Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Towards multimodal atlases of the human brain

Key Points

  • Brain atlases are reference systems that associate neuroanatomical labels (nomenclature) with canonical representations of anatomy in a three-dimensional coordinate system. These systems commonly integrate multisubject data from many different sources (for example, histology, functional MRI and positron emission tomography), and could provide statistical representations of anatomy and function in whole populations.

  • Initially, brain atlases were purely neuroanatomical, based on a single, often sparsely sampled, representative example. Now, brain atlases include population statistics on structure, gene expression, receptor patterns or connectivity over time.

  • Modern cytoarchitectonic studies are using computational methods to pool information across subjects on such features as receptor distributions, myelination characteristics and cellular content. Correlations between functional activation and the underlying cyto- or myeloarchitecture can then be tested by using these architectural maps to define regions of interest in functional imaging studies.

  • Integration of cytoarchitectural maps from many subjects has allowed classical maps to be re-evaluated and corrected. It has also led to a quantitative description of the intersubject variability of cytoarchitectonic areas and to the discovery of hitherto unknown cytoarchitectonic areas in the intraparietal, secondary somatosensory and extrastriate cortex.

  • Diffusion tensor imaging (DTI) provides a new source of image contrast to map white matter integrity and connectivity, and has opened up new opportunities for brain mapping and atlasing.

  • Population-based atlases can average anatomical features across individuals, revealing generic features that are not identifiable in individual representations owing to their considerable variability. They have identified group-specific patterns of brain structure in Alzheimer's disease, HIV/AIDS, schizophrenia, in methamphetamine users, and in developmental disorders such as fetal alcohol syndrome and Williams syndrome.

  • Brain atlases are beginning to be used in clinical studies, including drug trials of antipsychotics or mood stabilizers, to investigate factors that influence disease expression and therapeutic response.

  • In the next decade, population-based atlases will probably gain widespread applicability in genetic studies. Data from twins and those at genetic risk for specific diseases have been incorporated into brain atlasing studies to discover previously unknown effects on the brain of variations at specific genetic loci.

Abstract

Atlases of the human brain have an important impact on neuroscience. The emergence of ever more sophisticated imaging techniques, brain mapping methods and analytical strategies has the potential to revolutionize the concept of the brain atlas. Atlases can now combine data describing multiple aspects of brain structure or function at different scales from different subjects, yielding a truly integrative and comprehensive description of this organ. These integrative approaches have provided significant impetus for the human brain mapping initiatives, and have important applications in health and disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Observer-independent procedure for cytoarchitectonic parcellations.
Figure 2: Summary of procedures for generating a multimodal probabilistic atlas.
Figure 3: Cytoarchitectonic probability maps of the cortex.
Figure 4: Correlation between receptor autoradiography and myeloarchitectonic borders.
Figure 5: Comparison of a conventional T1-weighted image and DTI-based contrasts.
Figure 6: Comparison between a post-mortem brain sample and the results of DTI-based three-dimensional tract reconstruction.
Figure 7: Examples of various methods of mapping the white matter based on DTI.
Figure 8: Brain atlases that represent specific subpopulations.

Similar content being viewed by others

References

  1. Toga, A. W. & Mazziotta, J. C. in Brain Mapping: the Methods (eds Toga, A. W. & Mazziotta, J.C.) 3–25 (Academic, San Diego, 1996).

    Google Scholar 

  2. Duvernoy, H. M. The Human Brain (Springer, New York, 1991).

    Google Scholar 

  3. Ono, M., Kubik, S. & Abernathey, C. D. Atlas of the Cerebral Sulci (Thieme, Stuttgart, 1990). This widely used atlas reports anatomical descriptions and trends in individual variabilities of cortical sulci. It serves as a reminder of the challenges in developing multisubject reference systems for human brain mapping.

    Google Scholar 

  4. Talairach, J. & Szikla, G. Atlas d'Anatomie Stereotaxique du Telencephale: Etudes Anatomo-Radiologiques (Masson & Cie, Paris, 1967) (in French).

    Google Scholar 

  5. Talairach, J. & Tournoux, P. Co-planar Stereotaxic Atlas of the Human Brain (Thieme, New York, 1988). This atlas influenced the brain mapping field by providing a principled method for spatially transforming anatomical datasets into a coordinate-based reference system based on the anterior commissure–posterior commisure line. The atlas presents post-mortem data from a single subject.

  6. Brodmann, K. in Some Papers on the Cerebral Cortex, translated as: On the Comparative Localization of the Cortex 201–230 (Thomas, Springfield, Illinois, 1960).

    Google Scholar 

  7. von Economo, C. & Koskinas, G. N. Die Cytoarchitektonik der Hirnrinde des Erwachsenen Menschen (Springer, Berlin, 1925) (in German).

    Google Scholar 

  8. Flechsig, P. Anatomie des menschlichen Gehirns und Rückenmarks auf myelogenetischer Grundlage (Thieme, Leipzig, 1920) (in German).

    Google Scholar 

  9. Smith, G. E. A new topographical survey of the human cerebral cortex, being an account of the distribution of the anatomically distinct cortical areas and their relation-ship to the cerebral sulci. J. Anat. 41, 237–254 (1907).

    CAS  Google Scholar 

  10. Vogt, C. & Vogt, O. Allgemeinere ergebnisse unserer hirnforschung. J. Psychol. Neurol. 25, 292–398 (1919) (in German).

    Google Scholar 

  11. Mai, J., Assheuer, J. & Paxinos, G. Atlas of the Human Brain (Academic, San Diego, 1997).

    Google Scholar 

  12. Matsui, T. & Hirano, A. An Atlas of the Human Brain for Computerized Tomography (Igako-Shoin,Tokyo, 1978).

    Google Scholar 

  13. Schaltenbrand, G. & Bailey, P. Introduction to Stereotaxis with an Atlas of the Human Brain (Thieme, Stuttgart & New York, 1959).

    Google Scholar 

  14. Schaltenbrand, G. & Wahren, W. Atlas for Stereotaxy of the Human Brain 2nd edn (Thieme, Stuttgart, 1977).

    Google Scholar 

  15. Van Buren, J. M. & Borke, R. C. Variations and Connections of the Human Thalamus Vols 1 & 2 (Springer, New York, 1972).

    Book  Google Scholar 

  16. Van Buren, J. M. & Maccubin, D. An outline atlas of human basal ganglia and estimation of anatomic variants. J. Neurosurg. 19, 811–839 (1962).

    Article  CAS  PubMed  Google Scholar 

  17. Mansour, A., Fox, C. A., Burke, S., Akil, H. & Watson, S. J. Immunohistochemical localization of the cloned mu opioid receptor in the rat CNS. J. Chem. Neuroanat. 8, 283–305 (1995).

    Article  CAS  PubMed  Google Scholar 

  18. Dejerine, J. Anatomie des Centres Nerveux (Rueff, Paris, 1901).

    Google Scholar 

  19. Damasio, H. Human Brain Anatomy in Computerized Images (Oxford Univ. Press, Oxford & New York, 1995).

    Google Scholar 

  20. Mori, S., Wakana, S., Nagae-Poetscher, L. M. & van Zijl, P. C. MRI Atlas of Human White Matter (Elsevier Science, Amsterdam, 2005).

    Google Scholar 

  21. Toga, A. W. Brain Warping (Academic, San Diego, 1998). The author surveys the many approaches and computational algorithms for deforming brain imaging data from multiple subjects or modalities to match an atlas or other standardized coordinate space.

    Google Scholar 

  22. Zilles, K. et al. Architectonics of the human cerebral cortex and transmitter receptor fingerprints: reconciling functional neuroanatomy and neurochemistry. Europ. Neuropsychopharmacol. 12, 587–599 (2002).

    Article  CAS  Google Scholar 

  23. Brodmann, K. Physiologie des Gehirns. Neue Dtsch Chir. 11, 85–426 (1914) (in German).

    Google Scholar 

  24. Bailey, P. & von Bonin, G. The Isocortex of Man (Univ. Illinois Press, Urbana, 1951).

    Google Scholar 

  25. Sanides, F. Die Architektonik des menschlichen Stirnhirns (Springer, Berlin & New York, 1962)(in German).

    Book  Google Scholar 

  26. Sarkisov, S. A., Filimonoff, I. N., Kononowa, E. P., Preobrachenskaja, I. S. & Kukuew, L. A. Atlas of the Cytoarchitectonics of the Human Cerebral Cortex (Medgiz, Moscow, 1955).

    Google Scholar 

  27. Zilles, K., Armstrong, E., Schleicher, A. & Kretschmann, H. J. The human pattern of gyrification in the cerebral cortex. Anat. Embryol. 179, 173–179 (1988).

    Article  CAS  Google Scholar 

  28. Nelissen, K., Luppino, G., Vanduffel, W., Rizzolatti, G. & Orban, G. A. Observing others: multiple action representation in the frontal lobe. Science 310, 332–336 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Sereno, M. I. et al. Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. Science 268, 889–893 (1995).

    Article  CAS  PubMed  Google Scholar 

  30. Bremmer, F. et al. Polymodal motion processing in posterior parietal and premotor cortex: a human fMRI study strongly implies equivalencies between humans and monkeys. Neuron 29, 287–296 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Zeki, S. et al. A direct demonstration of functional specialization in human visual cortex. J. Neurosci. 11, 641–649 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lashley, K. S. & Clark, G. The cytoarchitecture of the cerebral cortex of atlases: a critical examination of architectonic studies. J. Comp. Neurol. 85, 223–306 (1946).

    Article  CAS  PubMed  Google Scholar 

  33. Luppino, G. & Rizzolatti, G. The organization of the frontal motor cortex. News Physio. Sci. 15, 219–224 (2000).

    Google Scholar 

  34. Zilles, K., Schleicher, A., Palomero-Gallagher, N. & Amunts, K. in Brain Mapping: The Methods 2nd edn (eds Toga, A. W. & Mazziotta, J. C.) 573–602 (Academic, Amsterdam,2002).

    Book  Google Scholar 

  35. Amunts, K. et al. Broca's region revisited: cytoarchitecture and intersubject variability. J. Comp. Neurol. 412, 319–341 (1999).

    Article  CAS  PubMed  Google Scholar 

  36. Amunts, K., Malikovic, A., Mohlberg, H., Schormann, T. & Zilles, K. Brodmann's areas 17 and 18 brought into stereotaxic space — where and how variable? NeuroImage 11, 66–84 (2000).

    Article  CAS  PubMed  Google Scholar 

  37. Zilles, K. et al. Quantitative analysis of sulci in the human cerebral cortex: development, regional heterogeneity, gender difference, asymmetry, intersubject variability and cortical architecture. Hum. Brain Mapp. 5, 218–221 (1997).

    Article  CAS  PubMed  Google Scholar 

  38. Tootell, R. B. H. et al. Functional analysis of primary visual cortex (V1) in humans. Proc. Natl Acad. Sci. USA 95, 811–817 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Talavage T. M. et al. Tonotopic organization in human auditory cortex revealed by progressions of frequency sensitivity. J. Neurophysiol. 91, 1282–1296 (2004).

    Article  PubMed  Google Scholar 

  40. Geyer, S. et al. Two different areas within the primary motor cortex of man. Nature 382, 805–807 (1996).

    Article  CAS  PubMed  Google Scholar 

  41. Young, J. P. et al. Regional cerebral blood flow correlations of somatosensory areas 3a, 3b, 1, and 2 in humans during rest: a PET and cytoarchitectural study. Hum. Brain Mapp. 19, 183–196 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Hagler, D. & Sereno, M. I. Spatial maps in frontal and prefrontal cortex. Neuroimage 29, 567–577 (2005).

    Article  PubMed  Google Scholar 

  43. Van Essen, D. C. Surface-based approaches to spatial localization and registration in primate cerebral cortex. NeuroImage 23, S97–S107 (2004). This review article describes many of the neuroanatomical, technical and informatics issues involved in integrating cortically-derived neuroimaging data across subjects and modalities.

    Article  PubMed  Google Scholar 

  44. Tootell, H. et al. Functional analysis of primary visual cortex (V1) in humans. Proc. Natl Acad. Sci. 95, 811–817 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Larsson, J. et al. Neuronal correlates of real and illusory contour perception: functional anatomy with PET. Europ. J. Neurosci. 11, 4024–4036 (1999).

    Article  CAS  Google Scholar 

  46. Schleicher, A., Amunts, K., Geyer, S., Morosan, P. & Zilles, K. Observer-independent method for microstructural parcellation of cerebral cortex: a quantitative approach to cytoarchitectonics. Neuroimage 9, 165–177 (1999).

    Article  CAS  PubMed  Google Scholar 

  47. Schleicher, A. et al. A stereological approach to human cortical architecture: identification and delineation of cortical areas. J. Chem. Neuroanat. 20, 31–47 (2000).

    Article  CAS  PubMed  Google Scholar 

  48. Schleicher, A. et al. Quantitative architectonic analysis: a new approach to cortical mapping. Anat. Embryol. 210, 373–386 (2005).

    Article  CAS  Google Scholar 

  49. Annese, J. & Toga, A. W. in Brain Mapping: The Methods (eds Toga, A. W. & Mazziotta, J. C.) 537–564 (Academic, San Diego, 2002).

    Book  Google Scholar 

  50. Hömke, L. in Numerical Linear Algebra with Applications 215–229 (Wiley, Copper Mountain, 2006).

    Google Scholar 

  51. Thompson, P. & Toga, A. W. in Handbook of Medical Image Processing (ed. Bankman, I.) 159–170 (Academic, San Diego, 2000).

    Google Scholar 

  52. Roland P. E. & Zilles K. Brain atlases — a new research tool. Trends Neurosci. 17, 458–467 (1994).

    Article  CAS  PubMed  Google Scholar 

  53. Mazziotta, J. C. et al. A probabilistic atlas and reference system for the human brain: international consortium for brain mapping (ICBM). Philos. Trans. R. Soc. Lond., B, Biol. Sci. 356, 1293–1322 (2001). A description of an international consortium project that was set up to develop a probabilistic reference system for the human brain, incorporating statistical information on the variations in human brain structure and function in a population of 7000 subjects.

    Article  CAS  Google Scholar 

  54. Evans, A. C., Collins, D. L. & Milner, B. An MRI-based stereotactic brain atlas from 300 young normal subjects. Soc. Neurosci. Abstr. 408 (1992).

  55. Eickhoff, S. et al. A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data. NeuroImage 25, 1325–1335 (2005).

    Article  PubMed  Google Scholar 

  56. Grefkes, C., Geyer, S., Schormann, T., Roland, P. & Zilles, K. Human somatosensory area 2: observer-independent cytoarchitectonic mapping, interindividual variability, and population map. NeuroImage 14, 617–631 (2001).

    Article  CAS  PubMed  Google Scholar 

  57. Eickhoff, S., Schleicher, A., Zilles, K. & Amunts, K. The human parietal operculum. I. Cytoarchitectonic mapping of subdivisions. Cereb. Cortex 16, 254–267 (2005).

    Article  PubMed  Google Scholar 

  58. Geyer, S., Schleicher, A. & Zilles, K. Areas 3a, 3b, and 1 of human primary somatosensory cortex: 1. Microstructural organization and interindividual variability. NeuroImage 10, 63–83 (1999).

    Article  CAS  PubMed  Google Scholar 

  59. Choi, H.-J. et al. Cytoarchitectonic identification and probabilistic mapping of two distinct areas within the anterior ventral bank of the human intraparietal sulcus. J. Comp. Neurol. 495, 53–69 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Eickhoff, S. B., Weiss, P. H., Amunts, K., Fink, G. R. & Zilles, K. Identifying human parieto-insular vestibular cortex using fMRI and cytoarchitectonic mapping. Hum. Brain Mapp. 27, 611–621 (2006).

    Article  PubMed  Google Scholar 

  61. Malikovic, A. et al. Cytoarchitectonic analysis of the human extrastriate cortex in the region of V5/MT+: a probabilistic, stereotaxic map of area hOc5. Cereb. Cortex 7 April 2006 (doi:10.1093/cercor/bhj181).

  62. Amunts, K. et al. Cytoarchitectonic mapping of the human amygdala, hippocampal region and entorhinal cortex: intersubject variability and probability maps. Anat. Embryol. 210, 342–352 (2005).

    Google Scholar 

  63. Geyer, S., Schormann, T., Mohlberg, H. & Zilles, K. Areas 3a, 3b, and 1 of human primary somatosensory cortex. 2. Spatial normalization to standard anatomical space. NeuroImage 11, 684–696 (2000).

    Article  CAS  PubMed  Google Scholar 

  64. Morosan, P. et al. Human primary auditory cortex: cytoarchitectonic subdivisions and mapping into a spatial reference system. NeuroImage 13, 684–701 (2001).

    Article  CAS  PubMed  Google Scholar 

  65. Rademacher, J. et al. Probabilistic mapping and volume measurement of human primary auditory cortex. NeuroImage 13, 669–683 (2001).

    Article  CAS  PubMed  Google Scholar 

  66. Rademacher, J. Bü rgel, U. & Zilles, K. Stereotaxic localization, intersubject variability and interhemispheric differences of the human auditory thalamocortical system. NeuroImage 17, 142–160 (2002).

    Article  CAS  PubMed  Google Scholar 

  67. Roland, P. E. & Zilles, K. The developing european computerized human brain database for all imaging modalities. NeuroImage 4, 39–47 (1996).

    Article  Google Scholar 

  68. Roland, P. E. et al. Cytoarchitectural maps of the human brain in standard anatomical space. Hum. Brain Mapp. 5, 222–227 (1997).

    Article  CAS  PubMed  Google Scholar 

  69. Zilles, K. & Palomero-Gallagher, N. Cyto-, myelo- and receptor architectonics of the human parietal cortex. NeuroImage 14, 8–20 (2001).

    Article  Google Scholar 

  70. Zilles, K. Mapping of human and macaque sensorimotor areas by integrating architectonic, transmitter receptor, MRI and PET data. J. Anatomy 187, 515–537 (1995).

    CAS  Google Scholar 

  71. Amunts, K. et al. Analysis of the neural mechanisms underlying verbal fluency in cytoarchitectonically defined stereotaxic space — the roles of Brodmann areas 44 and 45 NeuroImage 22, 42–56 (2004).

    Article  PubMed  Google Scholar 

  72. Bodegård, A. et al. Object shape differences reflected by somatosensory cortical activation. J. Neurosci. 20, 1–5 (2000).

    Article  Google Scholar 

  73. Bodegård, A. et al. Somatosensory areas in man activated by moving stimuli. Cytoarchitectonic mapping and PET. NeuroReport 11, 187–191 (2000).

    Article  PubMed  Google Scholar 

  74. Eickhoff, S., Amunts, K., Mohlberg, H. & Zilles, K. The human parietal operculum. II. Stereotaxic maps and correlation with functional imaging results. Cereb. Cortex 16, 268–279 (2006).

    Article  PubMed  Google Scholar 

  75. Horwitz, B. et al. Activation of Broca's area during the production of spoken and signed language: a combined cytoarchitectonic mapping and PET analysis. Neuropsychologia 41, 1868–1876 (2003).

    Article  PubMed  Google Scholar 

  76. Pazos, A., Probst, A. & Palacios, J. M. Serotonin receptors in the human brain — III. Autoradiographic mapping of serotonin-1 receptors. Neuroscience 21, 97–122 (1987).

    Article  CAS  PubMed  Google Scholar 

  77. Pazos, A., Probst, A. & Palacios, J. M. Serotonin receptors in the human brain — IV. Autoradiographic mapping of serotonin-2 receptors. Neuroscience 21, 123–139 (1987).

    Article  CAS  PubMed  Google Scholar 

  78. Vogt, B. A., Plager, M. D., Crino, P. B. & Bird, E. D. Laminar distributions of muscarinic acetylcholine, serotonin, GABA and opioid receptors in human posterior cingulate cortex. Neuroscience 36, 165–174 (1990).

    Article  CAS  PubMed  Google Scholar 

  79. Zilles, K. in From Monkey Brain to Human Brain (eds Dehaene, S., Duhamel, J.-R., Hauser, M. & Rizzolatti, G.) 41–56 (MIT Press, Cambridge, Massachusetts, 2005).

    Google Scholar 

  80. Zilles, K., Palomero-Gallagher, N. & Schleicher, A. Transmitter receptors and functional anatomy of the cerebral cortex. J. Anat. 205, 417–432 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Geyer, S., Schleicher, A. & Zilles, K. The somatosensory cortex of human: cytocarchitecture and regional distributions of receptor-binding sites. NeuroImage 6, 27–45 (1997).

    Article  CAS  PubMed  Google Scholar 

  82. Morosan, P., Rademacher, J., Palomero-Gallagher, N. & Zilles, K. in The Auditory Cortex: Towards a Synthesis of Human and Animal Research (eds König, R., Heil, P., Budinger, E. & Scheich, H.) 27–50 (Lawrence Erlbaum, Mahwah, New Jersey, 2005).

    Google Scholar 

  83. Basser, P. J., Mattiello, J. & LeBihan, D. Estimation of the effective self-diffusion tensor from the NMR spin echo. J. Magn. Reson. B 103, 247–254 (1994).

    Article  CAS  PubMed  Google Scholar 

  84. Conturo, T. E., McKinstry, R. C., Akbudak, E. & Robinson, B. H. Encoding of anisotropic diffusion with tetrahedral gradients: a general mathematical diffusion formalism and experimental results. Magn. Reson. Med. 35, 399–412 (1996).

    Article  CAS  PubMed  Google Scholar 

  85. Pierpaoli, C. & Basser, P. J. Toward a quantitative assessment of diffusion anisotropy. Magn. Reson. Med. 36, 893–906 (1996).

    Article  CAS  PubMed  Google Scholar 

  86. Ulug, A. M., Bakht, O., Bryan R. N. & van Zijl, P. C. M. Mapping of Human Brain Fibers Using Diffusion Tensor Imaging. Proc. Int. Soc. Mag. Reson. Med. 4, 1325 (1996)

    Google Scholar 

  87. Douek, P., Turner, R., Pekar, J., Patronas, N. & Le Bihan, D. MR color mapping of myelin fiber orientation. J. Comput. Assist. Tomogr. 15, 923–929 (1991).

    Article  CAS  PubMed  Google Scholar 

  88. Hsu, E. W. & Mori, S. Analytical interpretations of NMR diffusion measurements in an anisotropic medium and a simplified method for determining fiber orientation. Magn. Reson. Med. 34, 194–200 (1995).

    Article  CAS  PubMed  Google Scholar 

  89. Nakada, T. & Matsuzawa, H. Three-dimensional anisotropy contrast magnetic resonance imaging of the rat nervous system: MR axonography. Neurosci. Res. 22, 389–398 (1995).

    Article  CAS  PubMed  Google Scholar 

  90. Makris, N. et al. Morphometry of in vivo human white matter association pathways with diffusion weighted magnetic resonance imaging. Ann. Neurol. 42, 951–962 (1997). A monumental work in which DTI-based image contrast was correlated with white matter anatomy in a comprehensive manner for the first time.

    Article  CAS  PubMed  Google Scholar 

  91. Pajevic, S. & Pierpaoli, C. Color schemes to represent the orientation of anisotropic tissues from diffusion tensor data: application to white matter fiber tract mapping in the human brain. Magn. Reson. Med. 42, 526–540 (1999).

    Article  CAS  PubMed  Google Scholar 

  92. Conturo, T. E. et al. Tracking neuronal fiber pathways in the living human brain. Proc. Natl Acad. Sci. USA 96, 10422–10427 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Jones, D. K., Simmons, A., Williams S. C. & Horsfield, M. A. Non-invasive assessment of axonal fiber connectivity in the human brain via diffusion tensor MRI. Magn. Reson. Med. 42, 37–41 (1999).

    Article  CAS  PubMed  Google Scholar 

  94. Mori, S., Crain, B. J., Chacko, V. P. & van Zijl, P. C. M. Three dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Annal. Neurol. 45, 265–269 (1999).

    Article  CAS  PubMed  Google Scholar 

  95. Xue, R., van Zijl, P. C. M, Crain, B. J., Solaiyappan, M. & Mori, S. In vivo three-dimensional reconstruction of rat brain axonal projections by diffusion tensor imaging. Magn. Reson. Med. 42, 1123–1127 (1999).

    Article  CAS  PubMed  Google Scholar 

  96. Basser, P. J., Pajevic, S., Pierpaoli, C., Duda, J. & Aldroubi, A. In vitro fiber tractography using DT-MRI data. Magn. Reson. Med. 44, 625–632 (2000).

    Article  CAS  PubMed  Google Scholar 

  97. Poupon, C. et al. Regularization of diffusion-based direction maps for the tracking of brain white matter fascicules. NeuroImage 12, 184–195 (2000).

    Article  CAS  PubMed  Google Scholar 

  98. Lazar, M. et al. White matter tractography using diffusion tensor deflection. Hum. Brain Mapp. 18, 306–321 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Behrens, T. E. et al. Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging. Nature Neurosci. 6, 750–757 (2003).

    Article  CAS  PubMed  Google Scholar 

  100. Ludwig, E. & Klingler, J. Atlas Cerebrei Human: the Internal Structure of the Brain Demonstrated on the Basis of Macroscopical Preparations (Karger, Basel, 1956).

    Google Scholar 

  101. Stieltjes, B. et al. Diffusion tensor imaging and axonal tracking in the human brainstem. NeuroImage 14, 723–735 (2001).

    Article  CAS  PubMed  Google Scholar 

  102. Catani, M., Howard, R. J., Pajevic, S. & Jones, D. K. Virtual in vivo interactive dissection of white matter fasciculi in the human brain. NeuroImage 17, 77–94 (2002).

    Article  PubMed  Google Scholar 

  103. Mori, S. et al. Imaging cortical association tracts in human brain. Magn. Reson. Med. 47, 215–223 (2002).

    Article  PubMed  Google Scholar 

  104. Wakana, S., Jiang, H., Nagae-Poetscher, L. M., Van Zijl, P. C. & Mori, S. Fiber tract-based atlas of human white matter anatomy. Radiology 230, 77–87 (2004). A comprehensive atlas of the human white matter based on two-dimensional and three-dimensional visualization of DTI data.

    Article  PubMed  Google Scholar 

  105. Mamata, H. et al. High-resolution line scan diffusion tensor MR imaging of white matter fiber tract anatomy. Am. J. Neuroradiol. 23, 67–75 (2002).

    PubMed  PubMed Central  Google Scholar 

  106. Alexander, D. C., Pierpaoli, C., Basser, P. J. & Gee, J. C. Spatial transformations of diffusion tensor magnetic resonance images. IEEE Trans. Med. Imaging 20, 1131–1139 (2001).

    Article  CAS  PubMed  Google Scholar 

  107. Jones, D. K. et al. Spatial normalization and averaging of diffusion tensor MRI data sets. Neuroimage 17, 592–617 (2002).

    Article  PubMed  Google Scholar 

  108. Xu, D., Mori, S., Shen, D., van Zijl, P. C. & Davatzikos, C. Spatial normalization of diffusion tensor fields. Magn. Reson. Med. 50, 175–182 (2003).

    Article  PubMed  Google Scholar 

  109. Pagani, E., Filippi, M., Rocca, M. A. & Horsfield, M. A. A method for obtaining tract-specific diffusion tensor MRI measurements in the presence of disease: application to patients with clinically isolated syndromes suggestive of multiple sclerosis. NeuroImage 26, 258–265 (2005).

    Article  CAS  PubMed  Google Scholar 

  110. Pierpaoli, C. et al. Water diffusion change in Wallerian degeneration and their dependence on white matter architecture. NeuroImage 13, 1174–1185 (2001).

    Article  CAS  PubMed  Google Scholar 

  111. Thomalla G. et al. Diffusion tensor imaging detects early Wallerian degeneration of the pyramidal tract after ischemic stroke. NeuroImage 22, 1767–1774 (2004).

    Article  PubMed  Google Scholar 

  112. Lee, J. S., Han, M. K., Kim, S. H., Kwon, O. K. & Kim, J. H. Fiber tracking by diffusion tensor imaging in corticospinal tract stroke: topographical correlation with clinical symptoms. NeuroImage 26, 771–776 (2005).

    Article  PubMed  Google Scholar 

  113. Johansen-Berg, H. et al. Changes in connectivity profiles define functionally distinct regions in human medial frontal cortex. Proc. Natl Acad. Sci. USA 101, 13335–13340 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Frank, L. R. Anisotropy in high angular resolution diffusion-weighted MRI. Magn. Reson. Med. 45, 935–939 (2001).

    Article  CAS  PubMed  Google Scholar 

  115. Tournier, J. D., Calamante, F., Gadian, D. G. & Connelly, A. Direct estimation of the fiber orientation density function from diffusion-weighted MRI data using spherical deconvolution. NeuroImage 23, 1176–1185 (2004).

    Article  PubMed  Google Scholar 

  116. Tuch, D. S., Reese, T. G., Wiegell, M. R. & Wedeen, V. J. Diffusion MRI of complex neural architecture. Neuron 40, 885–895 (2003).

    Article  CAS  PubMed  Google Scholar 

  117. Wedeen, V. J., Hagmann, P., Tseng, W. Y., Reese, T. G. & Weisskoff, R. M. Mapping complex tissue architecture with diffusion spectrum magnetic resonance imaging. Magn. Reson. Med. 54, 1377–1386 (2005).

    Article  PubMed  Google Scholar 

  118. Bürgel, U., Schormann, T., Schleicher, A. & Zilles, K. Mapping of histologically identified long fiber tracts in human cerebral hemispheres to the MRI volume of a reference brain: position and spatial variability of the optic radiation. NeuroImage 10, 489–499 (1999).

    Article  PubMed  Google Scholar 

  119. Rademacher, J., Engelbrecht, V., Bü rgel, U., Freund, H. J. & Zilles, K. Measuring in vivo myelination of human white matter fiber tracts with magnetization transfer MR. NeuroImage 9, 393–406 (1999).

    Article  CAS  PubMed  Google Scholar 

  120. Rademacher, J. et al. Variability and asymmetry in the human precentral motor system. A cytoarchitectonic and myeloarchitectonic brain mapping study. Brain 124, 2232–2258 (2001).

    Article  CAS  PubMed  Google Scholar 

  121. Mega, M. S. et al. Mapping pathology to metabolism: coregistration of stained whole brain sections to PET in alzheimer's disease. NeuroImage 5, 147–153 (1997).

    Article  CAS  PubMed  Google Scholar 

  122. Toga, A. W., Ambach, K. L., Quinn, B. C., Hutchin, M. & Burton, J. S. Postmortem anatomy from cryosectioned whole human brain. J. Neurosci. Methods 5, 239–252 (1994).

    Article  Google Scholar 

  123. Teipel, S. J. et al. Measurement of basal forebrain atrophy in Alzheimer's disease using MRI. Brain 128, 2626–2644 (2005).

    Article  PubMed  Google Scholar 

  124. Toga, A. W. & Thompson, P. M. Mapping brain asymmetry. Nature Rev. Neurosci. 4, 37–38 (2003).

    Article  CAS  Google Scholar 

  125. Toga, A. W. & Thompson, P. M. Genetics of brain structure and intelligence. Ann. Rev. Neurosci. 28, 1–23 (2005).

    Article  CAS  PubMed  Google Scholar 

  126. Grenander, U. & Miller, M. I. Computational Anatomy: an Emerging Discipline. Technical Report, Dept. Mathematics, Brown Univ. (1998). This highly-cited article was influential in stimulating mathematical developments in the field of computational anatomy. A new framework is proposed that represents anatomical variation by defining statistics and probability measures on three-dimensional elastic or fluid mappings that deform a canonical template of anatomy.

    Google Scholar 

  127. Narr, K. L. et al. Mapping morphology of the corpus callosum in schizophrenia. Cereb. Cortex 10, 40–49 (2000).

    Article  CAS  PubMed  Google Scholar 

  128. Thompson, P. M. et al. Cortical variability and asymmetry in normal aging and alzheimer's disease. Cereb. Cortex 8, 492–509 (1998).

    Article  CAS  PubMed  Google Scholar 

  129. Thompson, P. M., Mega, M. S. & Toga, A. W. in Brain Mapping: the Disorders (eds Toga A. W. & Mazziotta, J. C.) 131–177 (Academic, San Diego, 2000).

    Book  Google Scholar 

  130. Sowell, E. R. et al. Mapping cortical change across the human life span. Nature Neurosci. 6, 309–315 (2003).

    Article  CAS  PubMed  Google Scholar 

  131. Levitt, J. G. et al. Proton magnetic resonance spectroscopic imaging of the brain in childhood autism. Biol. Psychiatry 54, 1355–1366 (2003).

    Article  CAS  PubMed  Google Scholar 

  132. Thompson, P. M. et al. Cortical complexity and thickness are increased in Williams Syndrome. J. Neurosci. 25, 4146–4158 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Mazziotta, J. C., Toga, A. W., Evans, A. C., Fox, P. & Lancaster, J. A probabilistic atlas of the human brain: theory and rationale for its development. NeuroImage 2, 89–101 (1995).

    Article  CAS  PubMed  Google Scholar 

  134. Geschwind, N. & Galaburda, A. M. Cerebral lateralization. Biological mechanisms, associations, and pathology: III. A hypothesis and a program for research. Arch. Neurol. 42, 634–656 (1985).

    Article  CAS  PubMed  Google Scholar 

  135. Sowell, E. R. et al. Brain abnormalities in early-onset schizophrenia spectrum disorder observed with statistical parametric mapping of structural magnetic resonance images. Am. J. Psychiatry, 157, 1475–1484 (2000).

    Article  CAS  PubMed  Google Scholar 

  136. Luders, E. et al. Mapping cortical gray matter in the young adult brain: effects of gender. NeuroImage 26, 493–501 (2005).

    Article  CAS  PubMed  Google Scholar 

  137. Crow, T. J. Handedness, language lateralisation and anatomical asymmetry: relevance of protocadherin XY to hominid speciation and the aetiology of psychosis. Point of view. Br. J. Psychiatry 181, 295–297 (2002).

    Article  CAS  PubMed  Google Scholar 

  138. Narr, K. L. et al. Mapping cortical thickness and gray matter concentration in first episode schizophrenia. Cereb. Cortex 15, 708–719 (2005).

    Article  PubMed  Google Scholar 

  139. Van Essen, D. C. Surface-based approaches to spatial localization and registration in primate cerebral cortex. NeuroImage 23, S97–S107 (2005).

    Article  Google Scholar 

  140. van Horn, J. D. Neuroimaging databases as a resource for scientific discovery. Int. Rev. Neurobiol. 66, 55–87 (2005).

    Article  PubMed  Google Scholar 

  141. Giedd, J. N. et al. Brain development during childhood and adolescence: a longitudinal MRI study. Nature Neurosci. 2, 861–863 (1999).

    Article  CAS  PubMed  Google Scholar 

  142. Rapoport, J. L., Addington, A. & Frangou, S. The neurodevelopmental model of schizophrenia: what can very early onset cases tell us? Curr. Psychiatry Rep. 7, 81–82 (2005).

    Article  PubMed  Google Scholar 

  143. Thompson, P. M. et al. Early cortical change in Alzheimer's disease detected with a disease-specific population-based brain atlas. Cereb. Cortex 11, 1–16 (2001).

    Article  CAS  PubMed  Google Scholar 

  144. Cannon, T. D. et al. Early and late neurodevelopmental influences in the prodrome to schizophrenia: contributions of genes, environment and their interactions. Schizophr. Bull. 29, 653–669 (2003).

    Article  PubMed  Google Scholar 

  145. Cannon, T. D. et al. Association of DISC1/TRAX haplotypes with schizophrenia, reduced prefrontal gray matter and impaired short- and long-term memory. Arch. Gen. Psychiatry 62, 1205–1213 (2005).

    Article  CAS  PubMed  Google Scholar 

  146. Lin, J. J. 3D Pre-operative maps of hippocampal atrophy predict surgical outcomes in temporal lobe epilepsy. Neurology 65, 1094–1097 (2005).

    Article  CAS  PubMed  Google Scholar 

  147. Moore, G. J., Bebchuk, J. M., Wilds, I. B., Chen, G. & Manji, H. K. Lithium-induced increase in human brain grey matter. Lancet 356, 1241–1242 (2000).

    Article  CAS  PubMed  Google Scholar 

  148. Lieberman, D. Z. & Goodwin, F. K. Use of olanzapine in the treatment of bipolar I disorder. Expert Rev. Neurother. 4, 759–767 (2004).

    Article  CAS  PubMed  Google Scholar 

  149. Leow, A. et al. Brain structural mapping using a novel hybrid implicit/explicit framework based on the level-set method. NeuroImage 24, 910–927 (2005).

    Article  CAS  PubMed  Google Scholar 

  150. Kikinis, R. et al. A digital brain atlas for surgical planning, model-driven segmentation, and teaching. IEEE Trans. Vis. Comput. Graph. 2, 232–241 (1996).

    Article  Google Scholar 

  151. Mangin, J. F. et al. Brain morphometry using 3D moment invariants. Med. Image Anal. 8, 187–196 (2004).

    Article  PubMed  Google Scholar 

  152. Collins, D. L., Peters, T. M., Evans, A. C. An automated 3D non-linear image deformation procedure for determination of gross morphometric variability in the human brain. Proc. Visualization. Biomed. Comput. 3, 180–190 (1994).

    Google Scholar 

  153. Thompson, P. M. et al. Detection and mapping of abnormal brain structure with a probabilistic atlas of cortical surfaces. J. Comput. Asst. Tomogr. 21, 567–581 (1997).

    Article  CAS  Google Scholar 

  154. Chung, M. K. Cortical thickness analysis in autism with heat kernel smoothing. NeuroImage 25, 1256–1265 (2005).

    Article  PubMed  Google Scholar 

  155. Carmichael, O. T. et al. Mapping ventricular changes related to dementia and mild cognitive impairment in a large community-based cohort. IEEE Int. Symp. Biomed. Imaging 315–318 (2006).

  156. Gogtay, N. et al. Dynamic mapping of human cortical development during childhood and adolescence. Proc. Natl Acad. Sci. 101, 8174–8179 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Sowell, E. R., Thompson, P. M. & Toga, A. W. Mapping changes in the human cortex throughout the span of life. Neuroscientist 10, 372–392 (2004).

    Article  PubMed  Google Scholar 

  158. Thompson, P. M. et al. Growth patterns in the developing brain detected by using continuum-mechanical tensor maps. Nature 404, 190–193 (2000).

    Article  CAS  PubMed  Google Scholar 

  159. Lerch, J. P. et al. Focal decline of cortical thickness in Alzheimer's disease identified by computational neuroanatomy. Cereb. Cortex 15, 995–1001 (2005).

    Article  PubMed  Google Scholar 

  160. Janke, A. L. et al. 4D deformation modeling of cortical disease progression in Alzheimer's dementia. Magn. Reson. Med. 46, 661–666 (2001).

    Article  CAS  PubMed  Google Scholar 

  161. Thompson, P. M. et al. Dynamics of gray matter loss in Alzheimer's disease. J. Neurosci. 23, 994–1005 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Friston, K. J. et al. Spatial registration and normalisation of images. Hum. Brain Mapp. 2, 16 (1995).

    Google Scholar 

  163. van Essen, D. C. A population-average, landmark- and surface-based (PALS) atlas of human cerebral cortex. NeuroImage 28, 635–662 (2005).

    Article  PubMed  Google Scholar 

  164. Fischl, B. et al. Sequence-independent segmentation of magnetic resonance images. NeuroImage 23, S69–S84 (2004).

    Article  PubMed  Google Scholar 

  165. Pitiot, A., Delingette, H., Thompson, P. M. & Ayache, N. Expert knowledge-guided segmentation system for brain MRI. NeuroImage 23, S85–S96 (2004).

    Article  PubMed  Google Scholar 

  166. Zijdenbos, A. P., Lerch, J. P., Bedell, B. J. & Evans, A. C. Brain imaging in drug R&D. Biomarkers 10, S58–S68 (2005). The authors describe a recent extension of the atlas concept to include large-scale processing of images from drug trials, analysing images that have been mapped into a stereotaxic coordinate space.

    Article  CAS  PubMed  Google Scholar 

  167. Duncan, J. S. et al. Geometric strategies for neuroanatomic analysis from MRI. NeuroImage 23, S34–S45 (2004).

    Article  PubMed  Google Scholar 

  168. Shattuck, D. W., Sandor-Leahy, S. R., Schaper, K. A., Rottenberg, D. A. & Leahy, R. M. Magnetic resonance image tissue classification using a partial volume model. NeuroImage 13, 856–876 (2001).

    Article  CAS  PubMed  Google Scholar 

  169. Dinov, I. D. et al. Analyzing functional brain images in a probabilistic atlas: a validation of sub-volume thresholding. J. Comput. Asst. Tomog. 24, 128–138 (2000).

    Article  CAS  Google Scholar 

  170. Rasser, P. E. et al. Functional MRI BOLD response to Tower of London performance of first-episode schizophrenia patients using cortical pattern matching. NeuroImage 26, 941–951 (2005).

    Article  PubMed  Google Scholar 

  171. Thompson, P. et al. Mapping hippocampal and ventricular change in Alzheimer's disease. NeuroImage 22, 1754–1766 (2004).

    Article  PubMed  Google Scholar 

  172. Lin, C. L. et al. Characterization of perioperative seizures and epilepsy following aneurysmal subarachnoid hemorrhage. J. Neurosurg. 99, 978–985 (2003).

    Article  PubMed  Google Scholar 

  173. Ballmaier, M. et al. Localizing gray matter deficits in late onset depression using computational cortical pattern matching methods. Am. J. Psychiatry 161, 2091–2099 (2004).

    Article  PubMed  Google Scholar 

  174. Cannon, T. D. et al. Cortex mapping reveals regionally specific patterns of genetic and disease-specific gray-matter deficits in twins discordant for schizophrenia. Proc. Natl Acad. Sci. USA 99, 3228–3233 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Narr, K. L. et al. Abnormal gyral complexity in first episode schizophrenia. Biol. Psychiatry 55, 859–867 (2004).

    Article  PubMed  Google Scholar 

  176. Thompson, P. et al. Mapping hippocampal and ventricular change in Alzheimer's disease. NeuroImage 22, 1754–1766 (2004).

    Article  PubMed  Google Scholar 

  177. Vidal, C. et al. Dynamically spreading frontal and cingulate deficits mapped in adolescents with Schizophrenia. Arch. Gen. Psychiatry 63, 25–34 (2006).

    Article  PubMed  Google Scholar 

  178. Sowell, E. R. et al. Cortical abnormalities in children and adolescents with attention deficit hyperactivity disorder. Lancet 362, 1699–1707 (2003).

    Article  PubMed  Google Scholar 

  179. Sowell, E. R. et al. Regional brain shape abnormalities persist into adolescence after heavy prenatal alcohol exposure. Cereb. Cortex 12, 856–865 (2002).

    Article  PubMed  Google Scholar 

  180. Sowell, E. R. et al. Gray matter thickness abnormalities mapped in children with Tourette Syndrome. Soc. Neurosci. Abstr. 800.15 (2004).

  181. Gogtay, N. et al. Dynamic mapping of cortical brain development in pediatric bipolar illness. Int. Conf. Org. Hum. Brain Mapp. 344 (2004).

  182. Thompson, P. et al. Structural abnormalities in the brains of human subjects who use methamphetamine. J. Neurosci. 24, 6028–6036 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Mega, M. S. et al. Sulcal variability in the Alzheimer's brain: correlations with cognition. Neurology 50, 145–151 (1998).

    Article  CAS  PubMed  Google Scholar 

  184. Miller, M. Computational anatomy: shape, growth and atrophy comparison via diffeomorphisms. NeuroImage 23, S19–S33 (2004).

    Article  PubMed  Google Scholar 

  185. Studholme, C. et al. Deformation tensor morphometry of semantic dementia with quantitative validation. NeuroImage 21, 1387–1398 (2004).

    Article  CAS  PubMed  Google Scholar 

  186. Cannon, T. D. et al. Mapping heritability and molecular genetic associations with cortical features using probabilistic brain atlases: methods and initial applications to schizophrenia. Neuroinformatics 4, 5–19 (2006).

    Article  PubMed  Google Scholar 

  187. Ballmeier, M. et al. Comparing gray matter loss profiles between dementia with Lewy bodies and Alzheimer's disease using cortical pattern matching: diagnosis and gender effects, NeuroImage 23, 325–335 (2004).

    Article  Google Scholar 

  188. Thompson, P. M., Mega, M. S., Vidal, C., Rapoport, J. L. & Toga, A. W. in Lect. Notes Comput. Sci. 2082, 488–501 (2001).

    Google Scholar 

  189. Thompson, P. M. et al. Mapping adolescent brain change reveals dynamic wave of accelerated gray matter loss in very early-onset schizophrenia. Proc. Natl Acad. Sci. USA 98, 11650–11655 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Vidal, C. N. et al. dynamically spreading frontal and cingulate deficits mapped in adolescents with schizophrenia. Arch. Gen. Psychiatry 63, 25–34 (2006).

    Article  PubMed  Google Scholar 

  191. Worsley, K. J. et al. A unified statistical approach for determining significant signals in images of cerebral activation. Hum. Brain Mapp. 4, 58–73 (1996).

    Article  CAS  PubMed  Google Scholar 

  192. Friston, K. J. Statistical parametric mapping: ontology and current issues. J. Cereb. Blood Flow Metab. 15, 361–370 (1995).

    Article  CAS  PubMed  Google Scholar 

  193. Friston, K. J. et al. Statistical parametric maps in functional imaging: a general linear approach. Hum. Brain Mapp. 2, 189–210 (1995).

    Article  Google Scholar 

  194. Ashburner, J. & Friston, K. J. Voxel-based morphometry — the methods. NeuroImage 11, 805–821 (2000).

    Article  CAS  PubMed  Google Scholar 

  195. Thompson, P. M. et al. Thinning of the cerebral cortex in HIV/AIDS reflects CD4+ T-lymphocyte decline. Proc. Natl Acad. Sci. 102, 15647–15652 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Williams, T. H., Gluhbegoric, N. & Jew, J. Y. The human brain: dissections of the real brain. Virtual Hospital, University of Iowa [online], (1997).

    Google Scholar 

Download references

Acknowledgements

This work was supported by research grants from the National Institutes of Health (NIH), Roadmap Initiative for Bioinformatics and Computational Biology, National Center for Research Resources, the National Institute of Mental Health (NIMH) and the National Institute of Neurological Disorders and Stroke, and by Human Brain Project grants to the International Consortium for Brain Mapping, funded jointly by NIMH and the National Institute on Drug Abuse and one funded by the National Institute of Aging (NIA). Additional support was provided by the National Institute for Biomedical Imaging and Bioengineering, the National Center for Research Resources and the NIA, the National Library of Medicine and the Biomedical Informatics Research Network (BIRN, http://www.nbirn.net), which is funded by the National Center for Research Resources at the NIH. Other funds came from the German Ministry of Science BMBF, the Helmholtz Association of Research Centres and from various grants from the German Research Foundation DFG and the European Union. We thank the many collaborators and doctoral students in our laboratories. Special thanks to P. Roland from the Karolinska Institute Stockholm for an exciting collaboration of many years, and to N. Palomero-Gallagher for her enthusiasm in the receptor project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arthur W. Toga.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

OMIM

Alzheimer's disease

autism

schizophrenia

Williams syndrome

FURTHER INFORMATION

Toga's laboratory

Alzheimer's Disease Neuroimaging Initiative

International Consortium for Brain Mapping

Statistical Parametric Mapping

Glossary

Cartographic approaches

Approaches that place brain images from multiple subjects and devices into an anatomical reference system with standardized three-dimensional coordinates (for volumetric images) or two-dimensional spherical or planar coordinates (for cortical regions).

Cytoarchitecture

Subdivisions (named or numbered) of the cerebral cortex, called cytoarchitectonic maps, based on cellular features (size and shape of cells, cell packing density in different cortical layers, width of layers) and identified in cell body-stained specimens.

Magnetic resonance imaging

(MRI). A non-invasive method to obtain images of living tissue. It uses radio-frequency pulses and magnetic field gradients; the principle of nuclear magnetic resonance is used to reconstruct images of tissue characteristics (for example, proton density, water diffusion parameters).

Multispectral characterization

Multispectral imaging devices measure multiple features of an object at each spatial location, such as optical reflectance at different wavelengths, or different relaxometric decay constants (T1 and T2) in MRI.

Chemoarchitectural maps

Differences in the molecular composition of cortical and subcortical brain regions can be assessed using enzyme- or immunohistochemistry, in situ hybridization, receptor autoradiography and so on, revealing subdivisions with distinctive distribution patterns, such as expression of transmitter receptors.

Diffusion tensor imaging

(DTI). A technique developed in the mid-1990s, based on MRI in which diffusion constants of water molecules are measured along many (>6) orientations and diffusion anisotropy is characterized. It is used to visualize the location, orientation and anisotropy of the brain's white matter tracts, and is sensitive to directional parameters of water diffusion in the brain.

Myeloarchitecture

Subdivisions (numbered or named) of the cerebral cortex, called myeloarchitectonic maps, based on features (for example, stria of Gennari in the visual cortex) of myelinization (differential density of myelinated fibres and fibre bundles in different cortical layers), and identified in myelin-stained histological specimens.

Stereotaxic system

A technique or apparatus used in neurosurgery or brain imaging studies to localize a specific anatomical locus using standardized three-dimensional coordinates; used, for example, for directing the tip of a surgical instrument (such as a needle or electrode) to a known location.

Functional imaging

Distinct from structural imaging techniques such as computerized tomography or MRI that assess anatomical structure, functional imaging techniques (for example, positron emission tomography, functional MRI and electroencephalography) are sensitive to physiological processes such as neuronal activation, electromagnetic properties of living tissue, blood flow or metabolism.

Multimodal association cortices

The multimodal association cortices of the parietal and frontal lobes integrate somatosensory, auditory and visual information for higher-order cognitive processing.

Positron emission tomography

A medical imaging technique that uses injected radiolabelled tracer compounds in conjunction with mathematical reconstruction methods to produce a three-dimensional image or map of functional processes in the body, such as glucose metabolism, blood flow or receptor distributions.

Multimodal microstructural approach

An approach to characterize fine-scale anatomy using multiple histological and neurochemical techniques, revealing different aspects of cellular organization or molecular composition.

Fibre-tracking approaches

Using this approach, three-dimensional trajectories of white matter tracts can be reconstructed. The algorithm is based on fibre orientation information obtained from diffusion tensor imaging.

Probability map

A map that depicts the likelihood of a particular feature. It can be used to show how frequently, in percentage, a given anatomical structure is found in a specific location across a population of subjects.

Cytoarchitectonic probability maps

Based on a sample of brains that have been parcellated using cytoarchitectonic criteria; they display the statistical likelihood, or relative frequency, that a particular voxel in stereotaxic space contains a given cytoarchitectonic unit (for example, a cortical area, or a subcortical nucleus).

Maximum probability maps

Summary maps in which each voxel of the three-dimensional space has been assigned to the cytoarchitectonically defined unit with the highest probability. They are calculated on the basis of probability maps, such as cytoarchitectonic probability maps, to generate a map with unambiguously defined borders.

Voxel

The three dimensional equivalent of a pixel. A pixel is a picture element, and a voxel is a volume element.

T1-weighted images

One of most widely used MRI methods, in which the contrast is based on a selection of MRI acquisition parameters, producing an image that weights signal by the relaxometric parameter, T1, of each tissue (that is, the longitudinal relaxation time). In the brain, T1-weighting causes fibre tracts (nerve connections) to appear white, cortex and basal nuclei to appear grey, and cerebrospinal fluid to appear dark.

Relaxometry

The measurement of relaxation parameters in nuclear MRI, such as the longitudinal (T1) or transverse (T2) decay constants that characterize signal decay from excited nuclei. By detecting subtle differences in relaxation times, relaxometry is capable of differentiating various tissue types in the brain.

Anisotropy map

The directional dependency of water diffusion at each point in the brain can be summarized using measures such as fractional anisotropy. High anisotropy values indicate heavily myelinated white matter, whereas decreased anisotropy is often a sign of disease.

Anisotropic diffusion

Diffusion of a substance (for example, water) that is greater in certain preferred directions, such as along the axons of a fibre tract.

Isotropic diffusion

Diffusion of a substance (for example, water) that is uniform in all directions.

Tensor-valued information

Information that can be modelled mathematically as a matrix, or tensor, at each location in an object. Diffusion tensor imaging produces signals with at least six independent parameters at each anatomical point (the diffusion tensor); tensor calculus can then be used to estimate diffusion parameters in any specific direction.

Partial volume effects

This refers to the blurring of intensity differentiations used to classify contributing tissue types (grey matter, white matter and cerebrospinal fluid). It is the results of pixels placed over a region that contains multiple tissue types. The smaller the pixel size the less frequently this is problematic.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Toga, A., Thompson, P., Mori, S. et al. Towards multimodal atlases of the human brain. Nat Rev Neurosci 7, 952–966 (2006). https://doi.org/10.1038/nrn2012

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn2012

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing