control of the vestibulo-ocular reflex — around the flocculus hypothesis. Annu. Rev. Neurosci. 5, 275–296 (1982).

    Article  CAS  PubMed  Google Scholar 

  140. Kawato, M., Furukawa, K. & Suzuki, R. A hierarchical neural-network model for control and learning of voluntary movement. Biol. Cybern. 57, 169–185 (1987).

    Article  CAS  PubMed  Google Scholar 

  141. Roberts, P. D. Stability of complex spike timing-dependent plasticity in cerebellar learning. J. Comput. Neurosci. 22, 283–296 (2007).

    Article  PubMed  Google Scholar 

  142. Dean, P., Porrill, J., Ekerot, C. F. & Jörntell, H. The cerebellar microcircuit as an adaptive filter: experimental and computational evidence. Nature Rev. Neurosci. 11, 30–43 (2010).

    Article  CAS  Google Scholar 

  143. Fujita, M. Adaptive filter model of the cerebellum. Biol. Cybern. 45, 195–206 (1982).

    Article  CAS  PubMed  Google Scholar 

  144. Jörntell, H. & Hansel, C. Synaptic memories upside down: bidirectional plasticity at cerebellar parallel fiber–Purkinje cell synapses. Neuron 52, 227–238 (2006).

    Article  CAS  PubMed  Google Scholar 

  145. Brunel, N., Hakim, V., Isope, P., Nadal, J. P. & Barbour, B. Optimal information storage and the distribution of synaptic weights: perceptron versus Purkinje cell. Neuron 43, 745–757 (2004).

    CAS  PubMed  Google Scholar 

  146. Isope, P. & Barbour, B. Properties of unitary granule cell–Purkinje cell synapses in adult rat cerebellar slices. J. Neurosci. 22, 9668–9678 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Wadiche, J. I. & Jahr, C. E. Patterned expression of Purkinje cell glutamate transporters controls synaptic plasticity. Nature Neurosci. 8, 1329–1334 (2005).

    Article  CAS  PubMed  Google Scholar 

  148. Boele, H. J., Koekkoek, S. K. & De Zeeuw, C. I. Cerebellar and extracerebellar involvement in mouse eyeblink conditioning: the ACDC model. Front. Cell. Neurosci. 3, 19 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Rochefort, C. et al. Cerebellum shapes hippocampal spatial code. Science 334, 385–389 (2011).

    Article  CAS  PubMed  Google Scholar 

  150. Van Der Giessen, R. S. et al. Role of olivary electrical coupling in cerebellar motor learning. Neuron 58, 599–612 (2008).

    Article  CAS  PubMed  Google Scholar 

  151. Bissiere, S. et al. Electrical synapses control hippocampal contributions to fear learning and memory. Science 331, 87–91 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Morris, R. G., Hagan, J. J. & Rawlins, J. N. Allocentric spatial learning by hippocampectomised rats: a further test of the “spatial mapping” and “working memory” theories of hippocampal function. Q. J. Exp. Psychol. B 38, 365–395 (1986).

    CAS  PubMed  Google Scholar 

  153. Myers, K. M., Ressler, K. J. & Davis, M. Different mechanisms of fear extinction dependent on length of time since fear acquisition. Learn. Mem. 13, 216–223 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Stahl, J. S., James, R. A., Oommen, B. S., Hoebeek, F. E. & De Zeeuw, C. I. Eye movements of the murine P/Q calcium channel mutant tottering, and the impact of aging. J. Neurophysiol. 95, 1588–1607 (2006).

    Article  PubMed  Google Scholar 

  155. Woodruff-Pak, D. S. et al. Differential effects and rates of normal aging in cerebellum and hippocampus. Proc. Natl Acad. Sci. USA 107, 1624–1629 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Douyard, J., Shen, L., Huganir, R. L. & Rubio, M. E. Differential neuronal and glial expression of GluR1 AMPA receptor subunit and the scaffolding proteins SAP97 and 4.1N during rat cerebellar development. J. Comp. Neurol. 502, 141–156 (2007).

    Article  CAS  PubMed  Google Scholar 

  157. van Versendaal, D. et al. Elimination of inhibitory synapses is a major component of adult ocular dominance plasticity. Neuron 74, 374–383 (2012). This paper is one of the first to show that learning in adult animals can be associated with plasticity of interneurons.

    Article  CAS  PubMed  Google Scholar 

  158. Geurts, F. J., De Schutter, E. & Dieudonné, S. Unraveling the cerebellar cortex: cytology and cellular physiology of large-sized interneurons in the granular layer. Cerebellum 2, 290–299 (2003).

    Article  PubMed  Google Scholar 

  159. Jörntell, H., Bengtsson, F., Schonewille, M. & De Zeeuw, C. I. Cerebellar molecular layer interneurons — computational properties and roles in learning. Trends Neurosci. 33, 524–532 (2010).

    Article  CAS  PubMed  Google Scholar 

  160. Nieuwenhuys, R. Comparative anatomy of the cerebellum. Prog. Brain Res. 25, 1–93 (1967).

    Article  CAS  PubMed  Google Scholar 

  161. Simat, M., Ambrosetti, L., Lardi-Studler, B. & Fritschy, J. M. GABAergic synaptogenesis marks the onset of differentiation of basket and stellate cells in mouse cerebellum. Eur. J. Neurosci. 26, 2239–2256 (2007).

    Article  PubMed  Google Scholar 

  162. Mapelli, L., Rossi, P., Nieus, T. & D'Angelo, E. Tonic activation of GABAB receptors reduces release probability at inhibitory connections in the cerebellar glomerulus. J. Neurophysiol. 101, 3089–3099 (2009).

    Article  CAS  PubMed  Google Scholar 

  163. Mitchell, S. J. & Silver, R. A. Glutamate spillover suppresses inhibition by activating presynaptic mGluRs. Nature 404, 498–502 (2000).

    Article  CAS  PubMed  Google Scholar 

  164. Mitchell, S. J. & Silver, R. A. GABA spillover from single inhibitory axons suppresses low-frequency excitatory transmission at the cerebellar glomerulus. J. Neurosci. 20, 8651–8658 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Xu-Friedman, M. A. & Regehr, W. G. Ultrastructural contributions to desensitization at cerebellar mossy fiber to granule cell synapses. J. Neurosci. 23, 2182–2192 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Wall, M. J. Short-term synaptic plasticity during development of rat mossy fibre to granule cell synapses. Eur. J. Neurosci. 21, 2149–2158 (2005).

    Article  PubMed  Google Scholar 

  167. D'Angelo, E., Rossi, P., Armano, S. & Taglietti, V. Evidence for NMDA and mGlu receptor-dependent long-term potentiation of mossy fiber–granule cell transmission in rat cerebellum. J. Neurophysiol. 81, 277–287 (1999).

    Article  CAS  PubMed  Google Scholar 

  168. Beierlein, M., Fioravante, D. & Regehr, W. G. Differential expression of posttetanic potentiation and retrograde signaling mediate target-dependent short-term synaptic plasticity. Neuron 54, 949–959 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Kreitzer, A. C. & Regehr, W. G. Retrograde inhibition of presynaptic calcium influx by endogenous cannabinoids at excitatory synapses onto Purkinje cells. Neuron 29, 717–727 (2001). An elegant study showing that parallel fibre synapses are target-dependent, in that synapses at Golgi cells respond different to activity patterns from those at Purkinje cells. These differences arise from differential expression of both retrograde signalling and post-tetanic potentiation.

    Article  CAS  PubMed  Google Scholar 

  170. Beierlein, M. & Regehr, W. G. Local interneurons regulate synaptic strength by retrograde release of endocannabinoids. J. Neurosci. 26, 9935–9943 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Linden, D. J., Dickinson, M. H., Smeyne, M. & Connor, J. A. A long-term depression of AMPA currents in cultured cerebellar Purkinje neurons. Neuron 7, 81–89 (1991).

    Article  CAS  PubMed  Google Scholar 

  172. Aiba, A. et al. Deficient cerebellar long-term depression and impaired motor learning in mGluR1 mutant mice. Cell 79, 377–388 (1994).

    Article  CAS  PubMed  Google Scholar 

  173. Diana, M. A. & Marty, A. Characterization of depolarization-induced suppression of inhibition using paired interneuron–Purkinje cell recordings. J. Neurosci. 23, 5906–5918 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Yoshida, T. et al. The cannabinoid CB1 receptor mediates retrograde signals for depolarization-induced suppression of inhibition in cerebellar Purkinje cells. J. Neurosci. 22, 1690–1697 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Mittmann, W. & Häusser, M. Linking synaptic plasticity and spike output at excitatory and inhibitory synapses onto cerebellar Purkinje cells. J. Neurosci. 27, 5559–5570 (2007). This paper demonstrates how synaptic plasticity may control the spike output pattern in Purkinje cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Duguid, I. C. & Smart, T. G. Retrograde activation of presynaptic NMDA receptors enhances GABA release at cerebellar interneuron–Purkinje cell synapses. Nature Neurosci. 7, 525–533 (2004).

    Article  CAS  PubMed  Google Scholar 

  177. Wadiche, J. I. & Jahr, C. E. Multivesicular release at climbing fiber–Purkinje cell synapses. Neuron 32, 301–313 (2001).

    Article  CAS  PubMed  Google Scholar 

  178. Ohtsuki, G. & Hirano, T. Bidirectional plasticity at developing climbing fiber–Purkinje neuron synapses. Eur. J. Neurosci. 28, 2393–2400 (2008).

    Article  PubMed  Google Scholar 

  179. Bosman, L. W., Takechi, H., Hartmann, J., Eilers, J. & Konnerth, A. Homosynaptic long-term synaptic potentiation of the “winner” climbing fiber synapse in developing Purkinje cells. J. Neurosci. 28, 798–807 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Hansel, C. & Linden, D. J. Long-term depression of the cerebellar climbing fiber–Purkinje neuron synapse. Neuron 26, 473–482 (2000).

    Article  CAS  PubMed  Google Scholar 

  181. Lachamp, P. M., Liu, Y. & Liu, S. J. Glutamatergic modulation of cerebellar interneuron activity is mediated by an enhancement of GABA release and requires protein kinase A/RIM1α signaling. J. Neurosci. 29, 381–392 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We kindly thank the Dutch Organization for Medical Sciences (ZonMw; C.I.D.Z.), Life Sciences (ALW; C.I.D.Z., Z.G. and B.J.v.B.), Senter (NeuroBasic; C.I.D.Z) and Prinses Beatrix Fonds (C.I.D.Z.), and the ERC-advanced, CEREBNET and C7 programs of the European Community (C.I.D.Z.) for their financial support. We also thank F.E. Hoebeek, M. Schonewille, E. Galliano and other laboratory members for valuable discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chris I. De Zeeuw.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Chris I. De Zeeuw's homepages

Chris I. De Zeeuw's homepages

Glossary

Intrinsic plasticity

Modification of a neuron's intrinsic electrical properties through changes in ion channel expression and properties in the neuron membrane. It can be induced by either neuronal spiking activity or synaptic inputs.

Motor performance

Baseline performance of movements. It corresponds to the absolute amplitude (gain) and timing (phase) values of the movements before any training paradigm has taken place.

Motor learning

Adaptation of the amplitude (gain) and/or timing (phase) of movements following a training paradigm; typical forms of cerebellar motor learning paradigms include adaptation of the vestibulo-ocular reflex and eyeblink conditioning.

Motor consolidation

Preservation of the level of adaptation of the amplitude and/or timing of movements overnight.

Vestibulo-ocular reflex

(VOR). Reflex movement of the eyes elicited by vestibular stimulation, whereby the eyes move in a direction opposite to that of the head to ensure that the retinal image is kept stable; the reflex is under the control of the vestibulocerebellum.

Homosynaptic

Pertaining to the same synapse. Homosynaptic plasticity is a form of synaptic plasticity in which activity of a particular group of synapses results in synaptic plasticity of the same group of synapses; it can be induced at a single-synapse level.

Heterosynaptic

Pertaining to a different synapse. Heterosynaptic plasticity is a form of synaptic plasticity in which activity of a particular group of synapses results in synaptic plasticity of another group of synapses of the same neuron.

Vestibulocerebellum

The part of the cerebellum that receives direct or indirect vestibular input and controls eye and body reflexes following vestibular input.

Granule cell network

Circuitry consisting of granule cells and interneurons (that is, unipolar brush cells and Golgi cells), which share common mossy fibre inputs and/or are connected through parallel fibres.

Diversity spreading

Expansion of signal coding in the spatial and temporal domain; the granule cell network in the cerebellar cortex is well designed to mediate this process.

Feedforward inhibition

When external inputs excite both a principal neuron and an inhibitory interneuron that inhibits the principal neuron. This phenomenon sharpens the time window during which the principal neuron can fire.

Feedback inhibition

When a principal neuron activates downstream interneurons that inhibit the principal neuron, thereby regulating the subsequent activity of the principal neuron.

First-spike delay

The time interval between the onset of an excitatory input and the generation of the first action potential in a neuron; this interval depends, in part, on the intrinsic excitability of the neuron.

Type 1 phase

Positive rate modulation of the mossy fibres when the vestibular stimulus moves in the ipsilateral direction.

Type 2 phase

Negative rate modulation of the mossy fibres when the vestibular stimulus moves in the ipsilateral direction.

Motor coordination

A combination of motor performance, motor learning and motor consolidation.

Optokinetic reflex

Reflex movement of the eyes in response to visual input, whereby the eyes follow the direction of moving objects to stabilize the retinal image.

Bidirectional plasticity

A form of plasticity that can show both depression and potentiation, depending on the presence or absence of a guiding signal; various sites in the Purkinje cell network show bidirectional plasticity guided by the climbing fibres.

Purkinje cell network

Circuitry consisting of Purkinje cells and molecular layer interneurons, which share common parallel fibre and/or (extra)synaptic climbing fibre inputs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, Z., van Beugen, B. & De Zeeuw, C. Distributed synergistic plasticity and cerebellar learning. Nat Rev Neurosci 13, 619–635 (2012). https://doi.org/10.1038/nrn3312

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn3312

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing