Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Active perception: sensorimotor circuits as a cortical basis for language

Abstract

Action and perception are functionally linked in the brain, but a hotly debated question is whether perception and comprehension of stimuli depend on motor circuits. Brain language mechanisms are ideal for addressing this question. Neuroimaging investigations have found specific motor activations when subjects understand speech sounds, word meanings and sentence structures. Moreover, studies involving transcranial magnetic stimulation and patients with lesions affecting inferior frontal regions of the brain have shown contributions of motor circuits to the comprehension of phonemes, semantic categories and grammar. These data show that language comprehension benefits from frontocentral action systems, indicating that action and perception circuits are interdependent.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cortical anatomy underlying language processing: from monkeys to humans.
Figure 2: Speech sounds in motor systems.

References

  1. Hubel, D. Eye, Brain, and Vision (Scientific American Library, New York, 1995).

    Google Scholar 

  2. Fodor, J. A. The Modulatity of Mind (MIT Press, Cambridge, Massachusetts, 1983).

    Book  Google Scholar 

  3. Shallice, T. From Neuropsychology to Mental Structure (Cambridge University Press, New York, 1988).

    Book  Google Scholar 

  4. Rizzolatti, G., Fadiga, L., Gallese, V. & Fogassi, L. Premotor cortex and the recognition of motor actions. Brain Res. Cogn. Brain Res. 3, 131–141 (1996).

    Article  CAS  PubMed  Google Scholar 

  5. Kohler, E. et al. Hearing sounds, understanding actions: action representation in mirror neurons. Science 297, 846–848 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Braitenberg, V. & Schüz, A. Cortex: Statistics and Geometry of Neuronal Connectivity (Springer, Berlin, 1998).

    Book  Google Scholar 

  7. Pulvermüller, F. Words in the brain's language. Behav.Brain Sci. 22, 253–336 (1999).

    Article  PubMed  Google Scholar 

  8. Fadiga, L., Fogassi, L., Gallese, V. & Rizzolatti, G. Visuomotor neurons: ambiguity of the discharge or 'motor' perception? Int. J. Psychophysiol. 35, 165–177 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Jeannerod, M. Motor Cognition: What Actions Tell to the Self (Oxford University Press, Oxford, 2006).

    Book  Google Scholar 

  10. Rizzolatti, G. & Craighero, L. The mirror-neuron system. Annu. Rev. Neurosci. 27, 169–192 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Pulvermüller, F. Brain mechanisms linking language and action. Nature Rev. Neurosci. 6, 576–582 (2005).

    Article  CAS  Google Scholar 

  12. Guenther, F. H., Ghosh, S. S. & Tourville, J. A. Neural modeling and imaging of the cortical interactions underlying syllable production. Brain Lang. 96, 280–301 (2006).

    Article  PubMed  Google Scholar 

  13. Petrides, M., Cadoret, G. & Mackey, S. Orofacial somatomotor responses in the macaque monkey homologue of Broca's area. Nature 435, 1235–1238 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Fadiga, L., Fogassi, L., Pavesi, G. & Rizzolatti, G. Motor facilitation during action observation: a magnetic stimulation study. J. Neurophysiol. 73, 2608–2611 (1995).

    Article  CAS  PubMed  Google Scholar 

  15. Fadiga, L., Craighero, L., Buccino, G. & Rizzolatti, G. Speech listening specifically modulates the excitability of tongue muscles: a TMS study. Eur. J. Neurosci. 15, 399–402 (2002).

    Article  PubMed  Google Scholar 

  16. Pulvermüller, F., Shtyrov, Y. & Ilmoniemi, R. J. Spatio-temporal patterns of neural language processing: an MEG study using minimum-norm current estimates. Neuroimage 20, 1020–1025 (2003).

    Article  PubMed  Google Scholar 

  17. Fogassi, L. et al. Parietal lobe: from action organization to intention understanding. Science 308, 662–667 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Tomasello, M. & Call, J. in The Gestural Communication of Apes and Monkeys (eds Call, J. & Tomasello, M.) 221–239 (Lawrence Erlbaum Associates, Mahwah, 2007).

    Google Scholar 

  19. Werker, J. F. & Tees, R. C. Influences on infant speech processing: toward a new synthesis. Annu. Rev. Psychol. 50, 509–535 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Mampe, B., Friederici, A. D., Christophe, A. & Wermke, K. Newborns' cry melody is shaped by their native language. Curr. Biol. 19, 1994–1997 (2009).

    Article  CAS  PubMed  Google Scholar 

  21. Cheour, M. et al. Development of language-specific phoneme representations in the infant brain. Nature Neurosci. 1, 351–353 (1998).

    Article  CAS  PubMed  Google Scholar 

  22. de Boysson-Bardies, B. & Vihman, M. M. Adaptation to language: evidence from babbling and first words in four languages. Language 67, 297–319 (1991).

    Article  Google Scholar 

  23. Locke, J. L. The Child's Path to Spoken Language (Harvard University Press, Cambridge, Massachusetts, 1993).

    Google Scholar 

  24. Braitenberg, V. & Pulvermüller, F. Entwurf einer neurologischen Theorie der Sprache. Naturwissenschaften 79, 103–117 (1992) (in German).

    Article  CAS  PubMed  Google Scholar 

  25. Catani, M., Jones, D. K. & Ffytche, D. H. Perisylvian language networks of the human brain. Ann. Neurol. 57, 8–16 (2005).

    Article  PubMed  Google Scholar 

  26. Saffran, J. R., Aslin, R. N. & Newport, E. L. Statistical learning by 8-month-old infants. Science 274, 1926–1928 (1996).

    Article  CAS  PubMed  Google Scholar 

  27. Hauser, M. D., Newport, E. L. & Aslin, R. N. Segmentation of the speech stream in a non-human primate: statistical learning in cotton-top tamarins. Cognition 78, B53–B64 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Bishop, D. V., Brown, B. B. & Robson, J. The relationship between phoneme discrimination, speech production, and language comprehension in cerebral-palsied individuals. J. Speech Hear Res. 33, 210–219 (1990).

    Article  CAS  PubMed  Google Scholar 

  29. Westermann, G. & Reck Miranda, E. A new model of sensorimotor coupling in the development of speech. Brain Lang. 89, 393–400 (2004).

    Article  PubMed  Google Scholar 

  30. Garagnani, M., Wennekers, T. & Pulvermüller, F. A neuroanatomically-grounded Hebbian learning model of attention-language interactions in the human brain. Eur. J. Neurosci. 27, 492–513 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Pulvermüller, F. & Preissl, H. A cell assembly model of language. Network Comput. Neur. Syst. 2, 455–468 (1991).

    Article  Google Scholar 

  32. Paus, T., Perry, D. W., Zatorre, R. J., Worsley, K. J. & Evans, A. C. Modulation of cerebral blood flow in the human auditory cortex during speech: role of motor-to-sensory discharges. Eur. J. Neurosci. 8, 2236–2246 (1996).

    Article  CAS  PubMed  Google Scholar 

  33. Watkins, K. E., Strafella, A. P. & Paus, T. Seeing and hearing speech excites the motor system involved in speech production. Neuropsychologia 41, 989–994 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Zatorre, R. J., Evans, A. C., Meyer, E. & Gjedde, A. Lateralization of phonetic and pitch discrimination in speech processing. Science 256, 846–849 (1992).

    Article  CAS  PubMed  Google Scholar 

  35. Wilson, S. M., Saygin, A. P., Sereno, M. I. & Iacoboni, M. Listening to speech activates motor areas involved in speech production. Nature Neurosci. 7, 701–702 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Vigneau, M. et al. Meta-analyzing left hemisphere language areas: phonology, semantics, and sentence processing. Neuroimage 30, 1414–1432 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Pulvermüller, F. et al. Motor cortex maps articulatory features of speech sounds. Proc. Natl Acad. Sci. USA 103, 7865–7870 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Uppenkamp, S., Johnsrude, I. S., Norris, D., Marslen-Wilson, W. & Patterson, R. D. Locating the initial stages of speech-sound processing in human temporal cortex. Neuroimage 31, 1284–1296 (2006).

    Article  PubMed  Google Scholar 

  39. Scott, S. K., McGettigan, C. & Eisner, F. A little more conversation, a little less action — candidate roles for the motor cortex in speech perception. Nature Rev. Neurosci. 10, 295–302 (2009).

    Article  CAS  Google Scholar 

  40. Diesch, E., Eulitz, C., Hampson, S. & Ross, B. The neurotopography of vowels as mirrored by evoked magnetic field measurements. Brain Lang. 53, 143–168 (1996).

    Article  CAS  PubMed  Google Scholar 

  41. Obleser, J. et al. Vowel sound extraction in anterior superior temporal cortex. Hum. Brain Mapp. 27, 562–571 (2006).

    Article  PubMed  Google Scholar 

  42. Fry, D. B. in The Genesis of Language (eds Smith, F. & Miller, G. A.) 187–206 (MIT Press, Cambridge, Massachusetts, 1966).

    Google Scholar 

  43. Liberman, A. M., Cooper, F. S., Shankweiler, D. P. & Studdert-Kennedy, M. Perception of the speech code. Psychol. Rev. 74, 431–461 (1967).

    Article  CAS  PubMed  Google Scholar 

  44. Galantucci, B., Fowler, C. A. & Turvey, M. T. The motor theory of speech perception reviewed. Psychon. Bull. Rev. 13, 361–377 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Lotto, A. J., Hickok, G. S. & Holt, L. L. Reflections on mirror neurons and speech perception. Trends Cogn. Sci. 13, 110–114 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Lichtheim, L. On aphasia. Brain 7, 433–484 (1885).

    Article  Google Scholar 

  47. Broca, P. Remarques sur la siège de la faculté de la parole articulée, suivies d'une observation d'aphémie (perte de parole). Bull.Soc. Anat. 36, 330–357 (1861) (in French).

    Google Scholar 

  48. Wernicke, C. Der aphasische Symptomencomplex. Eine psychologische Studie auf anatomischer Basis (Kohn und Weigert, Breslau, 1874) (in German).

    Google Scholar 

  49. De Renzi, E. & Vignolo, L. The token test: a sensitive test to detect receptive disturbances in aphasics. Brain 85, 665–678 (1962).

    Article  CAS  PubMed  Google Scholar 

  50. Rosenbek, J. C., LaPointe, L. L. & Wertz, R. Aphasia: A Clincial Approach (College-Hill Press, Boston, 1995).

    Google Scholar 

  51. Moineau, S., Dronkers, N. F. & Bates, E. Exploring the processing continuum of single-word comprehension in aphasia. J. Speech Lang. Hear. Res. 48, 884–896 (2005).

    Article  PubMed  Google Scholar 

  52. Yee, E., Blumstein, S. E. & Sedivy, J. C. Lexical-semantic activation in Broca's and Wernicke's aphasia: evidence from eye movements. J. Cogn. Neurosci. 20, 592–612 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Utman, J. A., Blumstein, S. E. & Sullivan, K. Mapping from sound to meaning: reduced lexical activation in Broca's aphasics. Brain Lang. 79, 444–472 (2001).

    Article  CAS  PubMed  Google Scholar 

  54. Basso, A., Casati, G. & Vignolo, L. A. Phonemic identification defect in aphasia. Cortex 13, 85–95 (1977).

    Article  CAS  PubMed  Google Scholar 

  55. D'Ausilio, A. et al. The motor somatotopy of speech perception. Curr. Biol. 19, 381–385 (2009).

    Article  CAS  PubMed  Google Scholar 

  56. Meister, I. G., Wilson, S. M., Deblieck, C., Wu, A. D. & Iacoboni, M. The essential role of premotor cortex in speech perception. Curr. Biol. 17, 1692–1696 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Mottonen, R. & Watkins, K. E. Motor representations of articulators contribute to categorical perception of speech sounds. J. Neurosci. 29, 9819–9825 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Fadiga, L., Craighero, L. & D'Ausilio, A. Broca's area in language, action, and music. Ann. NY Acad. Sci. 1169, 448–458 (2009).

    Article  PubMed  Google Scholar 

  59. Binder, J. R., Desai, R. H., Graves, W. W. & Conant, L. L. Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies. Cereb. Cortex 19, 2767–2796 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Wittgenstein, L. Philosophical Investigations (Blackwell Publishers, Oxford, 1953).

    Google Scholar 

  61. Damasio, H., Grabowski, T. J., Tranel, D., Hichwa, R. D. & Damasio, A. R. A neural basis for lexical retrieval. Nature 380, 499–505 (1996).

    Article  CAS  PubMed  Google Scholar 

  62. Martin, A., Wiggs, C. L., Ungerleider, L. G. & Haxby, J. V. Neural correlates of category-specific knowledge. Nature 379, 649–652 (1996).

    Article  CAS  PubMed  Google Scholar 

  63. Pulvermüller, F. & Hauk, O. Category-specific processing of color and form words in left fronto-temporal cortex. Cereb. Cortex 16, 1193–1201 (2006).

    Article  PubMed  Google Scholar 

  64. Simmons, W. K. et al. A common neural substrate for perceiving and knowing about color. Neuropsychologia 45, 2802–2810 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Gonzalez, J. et al. Reading “cinnamon” activates olfactory brain regions. Neuroimage 32, 906–912 (2006).

    Article  PubMed  Google Scholar 

  66. Patterson, K., Nestor, P. J. & Rogers, T. T. Where do you know what you know? The representation of semantic knowledge in the human brain. Nature Rev. Neurosci. 8, 976–987 (2007).

    Article  CAS  Google Scholar 

  67. Wise, R. J. et al. Noun imageability and the temporal lobes. Neuropsychologia 38, 985–994 (2000).

    Article  CAS  PubMed  Google Scholar 

  68. Barsalou, L. W. Grounded cognition. Annu. Rev. Psychol. 59, 617–645 (2008).

    Article  PubMed  Google Scholar 

  69. Martin, A. The representation of object concepts in the brain. Annu. Rev. Psychol. 58, 25–45 (2007).

    Article  PubMed  Google Scholar 

  70. Kiefer, M. Perceptual and semantic sources of category-specific effects: event-related potentials during picture and word categorization. Mem. Cognit. 29, 100–116 (2001).

    Article  CAS  PubMed  Google Scholar 

  71. Pulvermüller, F., Kherif, F., Hauk, O., Mohr, B. & Nimmo-Smith, I. Cortical cell assemblies for general lexical and category-specific semantic processing as revealed by fMRI cluster analysis. Hum. Brain Mapp. 30, 3837–3850 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Hauk, O., Johnsrude, I. & Pulvermüller, F. Somatotopic representation of action words in the motor and premotor cortex. Neuron 41, 301–307 (2004).

    Article  CAS  PubMed  Google Scholar 

  73. Kemmerer, D., Castillo, J. G., Talavage, T., Patterson, S. & Wiley, C. Neuroanatomical distribution of five semantic components of verbs: evidence from fMRI. Brain Lang. 107, 16–43 (2008).

    Article  PubMed  Google Scholar 

  74. Tettamanti, M. et al. Listening to action-related sentences activates fronto-parietal motor circuits. J. Cogn Neurosci. 17, 273–281 (2005).

    Article  PubMed  Google Scholar 

  75. Aziz-Zadeh, L., Wilson, S. M., Rizzolatti, G. & Iacoboni, M. Congruent embodied representations for visually presented actions and linguistic phrases describing actions. Curr. Biol. 16, 1818–1823 (2006).

    Article  CAS  PubMed  Google Scholar 

  76. Boulenger, V., Hauk, O. & Pulvermüller, F. Grasping ideas with the motor system: semantic somatotopy in idiom comprehension. Cereb. Cortex 19, 1905–1914 (2009).

    Article  PubMed  Google Scholar 

  77. Marslen-Wilson, W. D. Functional parallelism in spoken word-recognition. Cognition 25, 71–102 (1987).

    Article  CAS  PubMed  Google Scholar 

  78. Pulvermüller, F., Hauml;rle, M. & Hummel, F. Neurophysiological distinction of verb categories. Neuroreport 11, 2789–2793 (2000).

    Article  PubMed  Google Scholar 

  79. Hauk, O. & Pulvermüller, F. Neurophysiological distinction of action words in the fronto-central cortex. Hum. Brain Mappp. 21, 191–201 (2004).

    Article  Google Scholar 

  80. Pulvermüller, F., Shtyrov, Y. & Ilmoniemi, R. J. Brain signatures of meaning access in action word recognition. J. Cogn. Neurosci. 17, 884–892 (2005).

    Article  PubMed  Google Scholar 

  81. Hauk, O., Davis, M. H., Ford, M., Pulvermüller, F. & Marslen-Wilson, W. D. The time course of visual word recognition as revealed by linear regression analysis of ERP data. Neuroimage 30, 1383–1400 (2006).

    Article  CAS  PubMed  Google Scholar 

  82. Sereno, S. C., Brewer, C. C. & O'Donnell, P. J. Context effects in word recognition: evidence for early interactive processing. Psychol. Sci. 14, 328–333 (2003).

    Article  PubMed  Google Scholar 

  83. Warrington, E. K. & McCarthy, R. A. Categories of knowledge: further fractionations and an attempted integration. Brain 110, 1273–1296 (1987).

    Article  PubMed  Google Scholar 

  84. Gainotti, G. A metanalysis of impaired and spared naming for different categories of knowledge in patients with a visuo-verbal disconnection. Neuropsychologia 42, 299–319 (2004).

    Article  PubMed  Google Scholar 

  85. Miceli, G., Mazzucchi, A., Menn, L. & Goodglass, H. Contrasting cases of italian agrammatic aphasia without comprehension disorders. Brain Lang. 19, 65–97 (1983).

    Article  CAS  PubMed  Google Scholar 

  86. Damasio, A. R. & Tranel, D. Nouns and verbs are retrieved with differently distributed neural systems. Proc. Natl Acad. Sci. USA 90, 4957–4960 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Daniele, A., Giustolisi, L., Silveri, M. C., Colosimo, C. & Gainotti, G. Evidence for a possible neuroanatomical basis for lexical processing of nouns and verbs. Neuropsychologia 32, 1325–1341 (1994).

    Article  CAS  PubMed  Google Scholar 

  88. Neininger, B. & Pulvermüller, F. Word-category specific deficits after lesions in the right hemisphere. Neuropsychologia 41, 53–70 (2003).

    Article  PubMed  Google Scholar 

  89. Fazio, P. et al. Encoding of human action in Broca's area. Brain 132, 1980–1988 (2009).

    Article  PubMed  Google Scholar 

  90. Bak, T. H., O'Donovan, D. G., Xuereb, J. H., Boniface, S. & Hodges, J. R. Selective impairment of verb processing associated with pathological changes in Brodmann areas 44 and 45 in the motor neurone disease–dementia–aphasia syndrome. Brain 124, 103–120 (2001).

    Article  CAS  PubMed  Google Scholar 

  91. Cotelli, M. et al. Action and object naming in Parkinson's disease without dementia. Eur. J. Neurol. 14, 632–637 (2007).

    Article  CAS  PubMed  Google Scholar 

  92. Boulenger, V. et al. Word processing in Parkinson's disease is impaired for action verbs but not for concrete nouns. Neuropsychologia 46, 743–756 (2008).

    Article  PubMed  Google Scholar 

  93. Cotelli, M. et al. Action and object naming in frontotemporal dementia, progressive supranuclear palsy, and corticobasal degeneration. Neuropsychology 20, 558–565 (2006).

    Article  CAS  PubMed  Google Scholar 

  94. Pulvermüller, F., Lutzenberger, W. & Preissl, H. Nouns and verbs in the intact brain: evidence from event-related potentials and high-frequency cortical responses. Cereb. Cortex 9, 498–508 (1999).

    Article  Google Scholar 

  95. Bird, H., Lambon-Ralph, M. A., Patterson, K. & Hodges, J. R. The rise and fall of frequency and imageability: noun and verb production in semantic dementia. Brain Lang. 73, 17–49 (2000).

    Article  CAS  PubMed  Google Scholar 

  96. Tranel, D., Kemmerer, D., Adolphs, R., Damasio, H. & Damasio, A. R. Neural correlates of conceptual knowledge for actions. Cogn. Neuropsychol. 20, 409–432 (2003).

    Article  PubMed  Google Scholar 

  97. Bak, T. H. et al. Clinical, imaging and pathological correlates of a hereditary deficit in verb and action processing. Brain 129, 321–332 (2006).

    Article  PubMed  Google Scholar 

  98. Pulvermüller, F., Hauk, O., Nikulin, V. V. & Ilmoniemi, R. J. Functional links between motor and language systems. Eur. J. Neurosci. 21, 793–797 (2005).

    Article  PubMed  Google Scholar 

  99. Caplan, D. et al. Vascular responses to syntactic processing: event-related fMRI study of relative clauses. Hum. Brain Mapp. 15, 26–38 (2002).

    Article  PubMed  Google Scholar 

  100. Just, M. A., Carpenter, P. A., Keller, T. A., Eddy, W. F. & Thulborn, K. R. Brain activation modulated by sentence comprehension. Science 274, 114–116 (1996).

    Article  CAS  PubMed  Google Scholar 

  101. Kinno, R., Kawamura, M., Shioda, S. & Sakai, K. L. Neural correlates of noncanonical syntactic processing revealed by a picture-sentence matching task. Hum. Brain Mapp. 29, 1015–1027 (2008).

    Article  PubMed  Google Scholar 

  102. Friederici, A. D. Towards a neural basis of auditory sentence processing. Trends Cogn. Sci. 6, 78–84 (2002).

    Article  PubMed  Google Scholar 

  103. Shtyrov, Y., Pulvermüller, F., Näätänen, R. & Ilmoniemi, R. J. Grammar processing outside the focus of attention: an MEG study. J. Cogn. Neurosci. 15, 1195–1206 (2003).

    Article  PubMed  Google Scholar 

  104. Pick, A. Die agrammatischen Sprachstörungen. Studien zur psychologischen Grundlegung der Aphasielehre (Springer, Berlin, 1913) (in German).

    Book  Google Scholar 

  105. Caplan, D., Hildebrandt, N. & Makris, N. Location of lesions in stroke patients with deficits in syntactic processing in sentence comprehension. Brain 119, 933–949 (1996).

    Article  PubMed  Google Scholar 

  106. Caramazza, A. & Zurif, E. B. Dissociation of algorithmic and heuristic processes in sentence comprehension: evidence from aphasia. Brain Lang. 3, 572–582 (1976).

    Article  CAS  PubMed  Google Scholar 

  107. Dominey, P. F., Hoen, M., Blanc, J. M. & Lelekov-Boissard, T. Neurological basis of language and sequential cognition: evidence from simulation, aphasia, and ERP studies. Brain Lang. 86, 207–225 (2003).

    Article  PubMed  Google Scholar 

  108. Clerget, E., Winderickx, A., Fadiga, L. & Olivier, E. Role of Broca's area in encoding sequential human actions: a virtual lesion study. Neuroreport 20, 1496–1499 (2009).

    Article  PubMed  Google Scholar 

  109. Chen, J. L., Penhune, V. B. & Zatorre, R. J. Listening to musical rhythms recruits motor regions of the brain. Cereb. Cortex 18, 2844–2854 (2008).

    Article  PubMed  Google Scholar 

  110. Maess, B., Koelsch, S., Gunter, T. C. & Friederici, A. D. Musical syntax is processed in Broca's area: an MEG study. Nature Neurosci. 4, 540–545 (2001).

    Article  CAS  PubMed  Google Scholar 

  111. Patel, A. D. Language, music, syntax and the brain. Nature Neurosci. 6, 674–681 (2003).

    Article  CAS  PubMed  Google Scholar 

  112. Reichardt, W. & Varju, D. Übertragungseigenschaften im Auswertesystem für das Bewegungssehen. Zeitschrift für Naturforschung 14b, 674–689 (1959) (in German).

    Article  CAS  PubMed  Google Scholar 

  113. Pulvermüller, F. & Knoblauch, A. Discrete combinatorial circuits emerging in neural networks: a mechanism for rules of grammar in the human brain? Neural Netw. 22, 161–172 (2009).

    Article  PubMed  Google Scholar 

  114. Koechlin, E. & Jubault, T. Broca's area and the hierarchical organization of human behavior. Neuron 50, 963–974 (2006).

    Article  CAS  PubMed  Google Scholar 

  115. Bahlmann, J., Schubotz, R. I. & Friederici, A. D. Hierarchical artificial grammar processing engages Broca's area. Neuroimage 42, 525–534 (2008).

    Article  PubMed  Google Scholar 

  116. Pulvermüller, F. & Shtyrov, Y. Language outside the focus of attention: the mismatch negativity as a tool for studying higher cognitive processes. Prog. Neurobiol. 79, 49–71 (2006).

    Article  PubMed  Google Scholar 

  117. Pulvermüller, F. & Shtyrov, Y. Spatio-temporal signatures of large-scale synfire chains for speech: MEG evidence. Cereb. Cortex 19, 79–88 (2009).

    Article  PubMed  Google Scholar 

  118. Garagnani, M., Shtyrov, Y. & Pulvermüller, F. Effects of attention on what is known and what is not: MEG evidence for functionally discrete memory circuits. Front. Hum. Neurosci. 30 Jun 2009 (doi:10.3389/neuro.09.010.2009).

  119. Wennekers, T., Garagnani, M. & Pulvermüller, F. Language models based on Hebbian cell assemblies. J. Physiol. (Paris) 100, 16–30 (2006).

    Google Scholar 

  120. Pulvermüller, F. et al. The word processing deficit in Semantic Dementia: all categories are equal but some categories are more equal than others. J. Cogn. Neurosci. 1 Sep 2009 (doi:10.1162/jocn.2009.21339).

    Article  PubMed  Google Scholar 

  121. Chater, N. & Manning, C. D. Probabilistic models of language processing and acquisition. Trends Cogn. Sci. 10, 335–344 (2006).

    Article  PubMed  Google Scholar 

  122. Elman, J. L. et al. Rethinking Innateness. A Connectionist Perspective on Development (MIT Press, Cambridge, Massachusetts, 1996).

    Google Scholar 

  123. Marcus, G. F. The Algebraic Mind: Integrating Connectionism and Cognitive Science (MIT Press, Cambridge, Massachusetts, 2001).

    Book  Google Scholar 

  124. McClelland, J. L. & Patterson, K. Rules or connections in past-tense inflections: what does the evidence rule out? Trends Cogn. Sci. 6, 465–472 (2002).

    Article  PubMed  Google Scholar 

  125. Gervain, J., Macagno, F., Cogoi, S., Pena, M. & Mehler, J. The neonate brain detects speech structure. Proc. Natl Acad. Sci. USA 105, 14222–14227 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Grafton, S. T. & Hamilton, A. F. Evidence for a distributed hierarchy of action representation in the brain. Hum. Mov. Sci. 26, 590–616 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Pulvermüller, F. Brain embodiment of syntax and grammar: discrete combinatorial mechanisms spelt out in neuronal circuits. Brain Lang. 112, 167–179 (2010).

    Article  PubMed  Google Scholar 

  128. Petrides, M. & Pandya, D. N. Distinct parietal and temporal pathways to the homologues of Broca's area in the monkey. PLoS Biol. 7, e1000170 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Rilling, J. K. et al. The evolution of the arcuate fasciculus revealed with comparative DTI. Nature Neurosci. 11, 426–428 (2008).

    Article  CAS  PubMed  Google Scholar 

  130. Saur, D. et al. Ventral and dorsal pathways for language. Proc. Natl Acad. Sci. USA 105, 18035–18040 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Kiefer, M., Sim, E. J., Herrnberger, B., Grothe, J. & Hoenig, K. The sound of concepts: four markers for a link between auditory and conceptual brain systems. J. Neurosci. 28, 12224–12230 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank M. Garagnani, I. Laka, R. Wise, R. Moseley and three anonymous reviewers for their comments on earlier versions of this manuscript. This work is supported by the Medical Research Council (UK) (U1055.04.003.00001.01) to F.P., by the Fondazione Cassa di Risparmio di Ferrara to L.F. and by the European Community (Nestcom (NEST-2005-PATH-HUM contract 043,374) to F.P. and Robot-cub, Contact, Poeticon to L.F.).

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information S1 (box)

Sensorimotor neurons and action–perception circuits (PDF 202 kb)

Supplementary information S2 (box)

A role for action in perception? Controversies and clinical data (PDF 217 kb)

Related links

Related links

DATABASES

OMIM

frontotemporal dementia

Parkinson's disease

FURTHER INFORMATION

Friedemann Pulvermuller's homepages

Friedemann Pulvermuller's homepages

Luciano Fadiga's homepage

Glossary

Motor cortex

The portion of the frontal cortex that controls movements and is therefore classically considered an output area of the cortex. It includes primary motor, premotor and supplementary motor areas.

Sensorimotor neuron

A neuron that is activated both by sensory stimulation — sometimes through various modalities — and during action execution. Mirror neurons and canonical neurons are special types of sensorimotor neurons.

Mirror neuron

A neuron that activates during action execution and during the observation of another individual performing a similar action. Some mirror neurons also fire during listening to action-related sounds.

Syntactic

Relating to the rules of syntax — the grammatical arrangement of words and phrases in a sentence, which affects relationships of meaning. For example, changing the placement of a word or phrase can change the meaning.

Phonological

Relating to the scientific discipline of phonology, which studies the sound structure of languages. The term is also used to refer to the sound structure of a language itself.

Semantics

Scientific discipline studying the meaning of words and, in a wider use of the term, meaning in general. The term is also used as a synonym of 'meaning'.

Broca's area

The posterior part of the inferior frontal gyrus. It includes the cytoarchitectonically defined Brodmann area 44 (BA 44) and BA 45 and is involved in speech production.

Phoneme

A speech sound and smallest unit of speech that can be used to distinguish between meaningful words in a given language.

Perisylvian cortex

The brain region surrounding the sylvian fissure which, in the left hemisphere of almost all right-handed people and in most left-handed people, is most relevant for language processing. It includes the posterior inferior frontal cortex, the superior temporal cortex, inferior parietal areas, the insula and cortico-cortical fibre bundles.

Somatotopy

A property of motor and somatosensory cortices whereby the spatial organization of adjacent body parts is preserved in representations in adjacent brain regions. Phonological somatotopy refers to the somatotopic representation of speech sounds in the motor areas of the articulator that produced the speech sounds. Semantic somatotopy is the mapping of action-related words to the motor areas representing the body parts typically involved in executing the action.

Transcranial magnetic stimulation

A non-invasive method for focal cortical stimulation by means of a coil positioned on the scalp. It delivers brief, strong electric pulses. These create a local magnetic field, which induces a current in the surface of the cortex that temporarily changes local neural activity.

Neuropsychology

A scientific discipline studying the effects on behaviour of changes in neuronal function — caused, for example, by a brain lesion, magnetic stimulation, drugs or sensory stimulation.

Wernicke's region

The posterior perisylvian cortex, originally identified by the Polish–German neurologist Carl Wernicke as the area necessary for speech comprehension. Although definitions vary, Brodmann area 22 in the superior temporal cortex is usually included.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pulvermüller, F., Fadiga, L. Active perception: sensorimotor circuits as a cortical basis for language. Nat Rev Neurosci 11, 351–360 (2010). https://doi.org/10.1038/nrn2811

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn2811

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing