Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Recognition memory and the medial temporal lobe: a new perspective

Key Points

  • Recollection has been proposed to be especially dependent on the hippocampus, and familiarity on the adjacent perirhinal cortex. The authors instead suggest that the hippocampus and the perirhinal cortex both play a role in recollection and familiarity, and that these two regions of the medial temporal lobe differ mainly in the degree to which stimuli are encoded in a concrete (in the case of the perirhinal cortex) or abstract (in the case of the hippocampus) manner.

  • The authors suggest that the methods that have traditionally been used to separate recollection from familiarity instead separate strong memories (strong in both recollection and familiarity) from weak memories (weak in both recollection and familiarity).

  • A compelling test of the divided-labour account is provided by comparing the degree of impairment on tests of recall (based on recollection) and recognition (based on recollection and familiarity) in patients with hippocampal lesions. The divided-labour account requires that recall be differentially impaired, but group studies consistently show that recall and recognition are similarly impaired in patients with hippocampal lesions.

  • The effects of selective hippocampal lesions have often been explored in animals using delayed non-matching to sample tasks and novel-object recognition tasks, in which single items must be remembered independently of any context, and where one might suppose that the task depends substantially on familiarity. The evidence suggests that the ability to remember a single item across a delay of more than just a few minutes depends substantially on the hippocampus, even when the task has no overtly associative or contextual component.

  • Analyses of the receiver operating characteristic and of remember–know judgments have often been taken to support the divided-labour model, but a reinterpretation of the evidence in terms of traditional signal-detection theory suggests that many past studies have misconstrued weak memory in patients with hippocampal lesions as evidence for a selective recollection deficit.

  • Different nonlinear relationships between fMRI activity and memory strength in the hippocampus and the perirhinal cortex have often been taken to support the divided-labour view, but those differences are more likely to reflect nonlinear properties of the measurement scale.

  • In the hippocampus, elevated activity is often not detected when memory is weak, and this holds true even for recollection-based memory. Thus, a failure to detect elevated activity for weak memories is not evidence that the hippocampus plays no role in familiarity, but is instead indicative of the nonlinear properties of the measurement scale.

  • In the perirhinal cortex, fMRI activity for strong memories often does not exceed that for memories of moderate strength, and this holds true even for recollection-based memory. Thus, a failure to detect further elevated activity for the strongest memories is not evidence that the perirhinal cortex plays no role in recollection.

  • Single-unit recording studies in monkeys show that neurons in the perirhinal cortex (like neurons in the hippocampus) encode associative information and play a role in associative recollection.

  • Single-unit recording data in humans show that neurons in the hippocampus (like neurons in the perirhinal cortex) encode familiarity and play a role in recognition decisions even when recollection fails.

Abstract

Recognition memory is widely viewed as consisting of two components, recollection and familiarity, which have been proposed to be dependent on the hippocampus and the adjacent perirhinal cortex, respectively. Here, we propose an alternative perspective: we suggest that the methods traditionally used to separate recollection from familiarity instead separate strong memories from weak memories. A review of work with humans, monkeys and rodents finds evidence for familiarity signals (as well as recollection signals) in the hippocampus and recollection signals (as well as familiarity signals) in the perirhinal cortex. We also indicate ways in which the functions of the medial temporal lobe structures are different, and suggest that these structures work together in a cooperative and complementary way.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Signal-detection theory and the receiver operating characteristic.
Figure 2: High threshold/signal-detection theory and the receiver operating characteristic.
Figure 3: ROC data as a function of memory strength.
Figure 4: The signal-detection interpretation of remember–know judgments.
Figure 5: Characteristic nonlinear relationships between fMRI activity and memory strength.

Similar content being viewed by others

References

  1. Mandler, G. Recognizing: the judgment of previous occurrence. Psychol. Rev. 87, 252–271 (1980).

    Article  Google Scholar 

  2. Atkinson, R. C. & Juola, J. F., in Contemporary Developments in Mathematical Psychology (eds Krantz, D. H., Atkinson, R. C. & Suppes, P.) 243–290 (Freeman, San Francisco, 1974).

    Google Scholar 

  3. Brown, M. W. & Aggleton, J. P. Recognition memory: what are the roles of the perirhinal cortex and hippocampus? Nature Rev. Neurosci. 2, 51–61 (2001).

    Article  CAS  Google Scholar 

  4. Aggleton, A. P. & Brown, M. W. Interleaving brain systems for episodic and recognition memory. Trends Cogn. Sci. 10, 455–463 (2006).

    Article  PubMed  Google Scholar 

  5. Eichenbaum, H., Yonelinas, A. R. & Ranganath, C. The medial temporal lobe and recognition memory. Annu. Rev. Neurosci. 30, 123–152 (2007).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Rugg, M. D & Yonelinas, A. P. Human recognition memory: a cognitive neuroscience perspective. Trends Cogn. Sci. 7, 313–319 (2003).

    Article  PubMed  Google Scholar 

  7. Squire, L. R., Stark, C. E. L. & Clark, R. E. The medial temporal lobe. Annu. Rev. Neurosci. 27, 279–306 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Wixted, J. T. Dual-process theory and signal-detection theory of recognition memory. Psychol. Rev. 114, 152–176 (2007).

    Article  PubMed  Google Scholar 

  9. Burwell, R. D., Suzuki, W. A., Insausti, R. & Amaral, D. G. in Perception, Memory, and Emotion: Frontiers in Neuroscience. (Eds Ono, T., McNaughton, B. L., Molotchnikoff, S., Rolls, E. T. & Nishijo, H.) 95–110 (Elsevier, New York, 1996).

    Google Scholar 

  10. Baddeley, A., Vargha-Khadem, F. & Mishkin, M. Preserved recognition in a case of developmental amnesia: implications for the acquisition of semantic memory? J. Cogn. Neurosci. 13, 357–369 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Bastin, C. et al. Dissociation between recall and recognition memory performance in an amnesic patient with hippocampal damage following carbon monoxide poisoning. Neurocase 10, 330–344 (2004).

    Article  PubMed  Google Scholar 

  12. Holdstock, J. S. et al. Under what conditions is recognition spared relative to recall after selective hippocampal damage in humans? Hippocampus 12, 341–351 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Mayes, A. R., Holdstock, J. S., Isaac, C. L., Hunkin, N. M. & Roberts, N. Relative sparing of item recognition memory in a patient with adult-onset damage limited to the hippocampus. Hippocampus 12, 325–340 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Yonelinas, A. P. et al. Effects of extensive temporal lobe damage or mild hypoxia on recollection and familiarity. Nature Neurosci. 5, 1236–1241 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Wixted, J. T. & Squire, L. R. Recall and recognition are equally impaired in patients with selective hippocampal damage. Cogn. Affect. Behav. Neurosci. 4, 58–66 (2004).

    Article  PubMed  Google Scholar 

  16. Manns, J. R., Hopkins, R. O., Reed, J. M., Kitchener, E. G. & Squire, L. R. Recognition memory and the human hippocampus. Neuron 37, 171–180 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Kopelman, M. D. et al. Recall and recognition memory in amnesia: patients with hippocampal, medial temporal, temporal lobe or frontal pathology. Neuropsychologia 45, 1232–1246 (2007).

    Article  PubMed  Google Scholar 

  18. Eichenbaum, H., Otto, T. & Cohen, N. J. Two functional components of the hippocampal memory system. Behav. Brain Sci. 17, 449–472 (1994).

    Article  Google Scholar 

  19. Cohen, N. J. et al. Hippocampal system and declarative (relational) memory: summarizing the data from functional neuroimaging studies. Hippocampus 9, 83–98 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Giovanello, K. S., Schnye, D. M. & Verfaellie, M. A critical role for the anterior hippocampus in relational memory: evidence from a fMRI study comparing associative and item recognition. Hippocampus 14, 5–8 (2004).

    Article  PubMed  Google Scholar 

  21. Yonelinas, A. P. & Parks, C. M. Receiver operating characteristics (ROCs) in recognition memory: a review. Psychol. Bull. 133, 800–832 (2007).

    Article  PubMed  Google Scholar 

  22. Gold, J. J. et al. Item memory, source memory, and the medial temporal lobe: concordant findings from fMRI and memory-impaired patients. Proc. Natl Acad. Sci. USA 103, 9351–9356 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Stark, C. E., Bayley, P. J. & Squire, L. R. Recognition memory for single items and for associations is similarly impaired following damage limited to the hippocampal region. Learn. Mem. 9, 238–242 (2002).

    Article  PubMed Central  PubMed  Google Scholar 

  24. Kan, I. P., Giovanello, K. S., Schnyer, D. M., Makris, N. & Verfaellie, M. Role of the medial temporal lobes in relational memory: neuropsychological evidence from a cued recognition paradigm. Neuropsychologia 45, 2589–2597 (2007).

    Article  PubMed Central  PubMed  Google Scholar 

  25. Gold, J. J., Hopkins, R. O. & Squire, L. R. Single-item memory, associative memory, and the human hippocampus. Learn. Mem. 13, 644–649 (2006).

    Article  PubMed Central  PubMed  Google Scholar 

  26. Zola-Morgan, S., Squire, L. R. & Ramus, S. Severity of memory impairment in monkeys as a function of locus and extent of damage within the medial temporal lobe memory system. Hippocampus 4, 483–495 (1994).

    Article  CAS  PubMed  Google Scholar 

  27. Mumby, D. G. Perspectives on object-recognition memory following hippocampal damage: lessons from studies in rats. Behav. Brain Res. 127, 159–181 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Egan, J. P. Recognition memory and the operating characteristic. (Tech. Note AFCRC-TN-58–51). Bloomington: Indiana Univ., Hearing and Communication Laboratory (1958).

    Google Scholar 

  29. Rotello, C. M., Macmillan, N. A. & Reeder, J. A. Sum-difference theory of remembering and knowing: a two-dimensional signal detection model. Psychol. Rev. 111, 588–616 (2004).

    Article  PubMed  Google Scholar 

  30. Yonelinas, A. P. Receiver-operating characteristics in recognition memory: evidence for a dual-process model. J. Exp. Psychol. Learn. Mem. Cogn. 20, 1341–1354 (1994).

    Article  CAS  PubMed  Google Scholar 

  31. Aggleton, J. P., et al. Sparing of the familiarity component of recognition memory in a patient with hippocampal pathology. Neuropsychologia 43, 1810–1823 (2005).

    Article  PubMed  Google Scholar 

  32. Fortin, N. J., Wright, S. P. & Eichenbaum, H. Recollection-like memory retrieval in rats is dependent on the hippocampus. Nature 431, 188–191 (2004).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Yonelinas, A. P., Kroll, N. E., Dobbins, I., Lazzara, M. & Knight, R. T. Recollection and familiarity deficits in amnesia: convergence of remember–know, process dissociation, and receiver operating characteristic data. Neuropsychology 12, 323–339 (1998).

    Article  CAS  PubMed  Google Scholar 

  34. Heathcote, A. Item recognition memory and the ROC. J. Exp. Psychol. Learn. Mem. Cogn. 29, 1210–1230 (2003).

    Article  PubMed  Google Scholar 

  35. Rotello, C. M., Macmillan, N. A., Reeder, J. A. & Wong, M. The remember response: subject to bias, graded, and not a process-pure indicator of recollection. Psychon. Bull. Rev. 12, 865–873 (2005). This paper provides a demonstration that 'remember' responses are based on a continuous memory-strength signal, not a threshold recollection signal. The reported experiments also show why, in the past, some results have seemed to suggest otherwise.

    Article  PubMed  Google Scholar 

  36. Slotnick, S. D. & Dodson, C. S. Support for a continuous (single-process) model of recognition memory and source memory. Mem. Cogn. 33, 151–170 (2005).

    Article  Google Scholar 

  37. Smith, D. G. & Duncan, M. J. Testing theories of recognition memory by predicting performance across paradigms. J. Exp. Psychol. Learn. Mem. Cogn. 30, 615–625 (2004).

    Article  PubMed  Google Scholar 

  38. Glanzer, M., Kim, K., Hilford, A. & Adams, J. K. Slope of the receiver-operating characteristic in recognition memory. J. Exp. Psychol. Learn. Mem. Cogn. 25, 500–513 (1999).

    Article  Google Scholar 

  39. Koriat, A., Levy-Sadot, R., Edry, E. & de Marcas, G. What do we know about what we cannot remember? Accessing the semantic attributes of words that cannot be recalled. J. Exp. Psychol. Learn. Mem. Cogn. 29, 1095–1105 (2003).

    Article  PubMed  Google Scholar 

  40. Slotnick, S. D., Klein, S. A., Dodson, C. S. & Shimamura, A. P. An analysis of signal detection and threshold models of source memory. J. Exp. Psychol. Learn. Mem. Cogn. 26, 1499–1517 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Wais, P. E., Wixted, J. T., Hopkins, R. O. & Squire, L. R. The hippocampus supports both the recollection and the familiarity components of recognition memory. Neuron 49, 459–466 (2006). This study shows that the component processes (recollection and familiarity) that determine the shape of the ROC are both operative in memory-impaired patients with hippocampal lesions.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Rempel-Clower, N. L., Zola, S. M., Squire, L. R. & Amara, D. G. Three cases of enduring memory impairment after bilateral damage limited to the hippocampal formation. J. Neurosci. 16, 5233–5255 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Holdstock, J. S., Mayes, A. R., Gong, Q., Roberts, N. & Kapur, N. Item recognition is less impaired than recall and associative recognition in a patient with selective hippocampal damage. Hippocampus 15, 203–215 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Moscovitch, D. & McAndrews, M. P. Material-specific deficits in remembering in patients with unilateral temporal lobe epilepsy and excisions. Neuropsychologia 40, 1335–1342 (2002).

    Article  PubMed  Google Scholar 

  45. Gardiner, J. & Richardson-Klavehn, A., in The Oxford Handbook of Memory (eds Tulving, E. & Craik, F. I. M.) 229–244 (Oxford Univ. Press, New York, 2000).

    Google Scholar 

  46. Donaldson, W. The role of decision processes in remembering and knowing. Mem. Cogn. 24, 523–533 (1996).

    Article  CAS  Google Scholar 

  47. Dunn, J. C. Remember–know: a matter of confidence. Psychol. Rev. 111, 524–542 (2004).

    Article  PubMed  Google Scholar 

  48. Wixted, J. T. & Stretch, V. In defense of the signal detection interpretation of remember/know judgments. Psychon. Bull. Rev. 11, 616–641 (2004).

    Article  PubMed  Google Scholar 

  49. Rotello, C. M., Macmillan, N. A., Hicks, J. L. & Hautus, M. Interpreting the effects of response bias on remember–know judgments using signal-detection and threshold models. Mem. Cogn. 34, 1598–1614 (2006).

    Article  Google Scholar 

  50. Wais, P. E., Mickes, L. & Wixted, J. T. Remember/know judgments probe degrees of recollection. J. Cogn. Neurosci. (in the press).

  51. Wirth, S. et al. Single neurons in the monkey hippocampus and learning of new associations. Science 300, 1578–1581 (2003).

    Article  CAS  PubMed  Google Scholar 

  52. Davachi, L., Mitchell, J. P. & Wagner, A. D. Multiple routes to memory: distinct medial temporal lobe processes build item and source memories. Proc. Natl Acad. Sci. USA 100, 2157–2162 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kensinger, E. A. & Schacter, D. L. Amygdala activity is associated with the successful encoding of item, but not source, information for positive and negative stimuli. J. Neurosci. 26, 2564–2570 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ranganath, C. et al. Dissociable correlates of recollection and familiarity within the medial temporal lobes. Neuropsychologia 42, 2–13 (2003).

    Article  Google Scholar 

  55. Cansino, S., Maquet, P., Dolan, R. J. & Rugg, M. D. Brain activity underlying encoding and retrieval of source memory. Cereb. Cortex 12, 1048–1056 (2002).

    Article  PubMed  Google Scholar 

  56. Dobbins, I. G., Rice, H. J., Wagner, A. D. & Schacter, D. L. Memory orientation and success: separable neurocognitive components underlying episodic recognition. Neuropsychologia 41, 318–333 (2003).

    Article  PubMed  Google Scholar 

  57. Weis, S. et al. Process dissociation between contextual retrieval and item recognition. Neuroreport 15, 2729–2733 (2004).

    PubMed  Google Scholar 

  58. Yonelinas, A. P. The nature of recollection and familiarity: a review of 30 years of research. J. Mem. Lang. 46, 441–517 (2002).

    Article  Google Scholar 

  59. Otten, L. J. Fragments of a larger whole: retrieval cues constrain observed neural correlates of memory encoding. Cereb. Cortex 17, 2030–2038 (2006).

    Article  PubMed  Google Scholar 

  60. Daselaar, S. M., Fleck, M. S. & Cabeza, R. Triple dissociation in the medial temporal lobes: recollection, familiarity, and novelty. J. Neurophysiol. 96, 1902–1911 (2006).

    Article  CAS  PubMed  Google Scholar 

  61. Eldridge, L. L., Knowlton, B. J., Furmanski, C. S., Bookheimer, S. Y. & Engel, S. A. Remembering episodes: a selective role for the hippocampus during retrieval. Nature Neurosci. 3, 1149–1152 (2000).

    Article  CAS  PubMed  Google Scholar 

  62. Henson, R. N., Rugg, M. D., Shallice, T., Josephs, O. & Dolan, R. Recollection and familiarity in recognition memory: an event-related fMRI study. J. Neurosci. 19, 3962–3972 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Montaldi, D., Spencer, T. J., Roberts, N. & Mayes, A. R. The neural system that mediates familiarity memory. Hippocampus 16, 504–520 (2006).

    Article  PubMed  Google Scholar 

  64. Yonelinas, A. P., Otten, L., Shaw, K. N. & Rugg, M. D. Separating the brain regions involved in recollection and familiarity-strength in recognition memory. J. Neurosci. 25, 3002–3008 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Uncapher, M. R. & Rugg, M. D. Encoding and the durability of episodic memory: a functional magnetic resonance imaging study. J. Neurosci. 25, 7260–7267 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Eldridge, L. L., Engel, S. A., Zeineh, M. M., Bookheimer, S. Y. & Knowlton, B. J. A dissociation of encoding and retrieval processes in the human hippocampus. J. Neurosci. 25, 3280–3286 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Vilberg, K. L. & Rugg, M. D. Dissociation of the neural correlates of recognition memory according to familiarity, recollection, and amount of recollected information. Neuropsychologia 45, 2216–2225 (2007).

    Article  PubMed Central  PubMed  Google Scholar 

  68. Sperling, R. et al. Putting names to faces: successful encoding of associative memories activates the anterior hippocampal formation. Neuroimage 20, 1400–1410 (2003). This study of associative learning provides fMRI evidence that strong, recollection-based memories produce detectable hippocampal activity whereas weak, recollection-based memories do not. In this study, the strength of the memory, not recollection or familiarity, determined whether hippocampal activity was detected.

    Article  PubMed  Google Scholar 

  69. Rutishauser, U., Mamelak, A. N. & Schuman, E. N. Single-trial learning of novel stimuli by individual neurons of the human hippocampus–amygdala complex. Neuron 49, 805–813 (2006). This paper provides single-unit evidence of a familiarity signal in the human hippocampus during recognition memory performance.

    Article  CAS  PubMed  Google Scholar 

  70. Viskontas, I. V., Knowlton, B. J., Steinmetz, P. N. & Fried, I. Differences in mnemonic processing by neurons in the human hippocampus and parahippocampal regions. J. Cogn. Neurosci. 18, 1654–1662 (2006).

    Article  PubMed  Google Scholar 

  71. Suzuki, W. A. & Eichenbaum, H. The neurophysiology of memory. Ann. NY Acad. Sci. 911, 175–191 (2000).

    Article  CAS  PubMed  Google Scholar 

  72. Wilson, F. A. W., Brown, M. W. & Riches, I. P. in Cellular Mechanisms of Conditioning and Behavioral Plasticity (eds Woody, C. D., Alkon, D. L. & McGaugh, J. L.) 313–328 (Plenum, New York, 1988).

    Book  Google Scholar 

  73. Otto, T. & Eichenbaum, H. Neuronal activity in the hippocampus during delayed nonmatching to sample performance in rats: evidence for hippocampal processing in recognition memory. Hippocampus 2, 323–334 (1992).

    Article  CAS  PubMed  Google Scholar 

  74. Wood, E. R., Dudchenko, P. A. & Eichenbaum, H. The global record of memory in hippocampal neuronal activity. Nature 397, 613–616 (1999).

    Article  CAS  PubMed  Google Scholar 

  75. Miller, E. K., Li, L. & Desimone, R. A neural mechanism for working and recognition memory in inferior temporal cortex. Science 254, 1377–1379 (1991).

    Article  CAS  PubMed  Google Scholar 

  76. Miller, E. K., Li, L. & Desimone, R. Activity of neurons in anterior inferior temporal cortex during a short-term memory task. J. Neurosci. 13, 1460–1478 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Xiang, J. Z. & Brown, M. W. Differential neuronal encoding of novelty, familiarity and recency in regions of the anterior temporal lobe. Neuropharmacology 37, 657–676 (1998).

    Article  CAS  PubMed  Google Scholar 

  78. Gonsalves, B. D., Kahn, I., Curran, T., Norman, K. A. & Wagner, A. D. Memory strength and repetition suppression: multimodal imaging of medial temporal cortical contributions to recognition. Neuron 47, 751–761 (2005).

    Article  CAS  PubMed  Google Scholar 

  79. Henson, R. N., Cansino, S., Herron, J. E., Robb, W. G. & Rugg, M. D. A familiarity signal in human anterior medial temporal cortex? Hippocampus 13, 301–304 (2003).

    Article  CAS  PubMed  Google Scholar 

  80. Henson, R. N., Hornberger, M. & Rugg, M. D. Further dissociating the processes in recognition memory: an fMRI study. J. Cogn. Neurosci. 17, 1058–1073 (2005).

    Article  PubMed  Google Scholar 

  81. Fernández, G. & Tendolkar, I. The rhinal cortex: 'gatekeeper' of the declarative memory system. Trends Cogn. Sci. 10, 358–362 (2006).

    Article  PubMed  Google Scholar 

  82. Law, J. R. et al. fMRI activity during the gradual acquisition and expression of paired-associate memory. J. Neurosci. 25, 5720–5729 (2005). This study demonstrates activity in the perirhinal cortex and other medial temporal lobe structures during a recollection-based task of associative learning.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Kirwan, C. B. & Stark, C. E. L. Medial temporal lobe activation during encoding and retrieval of novel face–name pairs. Hippocampus 14, 919–930 (2004).

    Article  PubMed Central  PubMed  Google Scholar 

  84. Düzel, E. et al. Human hippocampal and parahippocampal activity during visual associative recognition memory for spatial and nonspatial stimulus configurations. J. Neurosci. 23, 9439–9444 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Jackson, O. & Schacter, D. L. Encoding activity in anterior medial temporal lobe supports subsequent associative recognition. Neuroimage 21, 456–462 (2004).

    Article  PubMed  Google Scholar 

  86. Staresina, B. P. & Davachi, L. Differential encoding mechanisms for subsequent associative recognition and free recall. J. Neurosci. 26, 9162–9172 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Tendolkar, I. et al. Probing the neural correlates of associative memory formation: a parametrically analyzed event-related functional MRI study. Brain Res. 1142, 159–168 (2007).

    Article  CAS  PubMed  Google Scholar 

  88. Kohler, S., Danckert, S., Gati, J. S. & Ravi, R. S. Novelty responses to relational and non-relational information in the hippocampus and the parahippocampal region: a comparison based on event-related fMRI. Hippocampus 15, 763–774 (2005).

    Article  PubMed  Google Scholar 

  89. Naya, Y., Yoshida, M. & Miyashita, Y. Forward processing of long-term associative memory in monkey inferotemporal cortex. J. Neurosci. 23, 2861–2871 (2003). This study provides single-unit evidence from monkeys of associative learning signals in the perirhinal cortex.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Messinger, A., Squire, L. R., Zola, S. M. & Albright, T. D. Neuronal representations of stimulus associations develop in the temporal lobe during learning. Proc. Natl Acad. Sci. USA 98, 12239–12244 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Yanike, M., Smith, A. C., Brown, E. N. & Suzuki, W. A. Changes in the selectivity of learning-related cells in perirhinal cortex during location-scene task in primates. Soc. Neurosci. Abst. 574.22 (2006).

  92. Murray, E. A., Baxter, M. G. & Gaffan, D. Monkeys with rhinal cortex damage or neurotoxic hippocampal lesions are impaired on spatial scene learning and object reversals. Behav. Neurosci. 112, 1291–1303 (1998).

    Article  CAS  PubMed  Google Scholar 

  93. Murray, E. A., Gaffan, D. & Mishkin, M. Neural substrates of visual stimulus–stimulus association in rhesus monkeys. J. Neurosci. 13, 4549–4561 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Suzuki, W. A. in Hippocampal Place Fields: Relevance to Learning and Memory (ed. Mizumori, S.) (Oxford Univ. Press) (in the press).

  95. Underwood, B. Attributes of memory. Psychol. Rev. 76, 559–573 (1969).

    Article  Google Scholar 

  96. Eichenbaum, H., Dudchenko, P., Wood, E., Shapiro, M. & Tanila, H. The hippocampus, memory, and place cells: is it spatial memory or a memory space? Neuron 23, 209–226 (1999).

    Article  CAS  PubMed  Google Scholar 

  97. Squire, L. R., Zola-Morgan, S. & Chen, K. Human amnesia and animal models of amnesia: performance of amnesic patients on tests designed for the monkey. Behav. Neurosci. 11, 210–221 (1988).

    Article  Google Scholar 

  98. Zola-Morgan, S., Squire, L. R., Rempel, N. L., Clower, R. P. & Amaral, D. G. Enduring memory impairment in monkeys after ischemic damage to the hippocampus. J. Neurosci. 9, 4355–4370 (1992).

    Article  Google Scholar 

  99. Alvarez, P., Zola-Morgan, S. & Squire, L. R. Damage limited to the hippocampal region produces long-lasting memory impairment in monkeys. J. Neurosci. 15, 3796–3807 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Beason-Held, L. L., Rosene, D. L., Killiany, R. J. & Moss, M. B. Hippocampal formation lesions produce memory impairment in the rhesus monkey. Hippocampus 9, 562–574 (1999).

    Article  CAS  PubMed  Google Scholar 

  101. Zola, S. M. et al. Impaired recognition memory in monkeys after damage limited to the hippocampal region. J. Neurosci. 20, 451–463 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Nemanic, S., Alvarado, M. C. & Bachevalier, J. The hippocampal/parahippocampal regions and recognition memory: insights from visual paired comparison versus object delayed nonmatching in monkeys. J. Neurosci. 24, 2013–2026 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Murray, E. A. & Mishkin, M. Object recognition and location memory in monkeys with excitotoxic lesions of the amygdala and hippocampus. J. Neurosci. 18, 6568–6582 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Mumby, D. G., Wood, E. R. & Pinel, J. P. J. Object-recognition memory is only mildly impaired in rats with lesions of the hippocampus and amygdala. Psychobiology 20, 18–27 (1992).

    Article  Google Scholar 

  105. Mumby, D. G., Pinel, J. P. J., Kornecook, T. J., Shen, M. J. & Redila, V. A. Memory deficits following lesions of hippocampus or amygdala in rat: assessment by an object-memory test battery. Psychobiology 23, 26–36 (1995).

    Article  Google Scholar 

  106. Clark, R. E., West, A. N., Zola, S. M. & Squire, L. R. Rats with lesions of the hippocampus are impaired on the delayed nonmatching-to-sample task. Hippocampus 11, 176–186 (2001).

    Article  CAS  PubMed  Google Scholar 

  107. Prusky, G. T., Douglas, R. M., Nelson, L., Shabanpoor, A. & Sutherland, R. J. Visual memory task for rats reveals an essential role for hippocampus and perirhinal cortex. Proc. Natl Acad. Sci. USA 101, 5064–5068 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Mumby, D. G. et al. Ischemia-induced object-recognition deficits in rats are attenuated by hippocampal ablation before or soon after ischemia. Behav. Neurosci. 110, 266–281 (1996).

    Article  CAS  PubMed  Google Scholar 

  109. Duva, C. A. et al. Disruption of spatial but not object-recognition memory by neurotoxic lesions of the dorsal hippocampus in rats. Behav. Neurosci. 111, 1184–1196 (1997).

    Article  CAS  PubMed  Google Scholar 

  110. McKee, R. D. & Squire, L. R. On the development of declarative memory. J. Exp. Psychol. Learn. Mem. Cogn. 19, 397–404 (1993).

    Article  CAS  PubMed  Google Scholar 

  111. Pascalis, O., Hunkin, N. M., Holdstock, J. S., Isaac, C. L. & Mayes, A. R. Visual paired comparison performance is impaired in a patient with selective hippocampal lesions and relatively intact item recognition. Neuropsychologia 42, 1293–1300 (2004).

    Article  CAS  PubMed  Google Scholar 

  112. Clark, R. E., Zola, S. M. & Squire, L. R. Impaired recognition memory in rats after damage to the hippocampus. J. Neurosci. 20, 8853–8860 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Rampon, C. et al. Enrichment induces structural changes and recovery from nonspatial memory deficits in CA1 NMDAR1-knockout mice. Nature Neurosci. 3, 238–244 (2000).

    Article  CAS  PubMed  Google Scholar 

  114. Gould, T. J. et al. Effects of hippocampal lesions on patterned motor learning in the rat. Brain Res. Bull. 58, 581–586 (2002).

    Article  CAS  PubMed  Google Scholar 

  115. Baker, K. B. & Kim, J. J. Effects of stress and hippocampal NMDA receptor antagonism on recognition memory in rats. Learn. Mem. 9, 58–65 (2002).

    Article  PubMed Central  PubMed  Google Scholar 

  116. Gaskin, S., Tremblay, A. & Mumby, D. G. Retrograde and anterograde object recognition in rats with hippocampal lesions. Hippocampus 13, 962–969 (2003).

    Article  PubMed  Google Scholar 

  117. Hammond, R. S., Tull, L. E. & Stackman, R. W. On the delay-dependent involvement of the hippocampus in object recognition memory. Neurobiol. Learn. Mem. 82, 26–34 (2004).

    Article  PubMed  Google Scholar 

  118. Broadbent, N. J., Squire, L. R. & Clark, R. E. Spatial memory, recognition memory, and the hippocampus. Proc. Natl Acad. Sci. USA 101, 14515–14520 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. de Lima, M. N., Luft, T., Roesler, R. & Schroder, N. Temporary inactivation reveals an essential role of the dorsal hippocampus in consolidation of object recognition memory. Neurosci. Lett. 405, 142–146 (2006).

    Article  PubMed  CAS  Google Scholar 

  120. Ainge, J. A. et al. The role of the hippocampus in object recognition in rats: examination of the influence of task parameters and lesion size. Behav. Brain Res. 167, 183–195 (2006).

    Article  PubMed  Google Scholar 

  121. Rossato, J. I. et al. On the role of hippocampal protein synthesis in the consolidation and reconsolidation of object recognition memory. Learn. Mem. 14, 36–46 (2007).

    Article  PubMed Central  PubMed  Google Scholar 

  122. Winters, B. D., Forwood, S. E., Cowell, R. A., Saksida, L. M. & Bussey, T. J. Double dissociation between the effects of peri-postrhinal cortex and hippocampal lesions on tests of object recognition and spatial memory: heterogeneity of function within the temporal lobe. J. Neurosci. 24, 5901–5908 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Forwood, S. E., Winters, B. D. & Bussey, T. J. Hippocampal lesions that abolish spatial maze performance spare object recognition memory at delays of up to 48 hours. Hippocampus 15, 347–355 (2005).

    Article  CAS  PubMed  Google Scholar 

  124. Mumby, D. G., Tremblay, A., Lecluse, V. & Lehmann, H. Hippocampal damage and anterograde object-recognition in rats after long retention intervals. Hippocampus 15, 1050–1056 (2005).

    Article  PubMed  Google Scholar 

  125. O'Brien, N., Lehmann, H., Lecluse, V. & Mumby, D. G. Enhanced context-dependency of object recognition in rats with hippocampal lesions. Behav. Brain Res. 170, 156–162 (2006).

    Article  PubMed  Google Scholar 

  126. Logothetis, N. K. & Wandell, B. A. Interpreting the BOLD signal. Annu. Rev. Physiol. 66, 735–769 (2004). This paper reviews the relationship between neural activity and the fMRI BOLD signal. A key conclusion is that the BOLD response can depend nonlinearly on the neural signal and that this nonlinearity can differ across brain regions.

    Article  CAS  PubMed  Google Scholar 

  127. Heeger, D. J. & Ress, D. What does fMRI tell us about neuronal activity? Nature Rev. Neurosci. 3, 142–151 (2002).

    Article  CAS  Google Scholar 

  128. Macmillan, N. A. & Creelman, C. D. Detection Theory: A User's Guide (2nd ed.) (Lawrence Erlbaum Associates, 2005).

    Google Scholar 

  129. Ratcliff, R., Sheu, C. F. & Gronlund, S. D. Testing global memory models using ROC curves. Psychol. Rev. 99, 518–535 (1992).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Medical Research Service of the Department of Veterans Affairs, the National Institute of Mental Health, the National Science Foundation, the James S. McDonnell Foundation and the Metropolitan Life Foundation. We thank W. Suzuki for her helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Larry R. Squire.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Larry R. Squire's homepage

Glossary

Recognition

The ability to distinguish a previously presented stimulus from one that was not previously presented.

Recall

The ability to remember a previously presented stimulus in the absence of that stimulus.

Hypoxia

A condition in which there is insufficient oxygen in blood or tissue.

Source memory

The recollection of information about how, when or where a particular stimulus was presented (that is, its source).

Associative recognition

The ability to distinguish a pair of stimuli that have previously been presented together from another pair of stimuli whose items were also previously presented, but as part of different pairs.

Old–new decision

The decision as to whether a test item in a recognition test has been presented before. If the subject thinks it has, the item is termed 'old'; if not, it is termed 'new'.

Target

An item on a recognition memory test that appeared on a list presented earlier (that is, an 'old' item).

Foil

An item on a recognition memory test that did not appear on a list presented earlier (that is, a 'new' item).

Single-unit neurophysiology

A method used to measure the activity of individual neurons in awake, behaving animals.This method has excellent spatial and temporal resolution but can survey the activity of relatively small numbers of neurons.

Functional MRI

(fMRI). An imaging technique that measures changes in haemoglobin oxygenation as blood flows to functioning areas of the brain.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Squire, L., Wixted, J. & Clark, R. Recognition memory and the medial temporal lobe: a new perspective. Nat Rev Neurosci 8, 872–883 (2007). https://doi.org/10.1038/nrn2154

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn2154

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing