Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks

Key Points

  • Oscillatory activity in the gamma frequency range (30–90 Hz) is a hallmark of the function of the hippocampal network. These oscillations are thought to be important for information processing.

  • Gamma oscillations can be replicated in in vitro models, in which the underlying mechanisms can be analysed systematically.

  • In all in vitro models, gamma oscillations are dependent on GABAA (γ-aminobutyric acid type A)-receptor-mediated inhibition, suggesting that these oscillations are primarily generated by networks of inhibitory interneurons.

  • Fast-spiking, parvalbumin-expressing basket cells are key components of the hippocampal interneuron network. They are extensively interconnected and fire action potentials that are phase-locked to the oscillations.

  • Interneuron network models that are based on mutual inhibition, assuming slow, weak and hyperpolarizing synapses, generate synchronized gamma activity if exposed to a tonic excitatory drive. However, these models are highly sensitive to heterogeneity in the drive.

  • Experimental analysis has revealed that basket cell–basket cell synapses are functionally specialized. They mediate fast, strong and shunting inhibition.

  • Realistic interneuron network models generate synchronized gamma activity with increased robustness against heterogeneity in the tonic excitatory drive.

  • Experimental analysis further reveals that basket cells are rapidly excited through gap junctions and fast glutamatergic synapses.

  • Both gap junctions and fast glutamatergic synapses stabilize gamma activity in interneuron networks.

  • Specialized synaptic properties turn the interneuron network into a robust gamma frequency oscillator. Therefore, interneuron networks might provide a precise reference signal for temporal encoding of information in principal neurons.

Abstract

Gamma frequency oscillations are thought to provide a temporal structure for information processing in the brain. They contribute to cognitive functions, such as memory formation and sensory processing, and are disturbed in some psychiatric disorders. Fast-spiking, parvalbumin-expressing, soma-inhibiting interneurons have a key role in the generation of these oscillations. Experimental analysis in the hippocampus and the neocortex reveals that synapses among these interneurons are highly specialized. Computational analysis further suggests that synaptic specialization turns interneuron networks into robust gamma frequency oscillators.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Networks of GABA-containing interneurons generate gamma oscillations in vitro.
Figure 2: Basket cells fire action potentials that are phase-locked to gamma oscillations in vivo and in vitro.
Figure 3: Functional specialization of GABA-mediated synaptic transmission in cortical interneuron networks in vitro.
Figure 4: Synchronization properties of interneuron network models.
Figure 5: 'Realistic' interneuron network models with fast, strong and shunting inhibitory synapses as well as gap junctions are optimal gamma frequency oscillators.
Figure 6: Several synaptic mechanisms underlie synchronization in interneuron networks during gamma oscillations.

Similar content being viewed by others

References

  1. Buzsáki, G. & Draguhn, A. Neuronal oscillations in cortical networks. Science 304, 1926–1929 (2004).

    PubMed  Google Scholar 

  2. Gray, C. M. & Singer, W. Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. Proc. Natl Acad. Sci. USA 86, 1698–1702 (1989).

    CAS  PubMed  Google Scholar 

  3. Ribary, U. et al. Magnetic field tomography of coherent thalamocortical 40-Hz oscillations in humans. Proc. Natl Acad. Sci. USA 88, 11037–11041 (1991).

    CAS  PubMed  Google Scholar 

  4. Hopfield, J. J. Pattern recognition computation using action potential timing for stimulus representation. Nature 376, 33–36 (1995).

    CAS  PubMed  Google Scholar 

  5. Buzsáki, G. & Chrobak, J. J. Temporal structure in spatially organized neuronal ensembles: a role for interneuronal networks. Curr. Opin. Neurobiol. 5, 504–510 (1995).

    PubMed  Google Scholar 

  6. Lisman, J. E. & Idiart, M. A. Storage of 7 +/− 2 short-term memories in oscillatory subcycles. Science 267, 1512–1515 (1995).

    CAS  PubMed  Google Scholar 

  7. Lisman, J. E. Relating hippocampal circuitry to function: recall of memory sequences by reciprocal dentate-CA3 interactions. Neuron 22, 233–242 (1999).

    CAS  PubMed  Google Scholar 

  8. Spencer, K. M. et al. Abnormal neural synchrony in schizophrenia. J. Neurosci. 23, 7407–7411 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Lewis, D. A., Hashimoto, T. & Volk, D. W. Cortical inhibitory neurons and schizophrenia. Nature Rev. Neurosci. 6, 312–324 (2005).

    CAS  Google Scholar 

  10. Soltesz, I. & Deschênes, M. Low- and high-frequency membrane potential oscillations during theta activity in CA1 and CA3 pyramidal neurons of the rat hippocampus under ketamine-xylazine anesthesia. J. Neurophysiol. 70, 97–116 (1993).

    CAS  PubMed  Google Scholar 

  11. Buzsáki, G., Leung, L. S. & Vanderwolf, C. H. Cellular bases of hippocampal EEG in the behaving rat. Brain Res. Rev. 6, 139–171 (1983).

    Google Scholar 

  12. Bragin, A. et al. Gamma (40–100 Hz) oscillation in the hippocampus of the behaving rat. J. Neurosci. 15, 47–60 (1995). A key paper that analyses the properties of hippocampal gamma oscillations in vivo in the non-anesthetized rat. Gamma oscillations occur in all subfields, with the highest power in the dentate gyrus.

    CAS  PubMed  Google Scholar 

  13. Csicsvari, J., Jamieson, B., Wise, K. D. & Buzsáki, G. Mechanisms of gamma oscillations in the hippocampus of the behaving rat. Neuron 37, 311–322 (2003). Shows directly that there are two gamma oscillators in the hippocampus in vivo , one in the dentate gyrus and one in the CA3–CA1 region. The coupling strength between the two oscillators varies during both theta and non-theta states.

    CAS  PubMed  Google Scholar 

  14. Förster, E., Zhao, S. & Frotscher, M. Laminating the hippocampus. Nature Rev. Neurosci. 7, 259–267 (2006).

    Google Scholar 

  15. O'Keefe, J. & Recce, M. L. Phase relationship between hippocampal place units and the EEG theta rhythm. Hippocampus 3, 317–330 (1993).

    CAS  PubMed  Google Scholar 

  16. Skaggs, W. E., McNaughton, B. L., Wilson, M. A. & Barnes, C. A. Theta phase precession in hippocampal neuronal populations and the compression of temporal sequences. Hippocampus 6, 149–172 (1996).

    CAS  PubMed  Google Scholar 

  17. Whittington, M. A., Traub, R. D. & Jefferys, J. G. R. Synchronized oscillations in interneuron networks driven by metabotropic glutamate receptor activation. Nature 373, 612–615 (1995). The first paper to demonstrate that gamma oscillations are generated in pharmacologically isolated networks of inhibitory interneurons in the presence of a tonic excitatory drive (activation of mGluRs after tetanic stimulation).

    CAS  PubMed  Google Scholar 

  18. Fisahn, A., Pike, F. G., Buhl, E. H. & Paulsen, O. Cholinergic induction of network oscillations at 40 Hz in the hippocampus in vitro. Nature 394, 186–189 (1998).

    CAS  PubMed  Google Scholar 

  19. Fellous, J. M. & Sejnowski, T. J. Cholinergic induction of oscillations in the hippocampal slice in the slow (0.5–2 Hz), theta (5–12 Hz), and gamma (35–70 Hz) bands. Hippocampus 10, 187–197 (2000).

    CAS  PubMed  Google Scholar 

  20. Hájos, N. et al. Cannabinoids inhibit hippocampal GABAergic transmission and network oscillations. Eur. J. Neurosci. 12, 3239–3249 (2000).

    PubMed  Google Scholar 

  21. Fisahn, A. et al. Distinct roles for the kainate receptor subunits GluR5 and GluR6 in kainate-induced hippocampal gamma oscillations. J. Neurosci. 24, 9658–9668 (2004). Highly detailed analysis of the cellular and molecular mechanisms of kainate-induced gamma oscillations in the hippocampal CA3 region.

    CAS  PubMed  Google Scholar 

  22. LeBeau, F. E. N., Towers, S. K., Traub, R. D., Whittington, M. A. & Buhl, E. H. Fast network oscillations induced by potassium transients in the rat hippocampus in vitro. J. Physiol. (Lond.) 542, 167–179 (2002).

    CAS  Google Scholar 

  23. Mann, E. O., Suckling, J. M., Hajos, N., Greenfield, S. A. & Paulsen, O. Perisomatic feedback inhibition underlies cholinergically induced fast network oscillations in the rat hippocampus in vitro. Neuron 45, 105–117 (2005).

    CAS  PubMed  Google Scholar 

  24. Towers, S. K. et al. Fast network oscillations in the rat dentate gyrus in vitro. J. Neurophysiol. 87, 1165–1168 (2002).

    PubMed  Google Scholar 

  25. Pöschel, B., Draguhn, A. & Heinemann, U. Glutamate-induced gamma oscillations in the dentate gyrus of rat hippocampal slices. Brain Res. 938, 22–28 (2002).

    PubMed  Google Scholar 

  26. Cunningham, M. O., Davies, C. H., Buhl, E. H., Kopell, N. & Whittington, M. A. Gamma oscillations induced by kainate receptor activation in the entorhinal cortex in vitro. J. Neurosci. 23, 9761–9769 (2003).

    CAS  PubMed  Google Scholar 

  27. Buhl, E. H., Tamás, G. & Fisahn, A. Cholinergic activation and tonic excitation induce persistent gamma oscillations in mouse somatosensory cortex in vitro. J. Physiol. (Lond.) 513, 117–126 (1998).

    CAS  Google Scholar 

  28. Traub, R. D., Whittington, M. A., Colling, S. B., Buzsáki, G. & Jefferys, J. G. R. Analysis of gamma rhythms in the rat hippocampus in vitro and in vivo. J. Physiol. (Lond.) 493, 471–484 (1996).

    CAS  Google Scholar 

  29. McBain, C. J., DiChiara, T. J. & Kauer, J. A. Activation of metabotropic glutamate receptors differentially affects two classes of hippocampal interneurons and potentiates excitatory synaptic transmission. J. Neurosci. 14, 4433–4445 (1994).

    CAS  PubMed  Google Scholar 

  30. van Hooft, J. A., Giuffrida, R., Blatow, M. & Monyer, H. Differential expression of group I metabotropic glutamate receptors in functionally distinct hippocampal interneurons. J. Neurosci. 20, 3544–3551 (2000).

    CAS  PubMed  Google Scholar 

  31. Fisahn, A. et al. Muscarinic induction of hippocampal gamma oscillations requires coupling of the M1 receptor to two mixed cation currents. Neuron 33, 615–624 (2002).

    CAS  PubMed  Google Scholar 

  32. Traub, R. D. et al. A model of gamma-frequency network oscillations induced in the rat CA3 region by carbachol in vitro. Eur. J. Neurosci. 12, 4093–4106 (2000). Principal neuron–interneuron model of carbachol-induced gamma oscillations in the CA3 region. In this model, spontaneous EPSCs at principal neuron–interneuron synapses, generated by ectopic action potentials in a network of gap-junction coupled principal neuron axons, have a crucial role.

    CAS  PubMed  Google Scholar 

  33. Traub, R. D. et al. Gap junctions between interneuron dendrites can enhance synchrony of gamma oscillations in distributed networks. J. Neurosci. 21, 9478–9486 (2001).

    CAS  PubMed  Google Scholar 

  34. Hormuzdi, S. G. et al. Impaired electrical signaling disrupts gamma frequency oscillations in connexin 36-deficient mice. Neuron 31, 487–495 (2001).

    CAS  PubMed  Google Scholar 

  35. Buhl, D. L., Harris, K. D., Hormuzdi, S. G., Monyer, H. & Buzsáki, G. Selective impairment of hippocampal gamma oscillations in connexin-36 knock-out mouse in vivo. J. Neurosci. 23, 1013–1018 (2003).

    CAS  PubMed  Google Scholar 

  36. Buhl, E. H., Halasy, K. & Somogyi, P. Diverse sources of hippocampal unitary inhibitory postsynaptic potentials and the number of synaptic release sites. Nature 368, 823–828 (1994).

    CAS  PubMed  Google Scholar 

  37. Pawelzik, H., Hughes, D. I. & Thomson, A. M. Physiological and morphological diversity of immunocytochemically defined parvalbumin- and cholecystokinin-positive interneurones in CA1 of the adult rat hippocampus. J. Comp. Neurol. 443, 346–367 (2002).

    PubMed  Google Scholar 

  38. Freund, T. F. & Buzsáki, G. Interneurons of the hippocampus. Hippocampus 6, 347–470 (1996). An exhaustive review of both morphological and functional properties of GABA-containing interneurons in the hippocampus.

    CAS  PubMed  Google Scholar 

  39. Somogyi, P. & Klausberger, T. Defined types of cortical interneurone structure space and spike timing in the hippocampus. J. Physiol. (Lond.) 562, 9–26 (2005).

    CAS  Google Scholar 

  40. Kawaguchi, Y. & Kubota Y. GABAergic cell subtypes and their synaptic connections in rat frontal cortex. Cereb. Cortex 7, 476–486 (1997).

    CAS  PubMed  Google Scholar 

  41. Gupta, A., Wang, Y. & Markram, H. Organizing principles for a diversity of GABAergic interneurons and synapses in the neocortex. Science 287, 273–278 (2000).

    CAS  PubMed  Google Scholar 

  42. Soltesz, I. Diversity in the Neuronal Machine (Oxford Univ. Press, Oxford, 2006).

    Google Scholar 

  43. Kawaguchi, Y., Katsumaru, H., Kosaka, T., Heizmann, C. W. & Hama, K. Fast spiking cells in rat hippocampus (CA1 region) contain the calcium-binding protein parvalbumin. Brain Res. 416, 369–374 (1987).

    CAS  PubMed  Google Scholar 

  44. Sik, A., Penttonen, M., Ylinen, A. & Buzsáki, G. Hippocampal CA1 interneurons: an in vivo intracellular labeling study. J. Neurosci. 15, 6651–6665 (1995).

    CAS  PubMed  Google Scholar 

  45. Kisvárday, Z. F., Beaulieu, C. & Eysel, U. T. Network of GABAergic large basket cells in cat visual cortex (area 18): implication for lateral disinhibition. J. Comp. Neurol. 327, 398–415 (1993).

    PubMed  Google Scholar 

  46. Gulyás, A. I., Megias, M., Emri, Z. & Freund, T. F. Total number and ratio of excitatory and inhibitory synapses converging onto single interneurons of different types in the CA1 area of the rat hippocampus. J. Neurosci. 19, 10082–10097 (1999).

    PubMed  Google Scholar 

  47. Cobb, S. R., Buhl, E. H., Halasy, K., Paulsen, O. & Somogyi, P. Synchronization of neuronal activity in hippocampus by individual GABAergic interneurons. Nature 378, 75–78 (1995).

    CAS  PubMed  Google Scholar 

  48. Gillies, M. J. et al. A model of atropine-resistant theta oscillations in rat hippocampal area CA1. J. Physiol. (Lond.) 543, 779–793 (2002).

    CAS  Google Scholar 

  49. Jonas, P., Bischofberger, J., Fricker, D. & Miles, R. Interneuron Diversity series: Fast in, fast out — temporal and spatial signal processing in hippocampal interneurons. Trends Neurosci. 27, 30–40 (2004).

    CAS  PubMed  Google Scholar 

  50. Pike, F. G. et al. Distinct frequency preferences of different types of rat hippocampal neurones in response to oscillatory input currents. J. Physiol. (Lond.) 529, 205–213 (2000).

    CAS  Google Scholar 

  51. Penttonen, M., Kamondi, A., Acsády, L. & Buzsáki, G. Gamma frequency oscillation in the hippocampus of the rat: intracellular analysis in vivo. Eur. J. Neurosci. 10, 718–728 (1998).

    CAS  PubMed  Google Scholar 

  52. Hájos, N. et al. Spike timing of distinct types of GABAergic interneuron during hippocampal gamma oscillations in vitro. J. Neurosci. 24, 9127–9137 (2004). Whole-cell recording from identified interneuron types during carbachol-induced gamma oscillations in the CA3 subfield in vitro . Various types of interneuron (for example, basket cells and oriens alveus–lacunosum moleculare interneurons) fire at different frequencies and phases.

    PubMed  Google Scholar 

  53. Gloveli, T. et al. Differential involvement of oriens/pyramidale interneurones in hippocampal network oscillations in vitro. J. Physiol. (Lond.) 562, 131–147 (2005). Whole-cell recording from identified interneuron types during kainate-induced gamma oscillations in the hippocampal CA3 region in vitro . Basket cells fire, on average, 1.2 action potentials per gamma cycle.

    CAS  Google Scholar 

  54. Freund, T. F. Interneuron Diversity series: Rhythm and mood in perisomatic inhibition. Trends Neurosci. 26, 489–495 (2003).

    CAS  PubMed  Google Scholar 

  55. Hefft, S. & Jonas, P. Asynchronous GABA release generates long-lasting inhibition at a hippocampal interneuron–principal neuron synapse. Nature Neurosci. 8, 1319–1328 (2005).

    CAS  PubMed  Google Scholar 

  56. Christen, M. Build it, and you understand it. Bioworld 7, 6–8 (2002).

    Google Scholar 

  57. Wang, X.-J. & Rinzel, J. Alternating and synchronous rhythms in reciprocally inhibitory model neurons. Neural Comput. 4, 84–97 (1992).

    Google Scholar 

  58. Hansel, D., Mato, G. & Meunier, C. Phase reduction and neuronal modeling. Concepts Neurosci. 4, 193–210 (1993).

    Google Scholar 

  59. van Vreeswijk, C., Abbott, L. F. & Ermentrout, G. B. When inhibition not excitation synchronizes neural firing. J. Comp. Neurosci. 1, 313–321 (1994). A key paper demonstrating that synaptic inhibition rather than excitation leads to synchronized activity in a two-neuron system if the rise time of synaptic events is longer than the duration of action potentials.

    CAS  Google Scholar 

  60. White, J. A., Chow, C. C., Ritt, J., Soto-Treviño, C. & Kopell, N. Synchronization and oscillatory dynamics in heterogeneous, mutually inhibited neurons. J. Comput. Neurosci. 5, 5–16 (1998).

    CAS  PubMed  Google Scholar 

  61. Pfeuty, B., Mato, G., Golomb, D. & Hansel, D. Electrical synapses and synchrony: the role of intrinsic currents. J. Neurosci. 23, 6280–6294 (2003).

    CAS  PubMed  Google Scholar 

  62. Stiefel, K. M., Wespatat, V., Gutkin, B., Tennigkeit, F. & Singer, W. Phase dependent sign changes of GABAergic synaptic input explored in-silicio and in-vitro. J. Comput. Neurosci. 19, 71–85 (2005).

    PubMed  Google Scholar 

  63. Koch, C. Biophysics of Computation (Oxford Univ. Press, Oxford, 1999).

    Google Scholar 

  64. Mirollo, R. E. & Strogatz, S. H. Synchronization of pulse-coupled biological oscillators. SIAM J. Appl. Math. 6, 1645–1662 (1990).

    Google Scholar 

  65. Wang, X.-J. & Buzsáki, G. Gamma oscillation by synaptic inhibition in a hippocampal interneuronal network model. J. Neurosci. 16, 6402–6413 (1996). A landmark modelling study that systematically examines the conditions under which coherent gamma oscillations are generated in interneuron networks.

    CAS  PubMed  Google Scholar 

  66. Tiesinga, P. H. E. & José, J. V. Robust gamma oscillations in networks of inhibitory hippocampal interneurons. Network Comput. Neural. Syst. 11, 1–23 (2000).

    CAS  Google Scholar 

  67. Maex, R. & de Schutter, E. Resonant synchronization in heterogeneous networks of inhibitory neurons. J. Neurosci. 23, 10503–10514 (2003). Emphasizes the importance of delays (conduction and synaptic) for synchronization in interneuron network models.

    CAS  PubMed  Google Scholar 

  68. Vida, I., Bartos, M. & Jonas, P. Shunting inhibition improves robustness of gamma oscillations in hippocampal interneuron networks by homogenizing firing rates. Neuron 49, 107–117 (2006).

    CAS  PubMed  Google Scholar 

  69. Ermentrout, B. Type I membranes, phase resetting curves, and synchrony. Neural Comput. 8, 979–1001 (1996).

    CAS  PubMed  Google Scholar 

  70. Parra, P., Gulyás, A. I. & Miles, R. How many subtypes of inhibitory cells in the hippocampus? Neuron 20, 983–993 (1998).

    CAS  PubMed  Google Scholar 

  71. Neltner, L., Hansel, D., Mato, G. & Meunier, C. Synchrony in heterogeneous networks of spiking neurons. Neural Comput. 12, 1607–1641 (2000).

    CAS  PubMed  Google Scholar 

  72. Brunel, N. & Hakim, V. Fast global oscillations in networks of integrate-and-fire neurons with low firing rates. Neural Comput. 11, 1621–1671 (1999). Shows that weak stochastic synchronization occurs in inhibitory interneuron networks if strong coupling is combined with noise. Weak stochastic synchronization differs from strong synchronization in its lower sensitivity to heterogeneities.

    CAS  PubMed  Google Scholar 

  73. Brunel, N. & Hansel, D. How noise affects the synchronization properties of recurrent networks of inhibitory neurons. Neural Comput. 18, 1066–1110 (2006).

    PubMed  Google Scholar 

  74. Cobb, S. R. et al. Synaptic effects of identified interneurons innervating both interneurons and pyramidal cells in the rat hippocampus. Neuroscience 79, 629–648 (1997).

    CAS  PubMed  Google Scholar 

  75. Bartos, M., Vida, I., Frotscher, M., Geiger, J. R. P. & Jonas, P. Rapid signaling at inhibitory synapses in a dentate gyrus interneuron network. J. Neurosci. 21, 2687–2698 (2001).

    CAS  PubMed  Google Scholar 

  76. Bartos, M. et al. Fast synaptic inhibition promotes synchronized gamma oscillations in hippocampal interneuron networks. Proc. Natl Acad. Sci. USA 99, 13222–13227 (2002).

    CAS  PubMed  Google Scholar 

  77. Tamás, G., Somogyi, P. & Buhl, E. H. Differentially interconnected networks of GABAergic interneurons in the visual cortex of the cat. J. Neurosci. 18, 4255–4270 (1998).

    PubMed  Google Scholar 

  78. Tamás, G., Buhl, E. H., Lorincz, A. & Somogyi, P. Proximally targeted GABAergic synapses and gap junctions synchronize cortical interneurons. Nature Neurosci. 3, 366–371 (2000).

    PubMed  Google Scholar 

  79. Galarreta, M. & Hestrin, S. A network of fast-spiking cells in the neocortex connected by electrical synapses. Nature 402, 72–75 (1999).

    CAS  PubMed  Google Scholar 

  80. Galarreta, M. & Hestrin, S. Electrical and chemical synapses among parvalbumin fast-spiking GABAergic interneurons in adult mouse neocortex. Proc. Natl Acad. Sci. USA 99, 12438–12443 (2002). Demonstrates fast inhibition at GABA synapses between fast-spiking, parvalbumin-expressing interneurons in the neocortex. Together with similar results obtained in the hippocampus, these results suggest that fast inhibition at basket cell–basket cell synapses is a general phenomenon occurring throughout the cortex.

    CAS  PubMed  Google Scholar 

  81. Kraushaar, U. & Jonas, P. Efficacy and stability of quantal GABA release at a hippocampal interneuron–principal neuron synapse. J. Neurosci. 20, 5594–5607 (2000).

    CAS  PubMed  Google Scholar 

  82. Klausberger, T., Roberts, J. D. B. & Somogyi, P. Cell type- and input-specific differences in the number and subtypes of synaptic GABAA receptors in the hippocampus. J. Neurosci. 22, 2513–2521 (2002).

    CAS  PubMed  Google Scholar 

  83. Hefft, S., Kraushaar, U., Geiger, J. R. P. & Jonas, P. Presynaptic short-term depression is maintained during regulation of transmitter release at a GABAergic synapse in rat hippocampus. J. Physiol. (Lond.) 539, 201–208 (2002).

    CAS  Google Scholar 

  84. Alger, B. E. & Nicoll, R. A. GABA-mediated biphasic inhibitory responses in hippocampus. Nature 281, 315–317 (1979).

    CAS  PubMed  Google Scholar 

  85. Andersen, P., Dingledine, R., Gjerstad, L., Langmoen, I. A. & Laursen, A. M. Two different responses of hippocampal pyramidal cells to application of γ-amino butyric acid. J. Physiol. (Lond.) 305, 279–296 (1980).

    CAS  Google Scholar 

  86. Martina, M., Royer, S. & Paré, D. Cell-type-specific GABA responses and chloride homeostasis in the cortex and amygdala. J. Neurophysiol. 86, 2887–2895 (2001).

    CAS  PubMed  Google Scholar 

  87. Chavas, J. & Marty, A. Coexistence of excitatory and inhibitory GABA synapses in the cerebellar interneuron network. J. Neurosci. 23, 2019–2031 (2003).

    CAS  PubMed  Google Scholar 

  88. Woodin, M. A., Ganguly, K. & Poo, M.-M. Coincident pre- and postsynaptic activity modifies GABAergic synapses by postsynaptic changes in Cl transporter activity. Neuron 39, 807–820 (2003).

    CAS  PubMed  Google Scholar 

  89. Katsumaru, H., Kosaka, T., Heizmann, C. W. & Hama, K. Gap junctions on GABAergic neurons containing the calcium-binding protein parvalbumin in the rat hippocampus (CA1 region). Exp. Brain Res. 72, 363–370 (1988).

    CAS  PubMed  Google Scholar 

  90. Fukuda, T., Kosaka, T., Singer, W. & Galuske, R. A. W. Gap junctions among dendrites of cortical GABAergic neurons establish a dense and widespread intercolumnar network. J. Neurosci. 26, 3434–3443 (2006).

    CAS  PubMed  Google Scholar 

  91. Gibson, J. R., Beierlein, M. & Connors, B. W. Two networks of electrically coupled inhibitory neurons in neocortex. Nature 402, 75–79 (1999).

    CAS  PubMed  Google Scholar 

  92. Bennett, M. V. & Zukin, R. S. Electrical coupling and neuronal synchronization in the mammalian brain. Neuron 41, 495–511 (2004).

    CAS  PubMed  Google Scholar 

  93. Schmitz, D. et al. Axo-axonal coupling: a novel mechanism for ultrafast neuronal communication. Neuron 31, 831–840 (2001).

    CAS  PubMed  Google Scholar 

  94. Meyer, A. H., Katona, I., Blatow, M., Rozov, A. & Monyer, H. In vivo labeling of parvalbumin-positive interneurons and analysis of electrical coupling in identified neurons. J. Neurosci. 22, 7055–7064 (2002).

    CAS  PubMed  Google Scholar 

  95. Deans, M. R., Gibson J. R., Sellitto, C., Connors, B. W. & Paul, D. L. Synchronous activity of inhibitory networks in neocortex requires electrical synapses containing connexin36. Neuron 31, 477–485 (2001).

    CAS  PubMed  Google Scholar 

  96. Geiger, J. R. P., Lübke, J., Roth, A., Frotscher, M. & Jonas, P. Submillisecond AMPA receptor-mediated signaling at a principal neuron–interneuron synapse. Neuron 18, 1009–1023 (1997).

    CAS  PubMed  Google Scholar 

  97. Miles, R. Synaptic excitation of inhibitory cells by single CA3 hippocampal pyramidal cells of the guinea-pig in vitro. J. Physiol. (Lond.) 428, 61–77 (1990). The first paper to show fast and strong synaptic excitation of interneurons by pyramidal cells.

    CAS  Google Scholar 

  98. Gulyás, A. I. et al. Hippocampal pyramidal cells excite inhibitory neurons through a single release site. Nature 366, 683–687 (1993).

    PubMed  Google Scholar 

  99. Ali, A. B., Deuchars, J., Pawelzik, H. & Thomson, A. M. CA1 pyramidal to basket and bistratified cell EPSPs: dual intracellular recordings in rat hippocampal slices. J. Physiol. (Lond.) 507, 201–217 (1998).

    CAS  Google Scholar 

  100. Biro, A. A., Holderith, N. B. & Nusser, Z. Quantal size is independent of the release probability at hippocampal excitatory synapses. J. Neurosci. 25, 223–232 (2005).

    CAS  PubMed  Google Scholar 

  101. Buhl, E. H. et al. Effect, number and location of synapses made by single pyramidal cells onto aspiny interneurones of cat visual cortex. J. Physiol. (Lond.) 500, 689–713 (1997).

    CAS  Google Scholar 

  102. Angulo, M. C., Staiger, J. F., Rossier, J. & Audinat, E. Developmental synaptic changes increase the range of integrative capabilities of an identified excitatory neocortical connection. J. Neurosci. 19, 1566–1576 (1999).

    CAS  PubMed  Google Scholar 

  103. Galarreta, M. & Hestrin, S. Spike transmission and synchrony detection in networks of GABAergic interneurons. Science 292, 2295–2299 (2001).

    CAS  PubMed  Google Scholar 

  104. Geiger, J. R. P. et al. Relative abundance of subunit mRNAs determines gating and Ca2+ permeability of AMPA receptors in principal neurons and interneurons in rat CNS. Neuron 15, 193–204 (1995).

    CAS  PubMed  Google Scholar 

  105. Jonas, P., Major, G. & Sakmann, B. Quantal components of unitary EPSCs at the mossy fibre synapse on CA3 pyramidal cells of rat hippocampus. J. Physiol. (Lond.) 472, 615–663 (1993).

    CAS  PubMed Central  Google Scholar 

  106. Nusser, Z. et al. Cell type and pathway dependence of synaptic AMPA receptor number and variability in the hippocampus. Neuron 21, 545–559 (1998).

    CAS  PubMed  Google Scholar 

  107. Pfeuty, B., Mato, G., Golomb, D. & Hansel, D. The combined effects of inhibitory and electrical synapses in synchrony. Neural Comput. 17, 633–670 (2005).

    PubMed  Google Scholar 

  108. Kopell, N. & Ermentrout, B. Chemical and electrical synapses perform complementary roles in the synchronization of interneuronal networks. Proc. Natl Acad. Sci. USA 101, 15482–15487 (2004). Shows that gap junctions complement inhibitory synapses in the generation of oscillations by permitting the propagation of both suprathreshold and subthreshold potentials.

    CAS  PubMed  Google Scholar 

  109. Whittington, M. A. & Traub, R. D. Interneuron Diversity series: Inhibitory interneurons and network oscillations in vitro. Trends Neurosci. 26, 676–682 (2003).

    CAS  PubMed  Google Scholar 

  110. Brunel, N. & Wang, X.-J. What determines the frequency of fast network oscillations with irregular neural discharges? I. Synaptic dynamics and excitation-inhibition balance. J. Neurophysiol. 90, 415–430 (2003). Simulates the oscillatory activity of a principal neuron–interneuron network in the weak stochastic synchronization regime. The study emphasizes the importance of delays in setting network frequency.

    PubMed  Google Scholar 

  111. Traub, R. D., Whittington, M. A., Stanford, I. M. & Jefferys, J. G. R. A mechanism for generation of long-range synchronous fast oscillations in the cortex. Nature 383, 621–624 (1996).

    CAS  PubMed  Google Scholar 

  112. Pearce, R. A. Physiological evidence for two distinct GABAA responses in rat hippocampus. Neuron 10, 189–200 (1993).

    CAS  PubMed  Google Scholar 

  113. White, J. A., Banks, M. I., Pearce, R. A. & Kopell, N. J. Networks of interneurons with fast and slow γ-aminobutyric acid type A (GABAA) kinetics provide substrate for mixed gamma–theta rhythm. Proc. Natl Acad. Sci. USA 97, 8128–8133 (2000).

    CAS  PubMed  Google Scholar 

  114. Lee, A. K., Manns, I. D., Sakmann, B. & Brecht, M. Whole-cell recordings in freely moving rats. Neuron 51, 399–407 (2006).

    CAS  PubMed  Google Scholar 

  115. Wulff, P. & Wisden W. Dissecting neural circuitry by combining genetics and pharmacology. Trends Neurosci. 28, 44–50 (2005).

    CAS  PubMed  Google Scholar 

  116. Buzsáki, G. Large-scale recording of neuronal ensembles. Nature Neurosci. 7, 446–451 (2004).

    PubMed  Google Scholar 

  117. Traub, R. D. et al. Single-column thalamocortical network model exhibiting gamma oscillations, sleep spindles, and epileptogenic bursts. J. Neurophysiol. 93, 2194–2232 (2005).

    PubMed  Google Scholar 

  118. Buzsáki, G., Geisler, C., Henze, D. A. & Wang, X.-J. Interneuron Diversity series: Circuit complexity and axon wiring economy of cortical interneurons. Trends Neurosci. 27, 186–193 (2004).

    PubMed  Google Scholar 

  119. Strogatz, S. H. Exploring complex networks. Nature 410, 268–276 (2001).

    CAS  PubMed  Google Scholar 

  120. Sik, A., Ylinen, A., Penttonen, M. & Buzsáki, G. Inhibitory CA1–CA3–hilar region feedback in the hippocampus. Science 265, 1722–1724 (1994).

    CAS  PubMed  Google Scholar 

  121. Ceranik, K. et al. A novel type of GABAergic interneuron connecting the input and the output regions of the hippocampus. J. Neurosci. 17, 5380–5394 (1997).

    CAS  PubMed  Google Scholar 

  122. Vida, I., Halasy, K., Szinyei, C., Somogyi, P. & Buhl, E. H. Unitary IPSPs evoked by interneurons at the stratum radiatum–stratum lacunosum-moleculare border in the CA1 area of the rat hippocampus in vitro. J. Physiol. (Lond.) 506, 755–773 (1998).

    CAS  Google Scholar 

  123. Ernst, U., Pawelzik, K. & Geisel, T. Synchronization induced by temporal delays in pulse-coupled oscillators. Phys. Rev. Lett. 74, 1570–1573 (1995).

    CAS  PubMed  Google Scholar 

  124. Gulledge, A. T. & Stuart, G. J. Excitatory actions of GABA in the cortex. Neuron 37, 299–309 (2003).

    CAS  PubMed  Google Scholar 

  125. Kaila, K. Ionic basis of GABAA receptor channel function in the nervous system. Prog. Neurobiol. 42, 489–537 (1994).

    CAS  PubMed  Google Scholar 

  126. Ben-Ari, Y. Excitatory actions of GABA during development: the nature of the nurture. Nature Rev. Neurosci. 3, 728–739 (2002).

    CAS  Google Scholar 

  127. Banke, T. G. & McBain, C. J. GABAergic input onto CA3 hippocampal interneurons remains shunting throughout development. J. Neurosci. 26, 11720–11725 (2006).

    CAS  PubMed  Google Scholar 

  128. Gao, B. & Fritschy, J. M. Selective allocation of GABAA receptors containing the α1 subunit to neurochemically distinct subpopulations of rat hippocampal interneurons. Eur. J. Neurosci. 6, 837–853 (1994).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. Bischofberger, G. Buzsáki and D. Hansel for critical reading of earlier versions of this Review. The authors' work was supported by grants from the Deutsche Forschungsgemein-schaft (M.B., I.V. and P.J.), the Volkswagen Stiftung (M.B. and I.V.), the Human Frontiers Science Program Organization (P.J.) and the Bundesministerium für Bildung und Forschung (M.B., I.V. and P.J.). We apologize for the fact that owing to space constraints not all relevant papers could be cited.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Jonas.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Physiologisches Institut

Glossary

Divergence

The number of postsynaptic target neurons innervated by a particular neuron. By contrast, convergence is the number of presynaptic neurons innervating a given neuron.

Spatial coherence

The correlation between signals at two different locations for all times (whereas temporal coherence is the correlation between signals at two different times for the same location). The term was originally defined in physics, but is also widely used in neuroscience.

Parvalbumin

A calcium-binding protein that contains EF-hand (helix–loop–helix) motifs. In the hippocampus, parvalbumin is selectively expressed in fast-spiking basket cells and axo-axonic cells. Although the function of parvalbumin is not fully understood, its expression represents a reliable marker for interneuron identification.

Network models

Computational models of neuronal networks, in which individual neurons (integrate-and-fire or conductance-based elements) are coupled by inhibitory synapses, excitatory synapses or gap junctions.

Gap junctions

Morphologically specialized electrical and biochemical connections between two cells, which are formed by transcellular channels. A gap junction channel is composed of two hemichannels (connexons), each of which consists of six subunits (connexins). Gap junctions are blocked by octanol and carbenoxolone; however, these blockers are not absolutely specific.

Acute hippocampal slices

200–400-μm-thick sections of the hippocampus, typically cut with a tissue slicer in the transverse plane. In comparison to the in vivo brain, the acute slice offers easy access in electrophysiological experiments, excellent visibility and the possibility of fast solution exchange.

Basket cells

A well-defined type of soma-inhibiting GABA-containing interneuron, so named becaused of its formation of perisomatic 'baskets' around target cell somata. A large subset of basket cells have a fast-spiking action potential phenotype and express the calcium-binding protein parvalbumin.

Integrate-and-fire models

Simple models of the electrical behaviour of a single neuron, which is characterized by passive integration in the subthreshold voltage range and generation of a stereotypic spike above threshold. Networks with integrate-and-fire neurons can be treated analytically.

Conductance-based models

Models of the electrical behaviour of a single neuron in which active and passive properties are represented by voltage-dependent and leak conductances. The voltage dependency of sodium and potassium conductances, in turn, is often described in terms of Hodgkin–Huxley equations. Networks with conductance-based neurons require numerical analysis.

Tonic excitatory drive

Constant current or conductance that depolarizes neurons in network models above threshold, mimicking activation by mGluR agonists and other stimuli during experiments. The tonic excitatory drive can be either homogeneous (neurons receive the same drive) or heterogeneous (neurons receive different drives, with heterogeneity being quantified by a coefficient of variation).

Unitary IPSPs and IPSCs

Synaptic events generated by the activity of a single presynaptic neuron. IPSPs are measured under current-clamp conditions and IPSCs are measured under voltage-clamp conditions.

Compound IPSPs and IPSCs

Synaptic events generated by a population of presynaptic neurons, for example, evoked by stimulation of multiple presynaptic axons or synchronized activity in an interneuron network. The compound conductance is the convolution of the unitary conductance and the distribution of spike times and delays. Therefore, compound conductances have a slower time course than unitary conductances.

Synaptic depression

If GABA synapses are stimulated repetitively, the amplitude of the IPSCs often decreases. This phenomenon is known as paired-pulse depression (for a pair of stimuli) or multiple-pulse depression (for a train of stimuli). The opposite of depression is facilitation.

Gramicidin perforated-patch recording

Non-invasive whole-cell recording, in which the antibiotic gramicidin is used to obtain electrical access to the intracellular compartment. Gramidicin pores are impermeable to chloride. Therefore, the reversal potential of GABAA-receptor-mediated synaptic currents can be measured without perturbation.

EPSP

Membrane depolarization of the postsynaptic neuron following excitatory input, usually measured under current clamp conditions.

EPSC

Electric current, representing ion flow across a membrane, measured under voltage-clamp conditions.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bartos, M., Vida, I. & Jonas, P. Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks. Nat Rev Neurosci 8, 45–56 (2007). https://doi.org/10.1038/nrn2044

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn2044

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing