Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Neuronal regulation of alternative pre-mRNA splicing

Key Points

  • Alternative splicing is an important mechanism that regulates gene function in the nervous system, but is not well understood either mechanistically or for its roles in neuronal cell biology. Recent studies of the molecules that control splicing choices, and of the functions of alternatively spliced isoforms produced from important neuronal genes, have begun to clarify both of these issues.

  • The spliceosome must assemble onto each intron to catalyse its excision, and this assembly is controlled by a large number of pre-mRNA-binding proteins. Alternative splicing can produce many different kinds of insertions and deletions in the final mature mRNA, and these changes can drastically alter the function of the protein product.

  • Important genetic switches in splice-isoform expression occur at nearly every step in neuronal development, as well as in mature neurons. Developmental programmes of alternative splicing affect embryonic patterning, cell-fate determination, axon guidance and synaptogenesis.

  • In mature neurons, alternative splicing tunes the properties of many proteins that control cell excitation, including ion channels, the exocytosis apparatus and neurotransmitter receptors. Splicing alterations in these transcripts affect the excitation properties of the cell and contribute to long-term potentiation and other forms of neuronal plasticity.

  • Many exons in ion channel and neurotransmitter receptor transcripts are dynamically regulated by stimuli such as depolarization, bicuculin treatment and calcium/calmodulin dependent protein kinase IV (CaMKIV) activation. Regulatory RNA elements that mediate inducible splicing repression by depolarization and CaMKIV have been identified.

  • Alternative exons are controlled by combinations of regulatory proteins that bind to short sequence elements in the exon or its adjacent introns. Individual regulatory proteins can often mediate either splicing repression or enhancement, depending on the placement of their binding sites.

  • Proteins in the polypyrimidine tract-binding protein (PTB), Nova, Hu, CUG-binding protein and Fox families are known to regulate important neuronal exons. The target exon sets for the Nova, PTB and Fox proteins have been at least partially defined. For the NOVA2 protein, these targets include molecules that are needed for the LTP response of inhibitory postsynaptic currents in the hippocampus.

  • Most alternative exons are affected by repressor proteins in some cells and enhancer proteins in others. The splicing of alternative 5′ splice sites in the 5-hydroxytryptamine (5-HT) 2C receptor is also controlled by a small RNA, HBII-52, that is similar in structure to small nucleolar RNAs and that base pairs to a regulatory sequence in the exon.

  • Many important aspects of splicing regulation need to be better understood. These include the interactions of the regulatory proteins with the spliceosome and the larger functions of these regulators in development and physiology.

Abstract

Alternative pre-mRNA splicing has an important role in the control of neuronal gene expression. Many neuronal proteins are structurally diversified through the differential inclusion and exclusion of sequences in the final spliced mRNA. Here, we discuss common mechanisms of splicing regulation and provide examples of how alternative splicing has important roles in neuronal development and mature neuron function. Finally, we describe regulatory proteins that control the splicing of some neuronally expressed transcripts.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Patterns of alternative splicing.
Figure 2: Alternative splicing of neurexins and neuroligins determines the assembly of excitatory or inhibitory synapses.
Figure 3: Splicing of APOER2 exon 19 regulates reelin-induced enhancement of LTP.
Figure 4: The alternative splicing of ion channel transcripts is dynamically regulated by calcium signalling pathways.
Figure 5: LTP of sIPSCs requires the splicing regulator NOVA2.
Figure 6: Alternative exons are controlled by multiple regulators.

Similar content being viewed by others

References

  1. Black, D. L. Protein diversity from alternative splicing: a challenge for bioinformatics and post-genome biology. Cell 103, 367–370 (2000).

    CAS  PubMed  Google Scholar 

  2. Graveley, B. R. Alternative splicing: increasing diversity in the proteomic world. Trends Genet. 17, 100–107 (2001).

    CAS  PubMed  Google Scholar 

  3. Lee, C. J. & Irizarry, K. Alternative splicing in the nervous system: an emerging source of diversity and regulation. Biol. Psychiatry 54, 771–776 (2003).

    CAS  PubMed  Google Scholar 

  4. Black, D. L. & Grabowski, P. J. Alternative pre-mRNA splicing and neuronal function. Prog. Mol. Subcell. Biol. 31, 187–216 (2003).

    CAS  PubMed  Google Scholar 

  5. Lipscombe, D. Neuronal proteins custom designed by alternative splicing. Curr. Opin. Neurobiol. 15, 358–363 (2005).

    CAS  PubMed  Google Scholar 

  6. Faustino, N. A. & Cooper, T. A. Pre-mRNA splicing and human disease. Genes Dev. 17, 419–437 (2003).

    CAS  PubMed  Google Scholar 

  7. Licatalosi, D. D. & Darnell, R. B. Splicing regulation in neurologic disease. Neuron 52, 93–101 (2006).

    CAS  PubMed  Google Scholar 

  8. Ranum, L. P. & Cooper, T. A. RNA-mediated neuromuscular disorders. Annu. Rev. Neurosci. 29, 259–277 (2006).

    CAS  PubMed  Google Scholar 

  9. Black, D. L. Mechanisms of alternative pre-messenger RNA splicing. Annu. Rev. Biochem. 72, 291–336 (2003).

    CAS  PubMed  Google Scholar 

  10. Will, C. L. & Lührmann, R. in The RNA World (eds Gesteland, R. F., Cech, T. R. & Atkins, J. F.) (Cold Spring Harbor Press, USA, 2005).

    Google Scholar 

  11. Kornblihtt, A. R. Chromatin, transcript elongation and alternative splicing. Nature Struct. Mol. Biol. 13, 5–7 (2006).

    CAS  Google Scholar 

  12. Buratti, E. & Baralle, F. E. Influence of RNA secondary structure on the pre-mRNA splicing process. Mol. Cell Biol. 24, 10505–10514 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Graveley, B. R. Mutually exclusive splicing of the insect Dscam pre-mRNA directed by competing intronic RNA secondary structures. Cell 123, 65–73 (2005). This study identifies a potential base-pairing interaction that might determine exon choice for a highly complex system of alternative splicing.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Matlin, A. J., Clark, F. & Smith, C. W. Understanding alternative splicing: towards a cellular code. Nature Rev. Mol. Cell Biol. 6, 386–398 (2005).

    CAS  Google Scholar 

  15. House, A. E. & Lynch, K. W. Regulation of alternative splicing: more than just the ABCs. J. Biol. Chem. (in the press) (2007).

  16. Stadler, M. B. et al. Inference of splicing regulatory activities by sequence neighborhood analysis. PLoS Genet. 2, e191 (2006).

    PubMed  PubMed Central  Google Scholar 

  17. Sorek, R. & Ast, G. Intronic sequences flanking alternatively spliced exons are conserved between human and mouse. Genome Res. 13, 1631–1637 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Sugnet, C. W. et al. Unusual intron conservation near tissue-regulated exons found by splicing microarrays. PLoS Comput. Biol. 2, e4 (2006).

    PubMed  PubMed Central  Google Scholar 

  19. Yeo, G. W., Van Nostrand, E., Holste, D., Poggio, T. & Burge, C. B. Identification and analysis of alternative splicing events conserved in human and mouse. Proc. Natl Acad. Sci. USA 102, 2850–2855 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Emerick, M. C. et al. Profiling the array of Cav3.1 variants from the human T-type calcium channel gene CACNA1G: alternative structures, developmental expression, and biophysical variations. Proteins 64, 320–342 (2006).

    CAS  PubMed  Google Scholar 

  21. Lee, C., Atanelov, L., Modrek, B. & Xing, Y. ASAP: the Alternative Splicing Annotation Project. Nucleic Acids Res. 31, 101–105 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Hughes, T. A. Regulation of gene expression by alternative untranslated regions. Trends Genet. 22, 119–122 (2006).

    CAS  PubMed  Google Scholar 

  23. Lejeune, F. & Maquat, L. E. Mechanistic links between nonsense-mediated mRNA decay and pre-mRNA splicing in mammalian cells. Curr. Opin. Cell Biol. 17, 309–315 (2005).

    CAS  PubMed  Google Scholar 

  24. Xing, Y. & Lee, C. Alternative splicing and RNA selection pressure — evolutionary consequences for eukaryotic genomes. Nature Rev. Genet. 7, 499–509 (2006).

    CAS  PubMed  Google Scholar 

  25. Joyner, A. L., Liu, A. & Millet, S. Otx2, Gbx2 and Fgf8 interact to position and maintain a mid–hindbrain organizer. Curr. Opin. Cell Biol. 12, 736–741 (2000).

    CAS  PubMed  Google Scholar 

  26. Sato, T., Joyner, A. L. & Nakamura, H. How does Fgf signaling from the isthmic organizer induce midbrain and cerebellum development? Dev. Growth Differ. 46, 487–494 (2004).

    CAS  PubMed  Google Scholar 

  27. Gemel, J., Gorry, M., Ehrlich, G. D. & MacArthur, C. A. Structure and sequence of human FGF8. Genomics 35, 253–257 (1996).

    CAS  PubMed  Google Scholar 

  28. Ghosh, A. K. et al. Molecular cloning and characterization of human FGF8 alternative messenger RNA forms. Cell Growth Differ. 7, 1425–1434 (1996).

    CAS  PubMed  Google Scholar 

  29. MacArthur, C. A. et al. FGF-8 isoforms activate receptor splice forms that are expressed in mesenchymal regions of mouse development. Development 121, 3603–3613 (1995).

    CAS  PubMed  Google Scholar 

  30. Olsen, S. K. et al. Structural basis by which alternative splicing modulates the organizer activity of FGF8 in the brain. Genes Dev. 20, 185–198 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Lee, S. M., Danielian, P. S., Fritzsch, B. & McMahon, A. P. Evidence that FGF8 signalling from the midbrain–hindbrain junction regulates growth and polarity in the developing midbrain. Development 124, 959–969 (1997).

    CAS  PubMed  Google Scholar 

  32. Fletcher, R. B., Baker, J. C. & Harland, R. M. FGF8 spliceforms mediate early mesoderm and posterior neural tissue formation in Xenopus. Development 133, 1703–1714 (2006).

    CAS  PubMed  Google Scholar 

  33. Liu, A., Losos, K. & Joyner, A. L. FGF8 can activate Gbx2 and transform regions of the rostral mouse brain into a hindbrain fate. Development 126, 4827–4838 (1999).

    CAS  PubMed  Google Scholar 

  34. Hajihosseini, M. K. & Dickson, C. A subset of fibroblast growth factors (Fgfs) promote survival, but Fgf-8b specifically promotes astroglial differentiation of rat cortical precursor cells. Mol. Cell Neurosci. 14, 468–485 (1999).

    CAS  PubMed  Google Scholar 

  35. Reuss, B. & von Bohlen und Halbach, O. Fibroblast growth factors and their receptors in the central nervous system. Cell Tissue Res. 313, 139–157 (2003).

    CAS  PubMed  Google Scholar 

  36. Baraniak, A. P., Chen, J. R. & Garcia-Blanco, M. A. Fox-2 mediates epithelial cell-specific fibroblast growth factor receptor 2 exon choice. Mol. Cell Biol. 26, 1209–1222 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Cayouette, M. & Raff, M. Asymmetric segregation of Numb: a mechanism for neural specification from Drosophila to mammals. Nature Neurosci. 5, 1265–1269 (2002).

    CAS  PubMed  Google Scholar 

  38. Petersen, P. H., Zou, K., Hwang, J. K., Jan, Y. N. & Zhong, W. Progenitor cell maintenance requires numb and numblike during mouse neurogenesis. Nature 419, 929–934 (2002).

    CAS  PubMed  Google Scholar 

  39. Nie, J., Li, S. S. & McGlade, C. J. A novel PTB–PDZ domain interaction mediates isoform-specific ubiquitylation of mammalian Numb. J. Biol. Chem. 279, 20807–20815 (2004).

    CAS  PubMed  Google Scholar 

  40. Reugels, A. M., Boggetti, B., Scheer, N. & Campos-Ortega, J. A. Asymmetric localization of Numb:EGFP in dividing neuroepithelial cells during neurulation in Danio rerio. Dev. Dyn. 235, 934–948 (2006).

    CAS  PubMed  Google Scholar 

  41. Dho, S. E., French, M. B., Woods, S. A. & McGlade, C. J. Characterization of four mammalian numb protein isoforms. Identification of cytoplasmic and membrane-associated variants of the phosphotyrosine binding domain. J. Biol. Chem. 274, 33097–33104 (1999).

    CAS  PubMed  Google Scholar 

  42. Dho, S. E., Trejo, J., Siderovski, D. P. & McGlade, C. J. Dynamic regulation of mammalian numb by G protein-coupled receptors and protein kinase C activation: structural determinants of numb association with the cortical membrane. Mol. Biol. Cell 17, 4142–4155 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Bani-Yaghoub, M. et al. A switch in numb isoforms is a critical step in cortical development. Dev. Dyn. 236, 696–705 (2007).

    CAS  PubMed  Google Scholar 

  44. Verdi, J. M. et al. Distinct human NUMB isoforms regulate differentiation vs. proliferation in the neuronal lineage. Proc. Natl Acad. Sci. USA 96, 10472–10476 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Toriya, M., Tokunaga, A., Sawamoto, K., Nakao, K. & Okano, H. Distinct functions of human numb isoforms revealed by misexpression in the neural stem cell lineage in the Drosophila larval brain. Dev. Neurosci. 28, 142–155 (2006).

    CAS  PubMed  Google Scholar 

  46. Holmberg, J., Clarke, D. L. & Frisen, J. Regulation of repulsion versus adhesion by different splice forms of an Eph receptor. Nature 408, 203–206 (2000).

    CAS  PubMed  Google Scholar 

  47. Walsh, F. S. & Doherty, P. Neural cell adhesion molecules of the immunoglobulin superfamily: role in axon growth and guidance. Annu. Rev. Cell Dev. Biol. 13, 425–456 (1997).

    CAS  PubMed  Google Scholar 

  48. Zipursky, S. L., Wojtowicz, W. M. & Hattori, D. Got diversity? Wiring the fly brain with Dscam. Trends Biochem. Sci. 31, 581–588 (2006).

    CAS  PubMed  Google Scholar 

  49. Schmucker, D. et al. Drosophila Dscam is an axon guidance receptor exhibiting extraordinary molecular diversity. Cell 101, 671–684 (2000).

    CAS  PubMed  Google Scholar 

  50. Wojtowicz, W. M., Flanagan, J. J., Millard, S. S., Zipursky, S. L. & Clemens, J. C. Alternative splicing of Drosophila Dscam generates axon guidance receptors that exhibit isoform-specific homophilic binding. Cell 118, 619–633 (2004). The biochemical demonstration of homophilic DSCAM interactions in this paper and the genetic demonstration of a DSCAM requirement for proper dendritic branching in references 51–53 are crucial for understanding the role of DSCAM splicing in neuronal development.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Hughes, M. E. et al. Homophilic Dscam interactions control complex dendrite morphogenesis. Neuron 54, 417–427 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Matthews, B. J. et al. Dendrite self-avoidance is controlled by Dscam. Cell 129, 593–604 (2007).

    CAS  PubMed  Google Scholar 

  53. Soba, P. et al. Drosophila sensory neurons require Dscam for dendritic self-avoidance and proper dendritic field organization. Neuron 54, 403–416 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Neves, G., Zucker, J., Daly, M. & Chess, A. Stochastic yet biased expression of multiple Dscam splice variants by individual cells. Nature Genet. 36, 240–246 (2004).

    CAS  PubMed  Google Scholar 

  55. Zhan, X. L. et al. Analysis of Dscam diversity in regulating axon guidance in Drosophila mushroom bodies. Neuron 43, 673–686 (2004).

    CAS  PubMed  Google Scholar 

  56. Kreahling, J. M. & Graveley, B. R. The iStem, a long-range RNA secondary structure element required for efficient exon inclusion in the Drosophila Dscam pre-mRNA. Mol. Cell Biol. 25, 10251–10260 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Scheiffele, P., Fan, J., Choih, J., Fetter, R. & Serafini, T. Neuroligin expressed in nonneuronal cells triggers presynaptic development in contacting axons. Cell 101, 657–669 (2000).

    CAS  PubMed  Google Scholar 

  58. Graf, E. R., Zhang, X., Jin, S. X., Linhoff, M. W. & Craig, A. M. Neurexins induce differentiation of GABA and glutamate postsynaptic specializations via neuroligins. Cell 119, 1013–1026 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Ullrich, B., Ushkaryov, Y. A. & Sudhof, T. C. Cartography of neurexins: more than 1000 isoforms generated by alternative splicing and expressed in distinct subsets of neurons. Neuron 14, 497–507 (1995).

    CAS  PubMed  Google Scholar 

  60. Boucard, A. A., Chubykin, A. A., Comoletti, D., Taylor, P. & Sudhof, T. C. A splice code for trans-synaptic cell adhesion mediated by binding of neuroligin 1 to α- and β-neurexins. Neuron 48, 229–236 (2005). This paper demonstrates that alternative splicing creates a complex interaction code that determines which neurexins and neuroligins interact.

    CAS  PubMed  Google Scholar 

  61. Chih, B., Gollan, L. & Scheiffele, P. Alternative splicing controls selective trans-synaptic interactions of the neuroligin–neurexin complex. Neuron 51, 171–178 (2006). This study demonstrates that the precise pairing of neurexins and neuroligins directs the assembly of specialized synapses.

    CAS  PubMed  Google Scholar 

  62. Chen, Y. A. & Scheller, R. H. SNARE-mediated membrane fusion. Nature Rev. Mol. Cell Biol. 2, 98–106 (2001).

    CAS  Google Scholar 

  63. Jahn, R. & Sudhof, T. C. Membrane fusion and exocytosis. Annu. Rev. Biochem. 68, 863–911 (1999).

    CAS  PubMed  Google Scholar 

  64. Sorensen, J. B. et al. Differential control of the releasable vesicle pools by SNAP-25 splice variants and SNAP-23. Cell 114, 75–86 (2003). This study demonstrates that splicing controls the activity of SNAP25 in synaptic vesicle exocytosis.

    CAS  PubMed  Google Scholar 

  65. Bark, I. C., Hahn, K. M., Ryabinin, A. E. & Wilson, M. C. Differential expression of SNAP-25 protein isoforms during divergent vesicle fusion events of neural development. Proc. Natl Acad. Sci. USA 92, 1510–1514 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Bark, C. et al. Developmentally regulated switch in alternatively spliced SNAP-25 isoforms alters facilitation of synaptic transmission. J. Neurosci. 24, 8796–8805 (2004). In this study, the authors use targeted mutagenesis in the mouse to demonstrate the requirement for two SNAP25 isoforms in postnatal development.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Jurkat-Rott, K. & Lehmann-Horn, F. The impact of splice isoforms on voltage-gated calcium channel α1 subunits. J. Physiol. 554, 609–619 (2004).

    CAS  PubMed  Google Scholar 

  68. Bell, T. J., Thaler, C., Castiglioni, A. J., Helton, T. D. & Lipscombe, D. Cell-specific alternative splicing increases calcium channel current density in the pain pathway. Neuron 41, 127–138 (2004).

    CAS  PubMed  Google Scholar 

  69. Castiglioni, A. J., Raingo, J. & Lipscombe, D. Alternative splicing in the C-terminus of CaV2.2 controls expression and gating of N-type calcium channels. J. Physiol. 576, 119–134 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Raingo, J., Castiglioni, A. J. & Lipscombe, D. Alternative splicing controls G protein-dependent inhibition of N-type calcium channels in nociceptors. Nature Neurosci. 10, 285–292 (2007). This paper provides a nice demonstration of how alternative splicing can control the physiology of ion channels, and discusses the role of this splicing in adapting channel properties to different cell types.

    CAS  PubMed  Google Scholar 

  71. Baranauskas, G., Tkatch, T., Nagata, K., Yeh, J. Z. & Surmeier, D. J. Kv3.4 subunits enhance the repolarizing efficiency of Kv3.1 channels in fast-spiking neurons. Nature Neurosci. 6, 258–266 (2003).

    CAS  PubMed  Google Scholar 

  72. Fettiplace, R. & Fuchs, P. A. Mechanisms of hair cell tuning. Annu. Rev. Physiol. 61, 809–834 (1999).

    CAS  PubMed  Google Scholar 

  73. Meier, J. & Grantyn, R. Preferential accumulation of GABAA receptor γ2L, not γ2S, cytoplasmic loops at rat spinal cord inhibitory synapses. J. Physiol. 559, 355–365 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Pei, W., Huang, Z. & Niu, L. GluR3 flip and flop: differences in channel opening kinetics. Biochemistry 46, 2027–2036 (2007).

    CAS  PubMed  Google Scholar 

  75. Weeber, E. J. et al. Reelin and ApoE receptors cooperate to enhance hippocampal synaptic plasticity and learning. J. Biol. Chem. 277, 39944–39952 (2002).

    CAS  PubMed  Google Scholar 

  76. Beffert, U. et al. Modulation of synaptic plasticity and memory by Reelin involves differential splicing of the lipoprotein receptor Apoer2. Neuron 47, 567–579 (2005). In this paper, the authors use exon-specific mutations in mice to produce perhaps the clearest demonstration that splicing regulation affects LTP.

    CAS  PubMed  Google Scholar 

  77. Beffert, U. et al. ApoE receptor 2 controls neuronal survival in the adult brain. Curr. Biol. 16, 2446–2452 (2006).

    CAS  PubMed  Google Scholar 

  78. Hepp, R., Dupont, J. L., Aunis, D., Langley, K. & Grant, N. J. NGF enhances depolarization effects on SNAP-25 expression: induction of SNAP-25b isoform. Neuroreport 12, 673–677 (2001).

    CAS  PubMed  Google Scholar 

  79. Vallano, M. L., Beaman-Hall, C. M. & Benmansour, S. Ca2+ and pH modulate alternative splicing of exon 5 in NMDA receptor subunit 1. Neuroreport 10, 3659–3664 (1999).

    CAS  PubMed  Google Scholar 

  80. Zacharias, D. A. & Strehler, E. E. Change in plasma membrane Ca2+-ATPase splice-variant expression in response to a rise in intracellular Ca2+. Curr. Biol. 6, 1642–1652 (1996).

    CAS  PubMed  Google Scholar 

  81. Berke, J. D. et al. Dopamine and glutamate induce distinct striatal splice forms of Ania-6, an RNA polymerase II-associated cyclin. Neuron 32, 277–287 (2001).

    CAS  PubMed  Google Scholar 

  82. Sgambato, V., Minassian, R., Nairn, A. C. & Hyman, S. E. Regulation of ania-6 splice variants by distinct signaling pathways in striatal neurons. J. Neurochem. 86, 153–164 (2003).

    CAS  PubMed  Google Scholar 

  83. Daoud, R., Da Penha Berzaghi, M., Siedler, F., Hubener, M. & Stamm, S. Activity-dependent regulation of alternative splicing patterns in the rat brain. Eur. J. Neurosci. 11, 788–802 (1999).

    CAS  PubMed  Google Scholar 

  84. Kamphuis, W., Monyer, H., De Rijk, T. C. & Lopes da Silva, F. H. Hippocampal kindling increases the expression of glutamate receptor-A flip and -B flip mRNA in dentate granule cells. Neurosci. Lett. 148, 51–54 (1992).

    CAS  PubMed  Google Scholar 

  85. Bottai, D. et al. Synaptic activity-induced conversion of intronic to exonic sequence in Homer 1 immediate early gene expression. J. Neurosci. 22, 167–175 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Helme-Guizon, A. et al. Increase in syntaxin 1B and glutamate release in mossy fibre terminals following induction of LTP in the dentate gyrus: a candidate molecular mechanism underlying transsynaptic plasticity. Eur. J. Neurosci. 10, 2231–2237 (1998).

    CAS  PubMed  Google Scholar 

  87. Rodger, J., Davis, S., Laroche, S., Mallet, J. & Hicks, A. Induction of long-term potentiation in vivo regulates alternate splicing to alter syntaxin 3 isoform expression in rat dentate gyrus. J. Neurochem. 71, 666–675 (1998).

    CAS  PubMed  Google Scholar 

  88. Mu, Y., Otsuka, T., Horton, A. C., Scott, D. B. & Ehlers, M. D. Activity-dependent mRNA splicing controls ER export and synaptic delivery of NMDA receptors. Neuron 40, 581–594 (2003). In this study, the authors demonstrate in cortical cell cultures that tetrodotoxin and bicuculin have opposite effects on 3′ splice-site choice for exon 22 of NMDAR1. They show that this choice determines the rate of receptor trafficking from the endoplasmic reticulum to the surface.

    CAS  PubMed  Google Scholar 

  89. Perez-Otano, I. & Ehlers, M. D. Homeostatic plasticity and NMDA receptor trafficking. Trends Neurosci. 28, 229–238 (2005).

    CAS  PubMed  Google Scholar 

  90. Turrigiano, G. G. & Nelson, S. B. Homeostatic plasticity in the developing nervous system. Nature Rev. Neurosci. 5, 97–107 (2004).

    CAS  Google Scholar 

  91. Shin, C. & Manley, J. L. Cell signalling and the control of pre-mRNA splicing. Nature Rev. Mol. Cell Biol. 5, 727–738 (2004).

    CAS  Google Scholar 

  92. Matter, N., Herrlich, P. & Konig, H. Signal-dependent regulation of splicing via phosphorylation of Sam68. Nature 420, 691–695 (2002).

    CAS  PubMed  Google Scholar 

  93. Rothrock, C., Cannon, B., Hahm, B. & Lynch, K. W. A conserved signal-responsive sequence mediates activation-induced alternative splicing of CD45. Mol. Cell 12, 1317–1324 (2003).

    CAS  PubMed  Google Scholar 

  94. Xie, J. & Black, D. L. A CaMK IV responsive RNA element mediates depolarization-induced alternative splicing of ion channels. Nature 410, 936–939 (2001).

    CAS  PubMed  Google Scholar 

  95. McCartney, C. E. et al. A cysteine-rich motif confers hypoxia sensitivity to mammalian large conductance voltage- and Ca-activated K (BK) channel α-subunits. Proc. Natl Acad. Sci. USA 102, 17870–17876 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Shipston, M. J. Alternative splicing of potassium channels: a dynamic switch of cellular excitability. Trends Cell Biol. 11, 353–358 (2001).

    CAS  PubMed  Google Scholar 

  97. Xie, J. & McCobb, D. P. Control of alternative splicing of potassium channels by stress hormones. Science 280, 443–446 (1998).

    CAS  PubMed  Google Scholar 

  98. Tian, L. et al. Alternative splicing switches potassium channel sensitivity to protein phosphorylation. J. Biol. Chem. 276, 7717–7720 (2001).

    CAS  PubMed  Google Scholar 

  99. Xie, J., Jan, C., Stoilov, P., Park, J. & Black, D. L. A consensus CaMK IV-responsive RNA sequence mediates regulation of alternative exons in neurons. RNA 11, 1825–1834 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Zukin, R. S. & Bennett, M. V. Alternatively spliced isoforms of the NMDARI receptor subunit. Trends Neurosci. 18, 306–313 (1995).

    CAS  PubMed  Google Scholar 

  101. Bradley, J., Carter, S. R., Rao, V. R., Wang, J. & Finkbeiner, S. Splice variants of the NR1 subunit differentially induce NMDA receptor-dependent gene expression. J. Neurosci. 26, 1065–1076 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Ehlers, M. D., Fung, E. T., O'Brien, R. J. & Huganir, R. L. Splice variant-specific interaction of the NMDA receptor subunit NR1 with neuronal intermediate filaments. J. Neurosci. 18, 720–730 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Okabe, S., Miwa, A. & Okado, H. Alternative splicing of the C-terminal domain regulates cell surface expression of the NMDA receptor NR1 subunit. J. Neurosci. 19, 7781–7792 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Scott, D. B., Blanpied, T. A., Swanson, G. T., Zhang, C. & Ehlers, M. D. An NMDA receptor ER retention signal regulated by phosphorylation and alternative splicing. J. Neurosci. 21, 3063–3072 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Standley, S., Roche, K. W., McCallum, J., Sans, N. & Wenthold, R. J. PDZ domain suppression of an ER retention signal in NMDA receptor NR1 splice variants. Neuron 28, 887–898 (2000).

    CAS  PubMed  Google Scholar 

  106. Tingley, W. G., Roche, K. W., Thompson, A. K. & Huganir, R. L. Regulation of NMDA receptor phosphorylation by alternative splicing of the C-terminal domain. Nature 364, 70–73 (1993).

    CAS  PubMed  Google Scholar 

  107. An, P. & Grabowski, P. J. Exon silencing by UAGG motifs in response to neuronal excitation. PLoS Biol. 5, e36 (2007). This paper and reference 108 identify regulatory sequences that control depolarization-dependent splicing repression in the NMDAR1 transcript. These papers further characterize the pathways that allow inducible changes in the splicing.

    PubMed  PubMed Central  Google Scholar 

  108. Lee, J. A. et al. Depolarization and CaM Kinase IV modulate NMDA receptor splicing through two essential RNA elements. PLoS Biol. 5, e40 (2007).

    PubMed  PubMed Central  Google Scholar 

  109. Allemand, E. et al. Regulation of heterogenous nuclear ribonucleoprotein A1 transport by phosphorylation in cells stressed by osmotic shock. Proc. Natl Acad. Sci. USA 102, 3605–3610 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. van der Houven van Oordt, W. et al. The MKK3/6–p38 signaling cascade alters the subcellular distribution of hnRNP A1 and modulates alternative splicing regulation. J. Cell Biol. 149, 307–316 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Han, K., Yeo, G., An, P., Burge, C. B. & Grabowski, P. J. A combinatorial code for splicing silencing: UAGG and GGGG motifs. PLoS Biol. 3, e158 (2005).

    PubMed  PubMed Central  Google Scholar 

  112. Strehler, E. E. & Zacharias, D. A. Role of alternative splicing in generating isoform diversity among plasma membrane calcium pumps. Physiol. Rev. 81, 21–50 (2001).

    CAS  PubMed  Google Scholar 

  113. Sanford, J. R., Longman, D. & Caceres, J. F. Multiple roles of the SR protein family in splicing regulation. Prog. Mol. Subcell. Biol. 31, 33–58 (2003).

    CAS  PubMed  Google Scholar 

  114. Hofmann, Y., Lorson, C. L., Stamm, S., Androphy, E. J. & Wirth, B. Htra2- β1 stimulates an exonic splicing enhancer and can restore full-length SMN expression to survival motor neuron 2 (SMN2). Proc. Natl Acad. Sci. USA 97, 9618–9623 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Wu, J. Y., Kar, A., Kuo, D., Yu, B. & Havlioglu, N. SRp54 (SFRS11), a regulator for tau exon 10 alternative splicing identified by an expression cloning strategy. Mol. Cell Biol. 26, 6739–6747 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Ule, J. et al. An RNA map predicting Nova-dependent splicing regulation. Nature 444, 580–586 (2006).

    CAS  PubMed  Google Scholar 

  117. Hui, J. et al. Intronic CA-repeat and CA-rich elements: a new class of regulators of mammalian alternative splicing. EMBO J. 24, 1988–1998 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Ibrahim el, C., Schaal, T. D., Hertel, K. J., Reed, R. & Maniatis, T. Serine/arginine-rich protein-dependent suppression of exon skipping by exonic splicing enhancers. Proc. Natl Acad. Sci. USA 102, 5002–5007 (2005).

    PubMed  PubMed Central  Google Scholar 

  119. Jin, Y. et al. A vertebrate RNA-binding protein Fox-1 regulates tissue-specific splicing via the pentanucleotide GCAUG. EMBO J. 22, 905–912 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Boutz, P. L. et al. A post-transcriptional regulatory switch in polypyrimidine tract binding proteins reprograms alternative splicing in developing neurons. Genes Dev. 21, 1636–1652 (2007). This study demonstrates that, during differentiation into neurons, cells switch from expressing PTB to nPTB. This switch induces a series of new alternative splicing patterns in the differentiating cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Ule, J. et al. Nova regulates brain-specific splicing to shape the synapse. Nature Genet. 37, 844–852 (2005). The authors of this study use splice junction microarrays to identify a large number of mouse pre-mRNA transcripts that undergo altered splicing as a result of Nova-knockout. This study is one of the clearest demonstrations that a single splicing factor can control a large group of target exons.

    CAS  PubMed  Google Scholar 

  122. Spellman, R. & Smith, C. W. Novel modes of splicing repression by PTB. Trends Biochem. Sci. 31, 73–76 (2006).

    CAS  PubMed  Google Scholar 

  123. Wagner, E. J. & Garcia-Blanco, M. A. Polypyrimidine tract binding protein antagonizes exon definition. Mol. Cell Biol. 21, 3281–3288 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Ladd, A. N., Stenberg, M. G., Swanson, M. S. & Cooper, T. A. Dynamic balance between activation and repression regulates pre-mRNA alternative splicing during heart development. Dev. Dyn. 233, 783–793 (2005).

    CAS  PubMed  Google Scholar 

  125. Boutz, P. L., Chawla, G., Stoilov, P. & Black, D. L. MicroRNAs regulate the expression of the alternative splicing factor nPTB during muscle development. Genes Dev. 21, 71–84 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Lillevali, K., Kulla, A. & Ord, T. Comparative expression analysis of the genes encoding polypyrimidine tract binding protein (PTB) and its neural homologue (brPTB) in prenatal and postnatal mouse brain. Mech. Dev. 101, 217–220 (2001).

    CAS  PubMed  Google Scholar 

  127. Markovtsov, V. et al. Cooperative assembly of an hnRNP complex induced by a tissue-specific homolog of polypyrimidine tract binding protein. Mol. Cell Biol. 20, 7463–7479 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Polydorides, A. D., Okano, H. J., Yang, Y. Y., Stefani, G. & Darnell, R. B. A brain-enriched polypyrimidine tract-binding protein antagonizes the ability of Nova to regulate neuron-specific alternative splicing. Proc. Natl Acad. Sci. USA 97, 6350–6355 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Buckanovich, R. J., Posner, J. B. & Darnell, R. B. Nova, the paraneoplastic Ri antigen, is homologous to an RNA-binding protein and is specifically expressed in the developing motor system. Neuron 11, 657–672 (1993).

    CAS  PubMed  Google Scholar 

  130. Yang, Y. Y., Yin, G. L. & Darnell, R. B. The neuronal RNA-binding protein Nova-2 is implicated as the autoantigen targeted in POMA patients with dementia. Proc. Natl Acad. Sci. USA 95, 13254–13259 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Jensen, K. B. et al. Nova-1 regulates neuron-specific alternative splicing and is essential for neuronal viability. Neuron 25, 359–371 (2000).

    CAS  PubMed  Google Scholar 

  132. Huang, C. S. et al. Common molecular pathways mediate long-term potentiation of synaptic excitation and slow synaptic inhibition. Cell 123, 105–118 (2005). This study demonstrates that a splicing regulator, NOVA2, is required for an important form of neuronal plasticity.

    CAS  PubMed  Google Scholar 

  133. Deschenes-Furry, J., Perrone-Bizzozero, N. & Jasmin, B. J. The RNA-binding protein HuD: a regulator of neuronal differentiation, maintenance and plasticity. Bioessays 28, 822–833 (2006).

    CAS  PubMed  Google Scholar 

  134. Soller, M. & White, K. ELAV inhibits 3′-end processing to promote neural splicing of ewg pre-mRNA. Genes Dev. 17, 2526–2538 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Szabo, A. et al. HuD, a paraneoplastic encephalomyelitis antigen, contains RNA-binding domains and is homologous to Elav and Sex-lethal. Cell 67, 325–333 (1991).

    CAS  PubMed  Google Scholar 

  136. Brennan, C. M. & Steitz, J. A. HuR and mRNA stability. Cell Mol. Life Sci. 58, 266–277 (2001).

    CAS  PubMed  Google Scholar 

  137. Wang, X. & Tanaka Hall, T. M. Structural basis for recognition of AU-rich element RNA by the HuD protein. Nature Struct. Biol. 8, 141–145 (2001).

    CAS  PubMed  Google Scholar 

  138. Zhu, H., Hasman, R. A., Barron, V. A., Luo, G. & Lou, H. A nuclear function of Hu proteins as neuron-specific alternative RNA processing regulators. Mol. Biol. Cell 17, 5105–5114 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Ule, J. & Darnell, R. B. RNA binding proteins and the regulation of neuronal synaptic plasticity. Curr. Opin. Neurobiol. 16, 102–110 (2006).

    CAS  PubMed  Google Scholar 

  140. Akamatsu, W. et al. The RNA-binding protein HuD regulates neuronal cell identity and maturation. Proc. Natl Acad. Sci. USA 102, 4625–4630 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Barreau, C., Paillard, L., Mereau, A. & Osborne, H. B. Mammalian CELF/Bruno-like RNA-binding proteins: molecular characteristics and biological functions. Biochimie 88, 515–525 (2006).

    CAS  PubMed  Google Scholar 

  142. Faustino, N. A. & Cooper, T. A. Identification of putative new splicing targets for ETR-3 using sequences identified by systematic evolution of ligands by exponential enrichment. Mol. Cell Biol. 25, 879–887 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Marquis, J. et al. CUG-BP1/CELF1 requires UGU-rich sequences for high-affinity binding. Biochem. J. 400, 291–301 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Kuyumcu-Martinez, N. M. & Cooper, T. A. Misregulation of alternative splicing causes pathogenesis in myotonic dystrophy. Prog. Mol. Subcell. Biol. 44, 133–159 (2006).

    CAS  PubMed  Google Scholar 

  145. Zhang, W., Liu, H., Han, K. & Grabowski, P. J. Region-specific alternative splicing in the nervous system: implications for regulation by the RNA-binding protein NAPOR. RNA 8, 671–685 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Charlet, B. N., Logan, P., Singh, G. & Cooper, T. A. Dynamic antagonism between ETR-3 and PTB regulates cell type-specific alternative splicing. Mol. Cell 9, 649–658 (2002).

    Google Scholar 

  147. Gromak, N., Matlin, A. J., Cooper, T. A. & Smith, C. W. Antagonistic regulation of α-actinin alternative splicing by CELF proteins and polypyrimidine tract binding protein. RNA 9, 443–456 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Loria, P. M., Duke, A., Rand, J. B. & Hobert, O. Two neuronal, nuclear-localized RNA binding proteins involved in synaptic transmission. Curr. Biol. 13, 1317–1323 (2003).

    CAS  PubMed  Google Scholar 

  149. Nicoll, M., Akerib, C. C. & Meyer, B. J. X-chromosome-counting mechanisms that determine nematode sex. Nature 388, 200–204 (1997).

    CAS  PubMed  Google Scholar 

  150. Kuroyanagi, H., Kobayashi, T., Mitani, S. & Hagiwara, M. Transgenic alternative-splicing reporters reveal tissue-specific expression profiles and regulation mechanisms in vivo. Nature Methods 3, 909–915 (2006). This study is one of only a few to use genetic screens to identify splicing regulatory genes.

    CAS  PubMed  Google Scholar 

  151. Auweter, S. D. et al. Molecular basis of RNA recognition by the human alternative splicing factor Fox-1. EMBO J. 25, 163–173 (2006).

    CAS  PubMed  Google Scholar 

  152. Ponthier, J. L. et al. Fox-2 splicing factor binds to a conserved intron motif to promote inclusion of protein 4.1R alternative exon 16. J. Biol. Chem. 281, 12468–12474 (2006).

    CAS  PubMed  Google Scholar 

  153. Underwood, J. G., Boutz, P. L., Dougherty, J. D., Stoilov, P. & Black, D. L. Homologues of the Caenorhabditis elegans Fox-1 protein are neuronal splicing regulators in mammals. Mol. Cell Biol. 25, 10005–10016 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Zhou, H. L., Baraniak, A. P. & Lou, H. Role for Fox-1/Fox-2 in mediating the neuronal pathway of calcitonin/calcitonin gene-related peptide alternative RNA processing. Mol. Cell Biol. 27, 830–841 (2007).

    CAS  PubMed  Google Scholar 

  155. Nakahata, S. & Kawamoto, S. Tissue-dependent isoforms of mammalian Fox-1 homologs are associated with tissue-specific splicing activities. Nucleic Acids Res. 33, 2078–2089 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Black, D. L. Activation of c-src neuron-specific splicing by an unusual RNA element in vivo and in vitro. Cell 69, 795–807 (1992).

    CAS  PubMed  Google Scholar 

  157. Minovitsky, S., Gee, S. L., Schokrpur, S., Dubchak, I. & Conboy, J. G. The splicing regulatory element, UGCAUG, is phylogenetically and spatially conserved in introns that flank tissue-specific alternative exons. Nucleic Acids Res. 33, 714–724 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Shibata, H., Huynh, D. P. & Pulst, S. M. A novel protein with RNA-binding motifs interacts with ataxin-2. Hum. Mol. Genet. 9, 1303–1313 (2000).

    CAS  PubMed  Google Scholar 

  159. Lim, J. et al. A protein–protein interaction network for human inherited ataxias and disorders of Purkinje cell degeneration. Cell 125, 801–814 (2006).

    CAS  PubMed  Google Scholar 

  160. Barnby, G. et al. Candidate-gene screening and association analysis at the autism-susceptibility locus on chromosome 16p: evidence of association at GRIN2A and ABAT. Am. J. Hum. Genet. 76, 950–966 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Bhalla, K. et al. The de novo chromosome 16 translocations of two patients with abnormal phenotypes (mental retardation and epilepsy) disrupt the A2BP1 gene. J. Hum. Genet. 49, 308–311 (2004).

    PubMed  Google Scholar 

  162. Martin, C. L. et al. Cytogenetic and molecular characterization of A2BP1/FOX1 as a candidate gene for autism. Am. J. Med. Genet. B Neuropsychiatr. Genet. 14 May 2007 (doi: 10.1002/ajmg.b.30530).

    CAS  Google Scholar 

  163. Zhang, L., Liu, W. & Grabowski, P. J. Coordinate repression of a trio of neuron-specific splicing events by the splicing regulator PTB. RNA 5, 117–130 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Maness, P. F. & Schachner, M. Neural recognition molecules of the immunoglobulin superfamily: signaling transducers of axon guidance and neuronal migration. Nature Neurosci. 10, 19–26 (2007).

    CAS  PubMed  Google Scholar 

  165. Salter, M. W. & Kalia, L. V. Src kinases: a hub for NMDA receptor regulation. Nature Rev. Neurosci. 5, 317–328 (2004).

    CAS  Google Scholar 

  166. Chan, R. C. & Black, D. L. The polypyrimidine tract binding protein binds upstream of neural cell-specific c-src exon N1 to repress the splicing of the intron downstream. Mol. Cell Biol. 17, 4667–4676 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Modafferi, E. F. & Black, D. L. A complex intronic splicing enhancer from the c-src pre-mRNA activates inclusion of a heterologous exon. Mol. Cell Biol. 17, 6537–6545 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Chou, M. Y., Rooke, N., Turck, C. W. & Black, D. L. hnRNP H is a component of a splicing enhancer complex that activates a c-src alternative exon in neuronal cells. Mol. Cell Biol. 19, 69–77 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Min, H., Chan, R. C. & Black, D. L. The generally expressed hnRNP F is involved in a neural-specific pre-mRNA splicing event. Genes Dev. 9, 2659–2671 (1995).

    CAS  PubMed  Google Scholar 

  170. Min, H., Turck, C. W., Nikolic, J. M. & Black, D. L. A new regulatory protein, KSRP, mediates exon inclusion through an intronic splicing enhancer. Genes Dev. 11, 1023–1036 (1997).

    CAS  PubMed  Google Scholar 

  171. Rooke, N., Markovtsov, V., Cagavi, E. & Black, D. L. Roles for SR proteins and hnRNP A1 in the regulation of c-src exon N1. Mol. Cell Biol. 23, 1874–1884 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Kishore, S. & Stamm, S. The snoRNA HBII-52 regulates alternative splicing of the serotonin receptor 2C. Science 311, 230–232 (2006). This study was the first to identify a regulatory RNA for alternative splicing.

    CAS  PubMed  Google Scholar 

  173. House, A. E. & Lynch, K. W. An exonic splicing silencer represses spliceosome assembly after ATP-dependent exon recognition. Nature Struct. Mol. Biol. 13, 937–944 (2006).

    CAS  Google Scholar 

  174. Sharma, S., Falick, A. M. & Black, D. L. Polypyrimidine tract binding protein blocks the 5′ splice site-dependent assembly of U2AF and the prespliceosomal E complex. Mol. Cell 19, 485–496 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Blanchette, M., Green, R. E., Brenner, S. E. & Rio, D. C. Global analysis of positive and negative pre-mRNA splicing regulators in Drosophila. Genes Dev. 19, 1306–1314 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Le, K. et al. Detecting tissue-specific regulation of alternative splicing as a qualitative change in microarray data. Nucleic Acids Res. 32, e180 (2004).

    PubMed  PubMed Central  Google Scholar 

  177. Pan, Q. et al. Revealing global regulatory features of mammalian alternative splicing using a quantitative microarray platform. Mol. Cell 16, 929–941 (2004).

    CAS  PubMed  Google Scholar 

  178. Srinivasan, K. et al. Detection and measurement of alternative splicing using splicing-sensitive microarrays. Methods 37, 345–359 (2005).

    CAS  PubMed  Google Scholar 

  179. Xu, X. et al. ASF/SF2-regulated CaMKIIδ alternative splicing temporally reprograms excitation–contraction coupling in cardiac muscle. Cell 120, 59–72 (2005). This study, which used conditional knockout mice, was one of the first to demonstrate a role for a splicing factor in postnatal development.

    CAS  PubMed  Google Scholar 

  180. Dredge, B. K., Stefani, G., Engelhard, C. C. & Darnell, R. B. Nova autoregulation reveals dual functions in neuronal splicing. EMBO J. 24, 1608–1620 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Ni, J. Z. et al. Ultraconserved elements are associated with homeostatic control of splicing regulators by alternative splicing and nonsense-mediated decay. Genes Dev. 21, 708–718 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Wollerton, M. C., Gooding, C., Wagner, E. J., Garcia-Blanco, M. A. & Smith, C. W. Autoregulation of polypyrimidine tract binding protein by alternative splicing leading to nonsense-mediated decay. Mol. Cell 13, 91–100 (2004).

    CAS  PubMed  Google Scholar 

  183. Sureau, A., Gattoni, R., Dooghe, Y., Stevenin, J. & Soret, J. SC35 autoregulates its expression by promoting splicing events that destabilize its mRNAs. EMBO J. 20, 1785–1796 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Stoilov, P., Daoud, R., Nayler, O. & Stamm, S. Human tra2-β1 autoregulates its protein concentration by influencing alternative splicing of its pre-mRNA. Hum. Mol. Genet. 13, 509–524 (2004).

    CAS  PubMed  Google Scholar 

  185. Jumaa, H. & Nielsen, P. J. The splicing factor SRp20 modifies splicing of its own mRNA and ASF/SF2 antagonizes this regulation. EMBO J. 16, 5077–5085 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Lareau, L. F., Inada, M., Green, R. E., Wengrod, J. C. & Brenner, S. E. Unproductive splicing of SR genes associated with highly conserved and ultraconserved DNA elements. Nature 446, 926–929 (2007).

    CAS  PubMed  Google Scholar 

  187. Hartmann, A. M. et al. Regulation of alternative splicing of human tau exon 10 by phosphorylation of splicing factors. Mol. Cell Neurosci. 18, 80–90 (2001).

    CAS  PubMed  Google Scholar 

  188. Stoss, O. et al. p59fyn-mediated phosphorylation regulates the activity of the tissue-specific splicing factor rSLM-1. Mol. Cell Neurosci. 27, 8–21 (2004).

    CAS  PubMed  Google Scholar 

  189. Berget, S. M. Exon recognition in vertebrate splicing. J. Biol. Chem. 270, 2411–2414 (1995).

    CAS  PubMed  Google Scholar 

  190. Ichtchenko, K. et al. Neuroligin 1: a splice site-specific ligand for β-neurexins. Cell 81, 435–443 (1995).

    CAS  PubMed  Google Scholar 

  191. Graf, E. R., Kang, Y., Hauner, A. M. & Craig, A. M. Structure function and splice site analysis of the synaptogenic activity of the neurexin-1β LNS domain. J. Neurosci. 26, 4256–4265 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Lise, M. F. & El-Husseini, A. The neuroligin and neurexin families: from structure to function at the synapse. Cell Mol. Life Sci. 63, 1833–1849 (2006).

    CAS  PubMed  Google Scholar 

  193. Hussain, N. K. & Sheng, M. Neuroscience. Making synapses: a balancing act. Science 307, 1207–1208 (2005).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank all the members of the Black laboratory and our other colleagues for many helpful discussions. We apologize to the numerous colleagues whose interesting splicing stories could not be included due to space constraints. Our own work is supported by grants RO1 GM049662 and R24 GM070857 from the US National Institutes of Health, by the Howard Hughes Medical Institute and by a 2007 Young Investigator Award to Q.L. from NARSAD: The Mental Health Research Association.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas L. Black.

Related links

Related links

DATABASES

OMIM

myotinic dystrophy

Prader–Willi syndrome

FURTHER INFORMATION

Douglas L. Black's homepage

Allen Brain Atlas

Glossary

Pre-mRNA

The unprocessed precursor to mRNA. It contains unspliced introns.

Exon

A segment of RNA that remains in the mRNA after intron removal. Pre-mRNA splicing results in the ligation of exons into a chain.

Intron

A segment of RNA that separates two exons in the pre-mRNA and is excised during splicing. Also called an intervening sequence.

Splice site

Short RNA sequences at exon–intron and intron–exon borders. They are bound by components of the spliceosome and encompass the nucleotides where the transesterification chemistry takes place.

Small nuclear ribonucleoprotein

(snRNP). A complex that is composed of a small nuclear RNA and a specific set of proteins.

Lariat RNA

A product of the first step of splicing, in which the 5′ phosphate of the 5′ terminal guanosine of the intron is linked to the 2′ hydroxyl of an adenosine residue that lies downstream at the branchpoint. This reaction creates a branched nucleotide that has an unusual 2′ to 5′ phosphodiester bond in addition to the normal 3′ to 5′ linkages, and an unusual loop-and-3′-tail structure, hence the name.

Exon cassette

An exon that has regulated splicing, and so can be included in the mRNA or skipped.

Expressed sequence tag (EST) analysis

Sequence comparisons of EST databases. When ESTs are aligned with each other, and with mRNA and genomic sequences, regions of alternative processing can be identified.

Asymmetrical division

A mitotic division that generates daughter cells that have different cell fates.

SNARE

Soluble NSF (N-ethylmaleimide-sensitive fusion protein) accessory protein (SNAP) receptor.

Nociceptive neurons

(Also known as nociceptors.) Pain-sensitive cells that carry information about tissue damage from the body's periphery to synapses in the dorsal horn of the spinal cord.

Kindling

An experimental model of epilepsy in which an increased susceptibility to seizures arises after daily focal stimulation of specific brain areas (for example, the amygdala) — stimulation that does not by itself reach the seizure-causing threshold.

Homeostatic plasticity

Activity-dependent changes in synaptic strength that tend to stabilize neuronal firing rates.

Heterogeneous nuclear ribonucleoprotein

(hnRNP). A protein that binds to nascent RNA polymerase II transcripts and packages pre-mRNAs into hnRNP-containing particles in the nucleus. hnRNPs have a variety of RNA-binding domains and function in various processes, including nuclear splicing, polyadenylation and export, as well as cytoplasmic mRNA translation and turnover.

SR proteins

A family of splicing regulatory proteins that bind to exonic splicing enhancer elements to stimulate exon inclusion. They contain one or more domains rich in serine (S)–arginine (R) dipeptides and one or more RNA-binding domains.

RNA editing

Site-specific modification of mRNA sequences after transcription. The most common modification is the conversion of adenosine to inosine by adenosine deaminase enzymes (ADARs) — a conversion that changes the coding capacity of the affected mRNA.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Q., Lee, JA. & Black, D. Neuronal regulation of alternative pre-mRNA splicing. Nat Rev Neurosci 8, 819–831 (2007). https://doi.org/10.1038/nrn2237

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn2237

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing