Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Understanding calcium waves and sparks in central neurons

Key Points

  • Synaptic stimulation evokes postsynaptic intracellular calcium concentration ([Ca2+]i) changes via Ca2+ entry through ligand- and voltage-gated channels and via Ca2+ release from internal stores. Ca2+ release can be widespread and substantial, but often has no correlated change in membrane potential.

  • In many pyramidal neurons in the hippocampus, cortex and amygdala, Ca2+ release propagates as a wave in restricted regions of dendrites. The waves are evoked by metabotropic glutamate receptor (mGluR) mobilization of inositol trisphosphate (IP3) that regeneratively releases Ca2+ through IP3 receptors.

  • The range of wave propagation in dendrites depends on the number and location of synaptic inputs and the influence of neuromodulators.

  • Postsynaptic Ca2+ release and Ca2+ waves have been implicated in the modulation of membrane conductances and the induction of several forms of synaptic plasticity, including long-term potentiation and long-term depression. However, many of these results are controversial.

  • In addition to large-amplitude, widespread Ca2+ waves, localized, smaller amplitude, spontaneous Ca2+ release events have been detected in the soma, dendrites and presynaptic termini of many CNS neurons. These events resemble 'sparks' and 'puffs', which have been observed in many non-neuronal cell types.

  • The frequency of these events in dendrites can be modulated by changes in membrane potential in the subthreshold range, primarily by controlling Ca2+ entry through voltage-gated calcium channels. Their frequency can also be modulated by mGluR-mediated mobilization of IP3.

  • These localized events seem to contribute to the generation of large amplitude IP3-mediated Ca2+ waves. However, several of their properties implicate the involvement of ryanodine receptors, suggesting that they are more complex than IP3-mediated puffs.

  • Localized Ca2+ release events have been correlated with the generation of inhibitory postsynaptic currents at certain synapses, and these events locally increase Ca2+-activated K+ conductances in some cells. However, many of their functions remain to be determined.

Abstract

All cells use changes in intracellular calcium concentration ([Ca2+]i) to regulate cell signalling events. In neurons, with their elaborate dendritic and axonal arborizations, there are clear examples of both localized and widespread Ca2+ signals. [Ca2+]i changes that are generated by Ca2+ entry through voltage- and ligand-gated channels are the best characterized. In addition, the release of Ca2+ from intracellular stores can result in increased [Ca2+]i; the signals that trigger this release have been less well-studied, in part because they are not usually associated with specific changes in membrane potential. However, recent experiments have revealed dramatic widespread Ca2+ waves and localized spark-like events, particularly in dendrites. Here we review emerging data on the nature of these signals and their functions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Model of regenerative Ca2+ release and wave propagation.
Figure 2: Synaptically activated Ca2+ waves in a neocortical pyramidal neuron.
Figure 3: Model of the distribution of molecules that affect the generation of Ca2+ waves and sparks in a hippocampal pyramidal neuron.
Figure 4: Spontaneous Ca2+ release events occur in localized regions of the dendrites of hippocampal pyramidal neurons.

Similar content being viewed by others

References

  1. Bloodgood, B. L. & Sabatini, B. L. Ca2+ signalling in dendritic spines. Curr. Opin. Neurobiol. 17, 345–351 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Berridge, M. J. Neuronal calcium signalling. Neuron 21, 13–26 (1998). An influential review that highlights the importance of diverse calcium signals in architecturally complex dendrites and axons.

    Article  CAS  PubMed  Google Scholar 

  3. Augustine, G. J., Santamaria, F. & Tanaka, K. Local calcium signalling in neurons. Neuron 40, 331–346 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Schiller, J., Major, G., Koester, H. J. & Schiller, Y. NMDA spikes in basal dendrites of cortical pyramidal neurons. Nature 404, 285–289 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Larkum, M. E., Zhu, J. J. & Sakmann, B. A new cellular mechanism for coupling inputs arriving at different cortical layers. Nature 398, 338–341 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. Verkhratsky, A. Physiology and pathophysiology of the calcium store in the endoplasmic reticulum of neurons. Physiol. Rev. 85, 201–279 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Cheng, H. & Lederer, W. J. Calcium sparks. Physiol. Rev. 88, 1491–1545 (2008). A comprehensive review of calcium sparks in different cell types that emphasizes results from cardiac myocytes. A good starting point for exploring this field.

    Article  CAS  PubMed  Google Scholar 

  8. Bootman, M. D., Lipp, P. & Berridge, M. J. The organization and functions of local Ca2+ signals. J. Cell Sci. 114, 2213–2222 (2001).

    CAS  PubMed  Google Scholar 

  9. Parker, I. & Yao, Y. Regenerative release of calcium from functionally discrete subcellular stores by inositol trisphosphate. Proc. R. Soc. Lond. B 246, 269–274 (1991).

    Article  CAS  Google Scholar 

  10. Lechleiter, J., Girard, S., Peralta, E. & Clapham, D. Spiral calcium wave propagation and annihilation in Xenopus laevis oocytes. Science 252, 123–126 (1991).

    Article  CAS  PubMed  Google Scholar 

  11. Bootman, M., Niggli, E., Berridge, M. & Lipp, P. Imaging the heirarchical Ca2+ signalling system in HeLa cells. J. Physiol. 499, 307–314 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Petersen, O. H. & Tepikin, A. V. Polarized calcium signalling in exocrine gland cells. Annu. Rev. Physiol. 70, 273–299 (2008).

    Article  CAS  PubMed  Google Scholar 

  13. Luo, D. et al. Nuclear Ca2+ sparks and waves mediated by inositol 1,4,5-trisphosphate receptors in neonatal rat cardiomyocytes. Cell Calcium 43, 165–174 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. Berridge, M. J., Bootman, M. D. & Roderick, H. L. Calcium signalling: dynamics, homeostasis and remodelling. Nature Rev. Mol. Cell Biol. 4, 517–529 (2003).

    Article  CAS  Google Scholar 

  15. Miller, L. D., Petrozzino, J. J., Golarai, G. & Connor, J. Ca2+ release from intracellular stores induced by afferent stimulation of CA3 pyramidal neurons in hippocampal slices. J. Neurophysiol. 76, 554–562 (1996). This is the first description of synaptically activated calcium release in neurons in a brain slice preparation.

    Article  CAS  Google Scholar 

  16. Larkum, M. E., Watanabe, S., Nakamura, T., Lasser-Ross, N. & Ross, W. N. Synaptically activated Ca2+ waves in layer 2/3 and layer 5 rat neocortical pyramidal neurons. J. Physiol. 549, 471–488 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Nakamura, T., Barbara, J. G., Nakamura, K. & Ross, W. N. Synergistic release of Ca2+ from IP3-sensitive stores evoked by synaptic activation of mGluRs paired with backpropagating action potentials. Neuron 24, 727–737 (1999). This is the first description of synaptically activated calcium waves in pyramidal neurons. The synergistic release of calcium stresses the role of the IP 3 receptor as a coincidence detector for IP 3 and calcium. Reference 39 shows similar coincidence detection in Purkinje neurons.

    Article  CAS  PubMed  Google Scholar 

  18. Kapur, A., Yeckel, M. & Johnston, D. Hippocampal mossy fiber activity evokes Ca2+ release in CA3 pyramidal neurons via a metabotropic glutamate receptor pathway. Neuroscience 107, 59–69 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Hagenston, A. M., Fitzpatrick, J. S. & Yeckel, M. F. MGluR-mediated calcium waves that invade the soma regulate firing in layer V medial prefrontal cortical pyramidal neurons. Cereb. Cortex 18, 407–423 (2008).

    Article  PubMed  Google Scholar 

  20. Power, J. M. & Sah, P. Competition between calcium-activated K+ channels determines cholinergic action on firing properties of basolateral amygdala projection neurons. J. Neurosci. 28, 3209–3220 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Larkum, M. E., Watanabe, S., Lasser-Ross, N., Rhodes, P. & Ross, W. N. Dendritic properties of turtle pyramidal neurons. J. Neurophysiol. 99, 683–694 (2008).

    Article  PubMed  Google Scholar 

  22. Nakamura, T. et al. Inositol 1,4,5-trisphosphate (IP3)-mediated Ca2+ release evoked by metabotropic agonists and backpropagating action potentials in hippocampal CA1 pyramidal neurons. J. Neurosci. 20, 8365–8376 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Helmchen, F., Imoto, K. & Sakmann, B. Ca2+ buffering and action potential-evoked Ca2+ signalling in dendrites of pyramidal neurons. Biophys. J. 70, 1069–1081 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Maravall, M., Mainen, Z. F., Sabatini, B. L. & Svoboda, K. Estimating intracellular calcium concentrations and buffering without wavelength ratioing. Biophys. J. 78, 2655–2667 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sabatini, B. L., Oertner, T. G. & Svoboda, K. The life cycle of Ca2+ ions in dendritic spines. Neuron 33, 439–452 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Nakamura, T., Lasser-Ross, N., Nakamura, K. & Ross, W. N. Spatial segregation and interaction of calcium signalling mechanisms in rat hippocampal CA1 pyramidal neurons. J. Physiol. 543, 465–480 (2002). An interesting paper that emphasizes that synaptically activated calcium entry through NMDA receptors and synaptically activated calcium waves occur in different dendritic regions.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Stuart, G. J. & Sakmann, B. Active propagation of somatic action potentials into neocortical pyramidal cell dendrites. Nature 367, 69–72 (1994).

    Article  CAS  PubMed  Google Scholar 

  28. Finch, E. A. & Augustine, G. J. Local calcium signalling by inositol-1,4,5-trisphosphate in Purkinje cell dendrites. Nature 396, 753–756 (1998).

    Article  CAS  PubMed  Google Scholar 

  29. Takechi, H., Eilers, J. & Konnerth, A. A new class of synaptic response involving calcium release in dendritic spines. Nature 396, 757–760 (1998). References 28 and 29 are the first descriptions of IP 3 -mediated calcium release in Purkinje cells. In these cells, calcium release does not propagate as a wave.

    Article  CAS  PubMed  Google Scholar 

  30. Topolnik, L., Chamberland, S., Pelletier, J.-G., Ran, I. & Lacaille, J.-C. Activity-dependent compartmentalized regulation of dendritic Ca2+ signalling in hippocampal interneurons. J. Neurosci. 29, 4658–4663 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Rozsa, B., Zelles, T., Vizi, E. S. & Lendvai, B. Distance-dependent scaling of calcium transients evoked by backpropagating spikes and synaptic activity in dendrites of hippocampal interneurons. J. Neurosci. 24, 661–670 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hartmann, J. & Konnerth, A. Determinants of postsynaptic Ca2+ signalling in Purkinje neurons. Cell Calcium 37, 459–466 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Shuai, J., Pearson, J. E. & Parker, I. Modeling Ca2+ feedback on a single inositol 1,4,5-trisphosphate receptor and its modulation by Ca2+ buffers. Biophys. J. 95, 3738–3752 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bezprozvanny, I., Watras, J. & Ehrlich, B. E. Bell-shaped calcium-response curves of Ins(1,4,5)P3- and calcium-gated channels from endoplasmic reticulum of cerebellum. Nature 351, 751–754 (1991).

    Article  CAS  PubMed  Google Scholar 

  35. Iino, M. & Endo, M. Calcium-dependent immediate feedback control of inositol 1,4,5-trisphosphate-induced Ca2+ release. Nature 360, 76–78 (1992).

    Article  CAS  PubMed  Google Scholar 

  36. Parker, I. & Ivorra, I. Inhibition by Ca2+ of inositol trisphosphate-mediated Ca2+ liberation: a possible mechanism for oscillatory release of Ca2+. Proc. Natl Acad. Sci. USA 87, 260–264 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Foskett, J. K., White, C., Cheung, K. H. & Mak, D.-O. D. Inositol trisphosphate receptor Ca2+ release channels. Physiol. Rev. 87, 593–658 (2007).

    Article  CAS  PubMed  Google Scholar 

  38. Manita, S. & Ross, W. N. IP3 mobilization and diffusion determine the timing window of Ca2+ release by synaptic stimulation and a spike in rat CA1 pyramidal cells. Hippocampus 20, 524–539 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Wang, S. S., Denk, W. & Häusser, M. Coincidence detection in single dendritic spines mediated by calcium release. Nature Neurosci. 3, 1266–1273 (2000).

    Article  CAS  PubMed  Google Scholar 

  40. Sarkisov, D. V. & Wang, S. S.-H. Order-dependent coincidence detection in cerebellar Purkinje neurons at the inositol trisphosphate receptor. J. Neurosci. 28, 133–142 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Power, J. M. & Sah, P. Distribution of IP3-mediated calcium responses and their role in nuclear signalling in rat basolateral amygdala neurons. J. Physiol. 580, 835–857 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Spacek, J. & Harris, K. M. Three-dimensional organization of smooth endoplasmic reticulum in hippocampal CA1 dendrites and dendritic spines of the immature and mature rat. J. Neurosci. 17, 190–203 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Martone, M., Zhang, Y., Simpliciano, V., Carragher, B. & Ellisman, M. Three-dimensional visualization of the smooth endoplasmic reticulum in Purkinje cell dendrites. J. Neurosci. 13, 4636–4646 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Terasaki, M., Slater, N. T., Fein, A., Schmidek, A. & Reese, T. S. Continuous network of endoplasmic reticulum in cerebellar Purkinje neurons. Proc. Natl Acad. Sci. USA 91, 7510–7514 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Megías, M., Emri, Z., Freund, T. F. & Gulyás, A. I. Total number and distribution of inhibitory and excitatory synapses on hippocampal CA1 pyramidal cells. Neuroscience 102, 527–540 (2001).

    Article  PubMed  Google Scholar 

  46. Major, G., Polsky, A., Denk, W., Schiller, J. & Tank, D. W. Spatiotemporally graded NMDA spike/plateau potentials in basal dendrites of neocortical pyramidal neurons. J. Neurophysiol. 99, 2584–2601 (2008).

    Article  CAS  PubMed  Google Scholar 

  47. Manita, S., Miyazaki, K. & Ross, W. N. Synaptically activated Ca2+ waves and NMDA spikes locally suppress voltage dependent Ca2+ signalling in rat pyramidal cell dendrites. J. Physiol. 589, 4903–4920 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Fitzpatrick, J. S. et al. Inositol-1,4,5-trisphosphate receptor-mediated Ca2+ waves in pyramidal neuron dendrites propagate through hot spots and cold spots. J. Physiol. 587, 1439–1459 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Jaffe, D. B. & Brown, T. H. Metabotropic glutamate receptor activation induces calcium waves within hippocampal dendrites. J. Neurophysiol. 72, 471–474 (1994). This is the first observation and analysis of calcium waves in neuronal dendrites. Activation by focally applying the mGluR agonist t-ACPDsuggested a role for IP 3 -mediated calcium release in generating the waves.

    Article  CAS  PubMed  Google Scholar 

  50. Power, J. M. & Sah, P. Nuclear calcium signalling evoked by cholinergic stimulation in hippocampal CA1 pyramidal neurons. J. Neurosci. 22, 3454–3462 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Stutzmann, G. E., LaFerla, F. M. & Parker, I. Ca2+ signalling in mouse cortical neurons studied by two-photon imaging and photoreleased inositol triphosphate. J. Neurosci. 23, 758–765 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Watanabe, S., Hong, M., Lasser-Ross, N. & Ross, W. N. Modulation of calcium wave propagation in the dendrites and to the soma of rat hippocampal pyramidal neurons. J. Physiol. 575, 455–468 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Mironov, S. L. Metabotropic glutamate receptors activate dendritic calcium waves and TRPM channels which drive rhythmic respiratory patterns in mice. J. Physiol. 586, 2277–2291 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Del Negro, C. A., Hayes, J. A. & Rekling, J. C. Dendritic calcium activity precedes inspiratory bursts in preBötzinger complex neurons. J. Neurosci. 31, 1017–1022 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Jacob, S. N. et al. Signalling microdomains regulate inositol 1,4,5-trisphosphate-mediated intracellular calcium transients in cultured neurons. J. Neurosci. 25, 2853–2864 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Sharp, A. H. et al. Differential immunohistochemical localization of inositol 1,4,5-trisphosphate-and ryanodine-sensitive Ca2+ release channels in rat brain. J. Neurosci. 13, 3051–3063 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hertle, D. N. & Yeckel, M. F. Distribution of inositol-1,4,5-trisphosphate receptor isotypes and ryanodine receptor isotypes during maturation of the rat hippocampus. Neuroscience 150, 625–638 (2007).

    Article  CAS  PubMed  Google Scholar 

  58. Garaschuk, O., Yaari, Y. & Konnerth, A. Release and sequestration of calcium by ryanodine-sensitive stores in rat hippocampal neurons. J. Physiol. 502, 13–30 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Hong, M. & Ross, W. N. Priming of intracellular calcium stores in rat CA1 pyramidal neurons. J. Physiol. 584, 75–87 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Power, J. M. & Sah, P. Intracellular calcium store filling by an L-type calcium current in the basolateral amygdala at subthreshold membrane potentials. J. Physiol. 562, 439–453 (2005).

    Article  CAS  PubMed  Google Scholar 

  61. El-Hassar, L., Hagenston, A. M., D'Angelo, L. B. & Yeckel, M. F. Metabotropic glutamate receptors regulate hippocampal CA1 pyramidal neuron excitability via Ca2+ wave-dependent activation of SK and TRPC channels. J. Physiol. 589, 3211–3229 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hong, M., Manita, S. & Ross, W. N. Calcium waves generated by uncaging IP3 or synaptic stimulation evoke an apamin-sensitive AHP in the perisomatic region of hippocampal CA1 pyramidal neurons. Soc. Neurosci. Abstr. 786.6 (San Diego, California, 3–7 Nov 2007).

  63. Gulledge, A. T. & Stuart, G. J. Cholinergic inhibition of neocortical pyramidal neurons. J. Neurosci. 25, 10308–10320 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Yamada, S.-I., Takechi, H., Kanchiku, I., Kita, T. & Kato, N. Small-conductance Ca2+-dependent K+ channels are the target of spike-induced Ca2+ release in a feedback regulation of pyramidal cell excitability. J. Neurophysiol. 91, 2322–2329 (2004).

    Article  CAS  PubMed  Google Scholar 

  65. Fiorillo, C. D. & Williams, J. T. Glutamate mediates an inhibitory postsynaptic potential in dopamine neurons. Nature 394, 78–82 (1998).

    Article  CAS  PubMed  Google Scholar 

  66. Morikawa, H., Khodakhah, K. & Williams, J. T. Two intracellular pathways mediate metabotropic glutamate receptor-induced Ca2+ mobilization in dopamine neurons. J. Neurosci. 23, 149–157 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Gulledge, A. T., Park, S. B., Kawaguchi, Y. & Stuart, G. J. Heterogeneity of phasic cholinergic signalling in neocortical neurons. J. Neurophysiol. 97, 2215–2229 (2007).

    Article  CAS  PubMed  Google Scholar 

  68. Sailer, C. A., Kaufmann, W. A., Marksteiner, J. & Knaus, H.-G. Comparative immunohistochemical distribution of three small-conductance Ca2+-activated potassium channel subunits, SK1, SK2, and SK3 in mouse brain. Mol. Cell. Neurosci. 26, 458–469 (2004).

    Article  CAS  PubMed  Google Scholar 

  69. Ngo-Anh, T. J. et al. SK channels and NMDA receptors form a Ca2+-mediated feedback loop in dendritic spines. Nature Neurosci. 8, 642–649 (2005).

    Article  CAS  PubMed  Google Scholar 

  70. Faber, E. S. L., Delaney, A. J. & Sah, P. SK channels regulate excitatory synaptic transmission and plasticity in the lateral amygdala. Nature Neurosci. 8, 635–641 (2005).

    Article  CAS  PubMed  Google Scholar 

  71. Brehm, P. & Eckert, R. Calcium entry leads to inactivation of calcium channel in Paramecium. Science 202, 1203–1206 (1978).

    Article  CAS  PubMed  Google Scholar 

  72. Dunlap, K. Calcium channels are models of self-control. J. Gen. Physiol. 129, 379–383 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Harvey, J. & Collingridge, G. L. Thapsigargin blocks the induction of long-term potentiation in rat hippocampal slices. Neurosci. Lett. 139, 197–200 (1992).

    Article  CAS  PubMed  Google Scholar 

  74. Nishiyama, M., Hong, K., Mikoshiba, K., Poo, M. M. & Kato, K. Calcium stores regulate the polarity and input specificity of synaptic modification. Nature 408, 584–588 (2000).

    Article  CAS  PubMed  Google Scholar 

  75. Reyes, M. & Stanton, P. K. Induction of hippocampal long-term depression requires release of Ca2+ from separate presynaptic and postsynaptic intracellular stores. J. Neurosci. 16, 5951–5960 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Raymond, C. R. & Redman, S. J. Different calcium sources are narrowly tuned to the induction of different forms of LTP. J. Neurophysiol. 88, 249–255 (2002).

    Article  CAS  PubMed  Google Scholar 

  77. Behnisch, T. & Reymann, K. G. Thapsigargin blocks long-term potentiation induced by weak, but not strong tetanisation in rat hippocampal CA1 neurons. Neurosci. Lett. 192, 185–188 (1995).

    Article  CAS  PubMed  Google Scholar 

  78. Taufiq, A. M. et al. Involvement of IP3 receptors in LTP and LTD induction in guinea pig hippocampal CA1 neurons. Learn. Mem. 12, 594–600 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Dudman, J. T., Tsay, D. & Siegelbaum, S. A. A role for synaptic inputs at distal dendrites: instructive signals for hippocampal long-term plasticity. Neuron 56, 866–879 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Svoboda, K. & Mainen, Z. F. Intracellular stores spill their guts. Neuron 22, 427–430 (1999).

    Article  CAS  PubMed  Google Scholar 

  81. Feldman, D. E. Synaptic mechanisms for plasticity in neocortex. Annu. Rev. Neurosci. 32, 33–55 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Sjöström, P. J., Rancz, E. A., Roth, A. & Häusser, M. Dendritic excitability and synaptic plasticity. Physiol. Rev. 88, 769–840 (2008).

    Article  CAS  PubMed  Google Scholar 

  83. Rose, C. R. & Konnerth, A. Stores not just for storage: intracellular calcium release and synaptic plasticity. Neuron 31, 519–522 (2001).

    Article  CAS  PubMed  Google Scholar 

  84. Yeckel, M. F., Kapur, A. & Johnston, D. Multiple forms of LTP in hippocampal CA3 neurons use a common postsynaptic mechanism. Nature Neurosci. 2, 625–633 (1999).

    Article  CAS  PubMed  Google Scholar 

  85. Mellor, J. & Nicoll, R. Hippocampal mossy fiber LTP is independent of postsynaptic calcium. Nature Neurosci. 4, 125–126 (2001).

    Article  CAS  PubMed  Google Scholar 

  86. Fernández de Sevilla, D., Núñez, A., Borde, M., Malinow, R. & Buño, W. Cholinergic-mediated IP3-receptor activation induces long-lasting synaptic enhancement in CA1 pyramidal neurons. J. Neurosci. 28, 1469–1478 (2008).

    Article  CAS  PubMed  Google Scholar 

  87. Emptage, N., Bliss, T. V. P. & Fine, A. Single synaptic events evoke NMDA receptor-mediated release of calcium from internal stores in hippocampal dendritic spines. Neuron 22, 115–124 (1999).

    Article  CAS  PubMed  Google Scholar 

  88. Raymond, C. R. & Redman, S. J. Spatial segregation of neuronal calcium signals encodes different forms of LTP in rat hippocampus. J. Physiol. 570, 97–111 (2006).

    Article  CAS  PubMed  Google Scholar 

  89. Mainen, Z. F., Malinow, R. & Svoboda, K. Synaptic calcium transients in single spines indicate that NMDA receptors are not saturated. Nature 399, 151–155 (1999).

    Article  CAS  PubMed  Google Scholar 

  90. Kovalchuk, Y., Eilers, J., Lisman, J. & Konnerth, A. NMDA receptor-mediated subthreshold Ca2+ signals in spines of hippocampal neurons. J. Neurosci. 20, 1791–1799 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Holbro, N., Grunditz, A. & Oertner, T. G. Differential distribution of endoplasmic reticulum controls metabotropic signalling and plasticity at hippocampal synapses. Proc. Natl Acad. Sci. USA 106, 15055–15060 (2009). An important paper showing that uncaging glutamate over single spines evokes delayed calcium release and LTD only in those cases where the endoplasmic reticulum penetrates the spine. Blockage by mGluR antagonists and heparin suggested that the calcium release was mediated by IP 3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Konnerth, A., Dreessen, J. & Augustine, G. J. Brief dendritic calcium signals initiate long-lasting synaptic depression in cerebellar Purkinje cells. Proc. Natl Acad. Sci. USA 89, 7051–7055 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Miyata, M. et al. Local calcium release in dendritic spines required for long-term synaptic depression. Neuron 28, 233–244 (2000).

    Article  CAS  PubMed  Google Scholar 

  94. Tanaka, K. et al. Ca2+ requirements for cerebellar long-term synaptic depression: role for a postsynaptic leaky integrator. Neuron 54, 787–800 (2007).

    Article  CAS  PubMed  Google Scholar 

  95. Bender, V. A., Bender, K. J., Brasier, D. J. & Feldman, D. E. Two coincidence detectors for spike timing-dependent plasticity in somatosensory cortex. J. Neurosci. 26, 4166–4177 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Nevian, T. & Sakmann, B. Spine Ca2+ signalling in spike-timing-dependent plasticity. J. Neurosci. 26, 11001–11013 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Cheng, H., Lederer, W. J. & Cannell, M. B. Calcium sparks: elementary events underlying excitation-contraction coupling in heart muscle. Science 262, 740–744 (1993). The first description of stochastic, RyR-mediated, calcium sparks in myocytes. Together with reference 100, these papers initiated the field of localized calcium events in cells.

    Article  CAS  PubMed  Google Scholar 

  98. Tsugorka, A., Ríos, E. & Blatter, L. A. Imaging elementary events of calcium release in skeletal muscle cells. Science 269, 1723–1726 (1995).

    Article  CAS  PubMed  Google Scholar 

  99. Cheng, H., Lederer, M. R., Lederer, W. J. & Cannell, M. B. Calcium sparks and [Ca2+]i waves in cardiac myocytes. Am. J. Physiol. 270, C148–C159 (1996).

    Article  CAS  PubMed  Google Scholar 

  100. Parker, I. & Ivorra, I. Localized all-or-none calcium liberation by inositol trisphosphate. Science 250, 977–979 (1990). The first description of localized IP 3 -evoked calcium release puffs. The oocyte proved to be a favourable preparation for studying these signals as it contains few, if any, RyRs.

    Article  CAS  PubMed  Google Scholar 

  101. Haak, L. L. et al. Sparks and puffs in oligodendrocyte progenitors: cross talk between ryanodine receptors and inositol trisphosphate receptors. J. Neurosci. 21, 3860–3870 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. MacMillan, D., Chalmers, S., Muir, T. C. & McCarron, J. G. IP3-mediated Ca2+ increases do not involve the ryanodine receptor, but ryanodine receptor antagonists reduce IP3-mediated Ca2+ increases in guinea-pig colonic smooth muscle cells. J. Physiol. 569, 533–544 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Koizumi, S. et al. Characterization of elementary Ca2+ release signals in NGF-differentiated PC12 cells and hippocampal neurons. Neuron 22, 125–137 (1999).

    Article  CAS  PubMed  Google Scholar 

  104. Manita, S. & Ross, W. N. Synaptic activation and membrane potential changes modulate the frequency of spontaneous elementary Ca2+ release events in the dendrites of pyramidal neurons. J. Neurosci. 29, 7833–7845 (2009). This is the first description of localized calcium release events in dendrites. The two ways of modulating the frequency of these events are unusual.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Womack, M. D., Walker, J. W. & Khodakhah, K. Impaired calcium release in cerebellar Purkinje neurons maintained in culture. J. Gen. Physiol. 115, 339–346 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Simkus, C. R. L. & Stricker, C. The contribution of intracellular calcium stores to mEPSCs recorded in layer II neurons of rat barrel cortex. J. Physiol. 545, 521–535 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Lelli, A. et al. Presynaptic calcium stores modulate afferent release in vestibular hair cells. J. Neurosci. 23, 6894–6903 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Unni, V. K., Zakharenko, S. S., Zablow, L., DeCostanzo, A. J. & Siegelbaum, S. A. Calcium release from presynaptic ryanodine-sensitive stores is required for long-term depression at hippocampal CA3-CA3 pyramidal neuron synapses. J. Neurosci. 24, 9612–9622 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Sharma, G. & Vijayaraghavan, S. Modulation of presynaptic store calcium induces release of glutamate and postsynaptic firing. Neuron 38, 929–939 (2003).

    Article  CAS  PubMed  Google Scholar 

  110. Llano, I. et al. Presynaptic calcium stores underlie large-amplitude miniature IPSCs and spontaneous calcium transients. Nature Neurosci. 3, 1256–1265 (2000). This is the first observation of localized calcium release events in presynaptic terminals. The association of large IPSCs in Purkinje cells with these events suggested a possible function for these signals.

    Article  CAS  PubMed  Google Scholar 

  111. Conti, R., Tan, Y. P. & Llano, I. Action potential-evoked and ryanodine-sensitive spontaneous Ca2+ transients at the presynaptic terminal of a developing CNS inhibitory synapse. J. Neurosci. 24, 6946–6957 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Emptage, N. J., Reid, C. A. & Fine, A. Calcium stores in hippocampal synaptic boutons mediate short-term plasticity, store-operated Ca2+ entry, and spontaneous transmitter release. Neuron 29, 197–208 (2001).

    Article  CAS  PubMed  Google Scholar 

  113. Carter, A. G., Vogt, K. E., Foster, K. A. & Regehr, W. G. Assessing the role of calcium-induced calcium release in short-term presynaptic plasticity at excitatory central synapses. J. Neurosci. 22, 21–28 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. De Crescenzo, V. et al. Ca2+ syntillas, miniature Ca2+ release events in terminals of hypothalamic neurons, are increased in frequency by depolarization in the absence of Ca2+ influx. J. Neurosci. 24, 1226–1235 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. ZhuGe, R. et al. Syntillas release Ca2+ at a site different from the microdomain where exocytosis occurs in mouse chromaffin cells. Biophys. J. 90, 2027–2037 (2006).

    Article  CAS  PubMed  Google Scholar 

  116. Ouyang, K. et al. Ca2+ sparks and secretion in dorsal root ganglion neurons. Proc. Natl Acad. Sci. USA 102, 12259–12264 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Berrout, J. & Isokawa, M. Homeostatic and stimulus-induced coupling of the L-type Ca2+ channel to the ryanodine receptor in the hippocampal neuron in slices. Cell Calcium 46, 30–38 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Peng, Y. Ryanodine-sensitive component of calcium transients evoked by nerve firing at presynaptic nerve terminals. J. Neurosci. 16, 6703–6712 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Isokawa, M. & Alger, B. E. Ryanodine receptor regulates endogenous cannabinoid mobilization in the hippocampus. J. Neurophysiol. 95, 3001–3011 (2006).

    Article  CAS  PubMed  Google Scholar 

  120. Friel, D. & Tsien, R. W. A caffeine-and ryanodine-sensitive Ca2+ store in bullfrog sympathetic neurons modulates effects of Ca2+ entry on [Ca2+]i . J. Physiol. 450, 217–246 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Lohmann, C., Myhr, K. L. & Wong, R. O. L. Transmitter-evoked local calcium release stabilizes developing dendrites. Nature 418, 177–181 (2002).

    Article  CAS  PubMed  Google Scholar 

  122. Lohmann, C., Finski, A. & Bonhoeffer, T. Local calcium transients regulate the spontaneous motility of dendritic filopodia. Nature Neurosci. 8, 305–312 (2005).

    Article  CAS  PubMed  Google Scholar 

  123. Lohmann, C. & Bonhoeffer, T. A role for local calcium signalling in rapid synaptic partner selection by dendritic filopodia. Neuron 59, 253–260 (2008).

    Article  CAS  PubMed  Google Scholar 

  124. Miyazaki, K., Manita, S. & Ross, W. N. Developmental profile of localized spontaneous Ca2+ release events in the dendrites of rat hippocampal pyramidal neurons. Soc. Neurosci. Abstr. 246.9 (San Diego, California, 14 Nov 2010).

  125. Waters, J., Larkum, M., Sakmann, B. & Helmchen, F. Supralinear Ca2+ influx into dendritic tufts of layer 2/3 neocortical pyramidal neurons in vitro and in vivo. J. Neurosci. 23, 8558–8567 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Nelson, M. T. et al. Relaxation of arterial smooth muscle by calcium sparks. Science 270, 633–637 (1995).

    Article  CAS  PubMed  Google Scholar 

  127. Pérez, G. J., Bonev, A. D. & Nelson, M. T. Micromolar Ca2+ from sparks activates Ca2+-sensitive K+ channels in rat cerebral artery smooth muscle. Am. J. Physio. Cell Physiol. 281, C1769–C1775 (2001).

    Article  Google Scholar 

  128. Brenner, R. et al. Vasoregulation by the β1 subunit of the calcium-activated potassium channel. Nature 407, 870–876 (2000).

    Article  CAS  PubMed  Google Scholar 

  129. Klement, G. et al. Spontaneous ryanodine-receptor-dependent Ca2+ activated K+ currents and hyperpolarizations in rat medial preoptic neurons. J. Neurophysiol. 103, 2900–2911 (2010).

    Article  CAS  PubMed  Google Scholar 

  130. Merriam, L., Scornik, F. S. & Parsons, R. L. Ca2+-induced Ca2+ release activates spontaneous miniature outward currents (SMOCs) in parasympathetic cardiac neurons. J. Neurophysiol. 82, 540–550 (1999).

    Article  CAS  PubMed  Google Scholar 

  131. Larkum, M. E., Waters, J., Sakmann, B. & Helmchen, F. Dendritic spikes in apical dendrites of neocortical layer 2/3 pyramidal neurons. J. Neurosci. 27, 8999–9008 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Waters, J. & Helmchen, F. Background synaptic activity is sparse in neocortex. J. Neurosci. 26, 8267–8277 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Zhou, S. & Ross, W. N. Threshold conditions for synaptically evoking Ca2+ waves in hippocampal pyramidal neurons. J. Neurophysiol. 87, 1799–1804 (2002).

    Article  CAS  PubMed  Google Scholar 

  134. Jia, H., Rochefort, N. L., Chen, X. & Konnerth, A. Dendritic organization of sensory input to cortical neurons in vivo. Nature 464, 1307–1312 (2010).

    Article  CAS  PubMed  Google Scholar 

  135. Jones, B. E. From waking to sleeping: neuronal and chemical substrates. Trends Pharmacol. Sci. 26, 578–586 (2005).

    Article  CAS  PubMed  Google Scholar 

  136. Dargan, S. L., Demuro, A. & Parker, I. Imaging Ca2+ signals in Xenopus oocytes. Meth. Mol. Biol. 322, 103–119 (2006).

    Article  CAS  Google Scholar 

  137. Helmchen, F. & Konnerth, A. Imaging in Neuroscience: a Laboratory Manual (Cold Spring Harbor Press, Cold Spring Harbor, New York, 2011).

    Google Scholar 

  138. Iino, M. Spatiotemporal dynamics of Ca2+ signalling and its physiological roles. Proc. Jpn Acad. Ser. B 86, 244–256 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I thank members of my laboratory for many insightful discussions and J. Lisman and P. Sah for comments on an earlier version of this manuscript. W.N.R. is supported by a grant from the US National Institutes of Health (NS-16295).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William N. Ross.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Supplementary information

Supplementary Information S1 (movie)

Synaptically activated Ca2+ wave in the dendrites of a CA1 pyramidal neuron. (AVI 7338 kb)

Supplementary Information S1 (movie)

Synaptically activated Ca2+ wave in the dendrites of a CA1 pyramidal neuron. (PDF 93 kb)

Supplementary Information S2 (movie)

Spontaneous localized Ca2+ release events along the main apical dendrites of a CA1 pyramidal neuron. (MPG 2349 kb)

Supplementary Information S2 (movie)

Spontaneous localized Ca2+ release events along the main apical dendrites of a CA1 pyramidal neuron. (PDF 96 kb)

Related links

Related links

FURTHER INFORMATION

William N. Ross's homepage

Glossary

NMDA spikes

Short, sharp increases in NMDA receptor current that result from regenerative mechanisms in which the nonlinear component is the voltage dependence of the NMDA receptor. These spikes usually occur in dendrites, leading to large increases in intracellular calcium concentration but relatively small changes in somatic membrane potential.

Coincidence detector

A term derived from electrical engineering that refers to the output of a circuit that is dependent on the simultaneous arrival of two (or more) inputs. The inositol trisphosphate receptor (IP3R) is a coincidence detector for Ca2+ and IP3.

Hebbian plasticity

A form of neuronal plasticity in which a change in a property (often synaptic strength) results from the simultaneous activation (sometimes repetitively) of presynaptic and postsynaptic cells.

'Up' and 'down' states

Persistent depolarizations and hyperpolarizations in neurons that can differ by 10 to 20mV. They are primarily observed in cortical neurons and are thought to be driven by network activity.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ross, W. Understanding calcium waves and sparks in central neurons. Nat Rev Neurosci 13, 157–168 (2012). https://doi.org/10.1038/nrn3168

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn3168

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing