Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Dynamics of hemispheric specialization and integration in the context of motor control

Abstract

Behavioural and neurophysiological evidence convincingly establish that the left hemisphere is dominant for motor skills that are carried out with either hand or those that require bimanual coordination. As well as this prioritization, we argue that specialized functions of the right hemisphere are also indispensable for the realization of goal-directed behaviour. As such, lateralization of motor function is a dynamic and multifaceted process that emerges across different timescales and is contingent on task- and performer-related determinants.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Hand motor representation.
Figure 2: Left hemisphere dominance.
Figure 3: Right hemisphere dominance.
Figure 4: Learning-related changes.

Similar content being viewed by others

References

  1. Friston, K. J. Models of brain function in neuroimaging. Annu. Rev. Psychol. 56, 57–87 (2005).

    Article  PubMed  Google Scholar 

  2. Sperry, R. W. in Neurosciences Third Study Program Vol. 3 Ch. 1 (eds Schmitt, F. & Worden, F.) 5–19 (MIT Press, Cambridge, Massachusetts, 1974).

    Google Scholar 

  3. Liepmann, H. in Lehrbuch der Nervenkrankheiten (eds Curschmann, H. & Kramer, F.) 408–416 (Springer, Berlin, 1925).

    Google Scholar 

  4. Sperry, R. W. Brain research: some head-splitting implications. The Voice 15, 11–16 (1966).

    Google Scholar 

  5. Pujol, J., Deus, J., Losilla, J. M. & Capdevila, A. Cerebral lateralization of language in normal left-handed people studied by functional MRI. Neurology 52, 1038–1043 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. Knecht, S. et al. Handedness and hemispheric language dominance in healthy humans. Brain 123, 2512–2518 (2000).

    Article  PubMed  Google Scholar 

  7. Dehaene-Lambertz, G., Dehaene, S. & Hertz-Pannier, L. Functional neuroimaging of speech perception in infants. Science 298, 2013–2015 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Holowka, S. & Petitto, L. A. Left hemisphere cerebral specialization for babies while babbling. Science 297, 1515 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Hepper, P. G., McCartney, G. R. & Shannon, E. A. Lateralised behaviour in first trimester human foetuses. Neuropsychologia 36, 531–534 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Toga, A. W. & Thompson, P. M. Mapping brain asymmetry. Nature Rev. Neurosci. 4, 37–48 (2003).

    Article  CAS  Google Scholar 

  11. Previc, F. H. A general theory concerning the prenatal origins of cerebral lateralization in humans. Psychol. Rev. 98, 299–334 (1991).

    Article  CAS  PubMed  Google Scholar 

  12. Corballis, M. C. From mouth to hand: gesture, speech, and the evolution of right-handedness. Behav. Brain Sci. 26, 199–208 (2003).

    PubMed  Google Scholar 

  13. Fadiga, L., Craighero, L., Buccino, G. & Rizzolatti, G. Speech listening specifically modulates the excitability of tongue muscles: a TMS study. Eur. J. Neurosci. 15, 399–402 (2002).

    Article  PubMed  Google Scholar 

  14. Hauk, O., Johnsrude, I. & Pulvermüller, F. Somatotopic representation of action words in the motor and premotor cortex. Neuron 41, 301–307 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Pulvermüller, F., Hauk, O., Nikulin, V. V. & Ilmoniemi, R. J. Functional links between motor and language systems. Eur. J. Neurosci. 21, 793–797 (2005).

    Article  PubMed  Google Scholar 

  16. Corballis, P. M., Funnell, M. G. & Gazzaniga, M. S. An evolutionary perspective on hemispheric asymmetries. Brain Cogn. 43, 112–117 (2000).

    CAS  PubMed  Google Scholar 

  17. Iverson, J. M. & Goldin-Meadow, S. Why people gesture as they speak. Nature 396, 228 (1998).

    Article  CAS  PubMed  Google Scholar 

  18. Rizzolatti, G. & Arbib, M. A. Language within our grasp. Trends Neurosci. 21, 188–194 (1998).

    Article  CAS  PubMed  Google Scholar 

  19. Nishitani, N. & Hari, R. Temporal dynamics of cortical representation for action. Proc. Natl Acad. Sci. USA 97, 913–918 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Binkofski, F. & Buccino, G. Motor functions of the Broca's region. Brain Lang. 89, 362–369 (2004).

    Article  PubMed  Google Scholar 

  21. Dominey, P. F., Hoen, M., Blanc, J. M. & Lelekov-Boissard, T. Neurological basis of language and sequential cognition: evidence from simulation, aphasia, and ERP studies. Brain Lang. 86, 207–225 (2003).

    Article  PubMed  Google Scholar 

  22. Amunts, K. et al. Asymmetry in the human motor cortex and handedness. Neuroimage 4, 216–222 (1996).

    Article  CAS  PubMed  Google Scholar 

  23. Volkmann, J., Schnitzler, A., Witte, O. W. & Freund, H. -J. Handedness and asymmetry of hand representation in human motor cortex. J. Neurophysiol. 79, 2149–2154 (1998).

    Article  CAS  PubMed  Google Scholar 

  24. Haaland, K. Y., Harrington, D. L. & Knight, R. T. Neural representations of skilled movement. Brain 123, 2306–2313 (2000).

    Article  PubMed  Google Scholar 

  25. Hammond, G., Faulkner, D., Byrnes, M., Mastaglia, F. & Thickbroom, G. Transcranial magnetic stimulation reveals asymmetrical efficacy of intracortical circuits in primary motor cortex. Exp. Brain Res. 155, 19–23 (2004).

    Article  PubMed  Google Scholar 

  26. Amunts, K., Schmidt-Passos, F., Schleicher, A. & Zilles, K. Postnatal development of interhemispheric asymmetry in the cytoarchitecture of human area 4. Anat. Embryol. (Berl.) 196, 393–402 (1997).

    Article  CAS  Google Scholar 

  27. Karni, A. et al. Functional MRI evidence for adult motor cortex plasticity during motor skill learning. Nature 377, 155–158 (1995).

    Article  CAS  PubMed  Google Scholar 

  28. Sanes, J. N. & Donoghue, J. P. Plasticity and primary motor cortex. Annu. Rev. Neurosci. 23, 393–415 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Guye, M. et al. Combined functional MRI and tractography to demonstrate the connectivity of the human primary motor cortex in vivo. Neuroimage 19, 1349–1360 (2003).

    Article  PubMed  Google Scholar 

  30. De Gennaro, L. et al. Handedness is mainly associated with an asymmetry of corticospinal excitability and not of transcallosal inhibition. Clin. Neurophysiol. 115, 1305–1312 (2004).

    Article  PubMed  Google Scholar 

  31. Wyke, M. The effects of brain lesions on the performance of bilateral arm movements. Neuropsychologia 9, 33–42 (1971).

    Article  CAS  PubMed  Google Scholar 

  32. Haaland, K. Y., Elsinger, C. L., Mayer, A. R., Durgerian, S. & Rao, S. M. Motor sequence complexity and performing hand produce differential patterns of hemispheric lateralization. J. Cogn. Neurosci. 16, 621–636 (2004).

    Article  PubMed  Google Scholar 

  33. Schluter, N. D., Rushworth, M. F., Passingham, R. E. & Mills, K. R. Temporary interference in human lateral premotor cortex suggests dominance for the selection of movements. A study using transcranial magnetic stimulation. Brain 121, 785–799 (1998).

    Article  PubMed  Google Scholar 

  34. Rushworth, M. F., Krams, M. & Passingham, R. E. The attentional role of the left parietal cortex: the distinct lateralization and localization of motor attention in the human brain. J. Cogn. Neurosci. 13, 698–710 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Grafton, S. T., Hazeltine, E. & Ivry, R. B. Motor sequence learning with the nondominant left hand. A PET functional imaging study. Exp. Brain Res. 146, 369–378 (2002).

    Article  PubMed  Google Scholar 

  36. Kuhtz-Buschbeck, J. P. et al. Effector-independent representations of simple and complex imagined finger movements: a combined fMRI and TMS study. Eur. J. Neurosci. 18, 3375–3387 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Jäncke, L. et al. Differential magnetic resonance signal change in human sensorimotor cortex to finger movements of different rate of the dominant and subdominant hand. Brain Res. Cogn. Brain Res. 6, 279–284 (1998).

    Article  PubMed  Google Scholar 

  38. Serrien, D. J., Cassidy, M. J. & Brown, P. The importance of the dominant hemisphere in the organization of bimanual movements. Hum. Brain Mapp. 18, 296–305 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Johnson-Frey, S. H. The neural bases of complex tool use in humans. Trends Cogn. Sci. 8, 71–78 (2004).

    Article  PubMed  Google Scholar 

  40. Wolpert, D. M., Goodbody, S. J. & Husain, M. Maintaining internal representations: the role of the human superior parietal lobe. Nature Neurosci. 1, 529–533 (1998).

    Article  CAS  PubMed  Google Scholar 

  41. Gazzaniga, M. S. Cerebral specialization and interhemispheric communication: does the corpus callosum enable the human condition? Brain 123, 1293–1326 (2000).

    Article  PubMed  Google Scholar 

  42. Agnew, J. A., Zeffiro, T. A. & Eden, G. F. Left hemisphere specialization for the control of voluntary movement rate. Neuroimage 22, 289–303 (2004).

    Article  PubMed  Google Scholar 

  43. Hickok, G., Bellugi, U. & Klima, E. S. The neurobiology of sign language and its implications for the neural basis of language. Nature 381, 699–702 (1996).

    Article  CAS  PubMed  Google Scholar 

  44. Amunts, K. et al. Motor cortex and hand motor skills: structural compliance in the human brain. Hum. Brain Mapp. 5, 206–215 (1997).

    Article  CAS  PubMed  Google Scholar 

  45. Schumacher, E. H., Elston, P. A. & D'Esposito, M. Neural evidence for representation-specific response selection. J. Cogn. Neurosci. 15, 1111–1121 (2003).

    Article  PubMed  Google Scholar 

  46. Richards, L. & Chiarello, C. Activation without selection: parallel right hemisphere roles in language and intentional movement? Brain Lang. 57, 151–178 (1997).

    Article  CAS  PubMed  Google Scholar 

  47. Goldberg, E. & Costa, L. D. Hemisphere differences in the acquisition and use of descriptive systems. Brain Lang. 14, 144–173 (1981).

    Article  CAS  PubMed  Google Scholar 

  48. Haaland, K. Y. & Harrington, D. L. Hemispheric control of the initial and corrective components of aiming movements. Neuropsychologia 27, 961–969 (1989).

    Article  CAS  PubMed  Google Scholar 

  49. Haaland, K. Y., Prestopnik, J. L., Knight, R. T. & Lee, R. R. Hemispheric asymmetries for kinematic and positional aspects of reaching. Brain 127, 1145–1158 (2004).

    Article  PubMed  Google Scholar 

  50. Sainburg, R. L. Evidence for a dynamic-dominance hypothesis of handedness. Exp. Brain Res. 142, 241–258 (2002).

    Article  PubMed  Google Scholar 

  51. Winstein, C. J. & Pohl, P. S. Effects of unilateral brain damage on the control of goal-directed hand movements. Exp. Brain Res. 105, 163–174 (1995).

    Article  CAS  PubMed  Google Scholar 

  52. Bagesteiro, L. B. & Sainburg, R. L. Nondominant arm advantages in load compensation during rapid elbow joint movements. J. Neurophysiol. 90, 1503–1513 (2003).

    Article  PubMed  Google Scholar 

  53. Jonides, J. et al. Spatial working memory in humans as revealed by PET. Nature 363, 623–625 (1993).

    Article  CAS  PubMed  Google Scholar 

  54. Coull, J. T. & Nobre, A. C. Where and when to pay attention: the neural systems for directing attention to spatial locations and to time intervals as revealed by both PET and fMRI. J. Neurosci. 18, 7426–7435 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Garavan, H., Ross, T. J. & Stein, E. A. Right hemisphere dominance of inhibitory control: an event-related functional MRI study. Proc. Natl Acad. Sci. USA 96, 8301–8306 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ghilardi, M. F. et al. Patterns of regional brain activation associated with different forms of motor learning. Brain Res. 871, 127–145 (2000).

    Article  CAS  PubMed  Google Scholar 

  57. Sergent, J. The cerebral balance of power: confrontation or cooperation? J. Exp. Psychol. Hum. Percept. Perform. 8, 253–272 (1982).

    Article  CAS  PubMed  Google Scholar 

  58. Ivry, R. B. & Robertson, L. C. The Two Sides of Perception (MIT Press, Cambridge, 1998).

    Google Scholar 

  59. Corbetta, M., Miezin, F. M., Shulman, G. L. & Petersen, S. E. A PET study of visuospatial attention. J. Neurosci. 13, 1202–1226 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Mesulam, M. M. Spatial attention and neglect: parietal, frontal and cingulate contributions to the mental representation and attentional targeting of salient extrapersonal events. Phil. Trans. R. Soc. Lond. B. Sci. 354, 1325–1346 (1999).

    Article  CAS  Google Scholar 

  61. Wenderoth, N., Debaere, F., Sunaert, S., van Hecke, P. & Swinnen, S. P. Parieto-premotor areas mediate directional interference during bimanual movements. Cereb. Cortex 14, 1153–1163 (2004).

    Article  PubMed  Google Scholar 

  62. Fink, G. R. et al. The neural consequences of conflict between intention and the senses. Brain 122, 497–512 (1999).

    Article  PubMed  Google Scholar 

  63. Ringo, J. L., Doty, R. W., Demeter, S. & Simard, P. Y. Time is of the essence: a conjecture that hemispheric specialization arises from interhemispheric conduction delay. Cereb. Cortex 4, 331–343 (1994).

    Article  CAS  PubMed  Google Scholar 

  64. Kinsbourne, M. & Hicks, R. E. in Attention and Performance Vol. 7 (ed. Requin, J.) 345–362 (Erlbaum, Hillsdale, 1978).

    Google Scholar 

  65. Verstynen, T. D., Diedrichsen, J., Albert, N., Aparicio, P. & Ivry, R. B. Ipsilateral motor cortex activity during unimanual hand movements relates to task complexity. J. Neurophysiol. 93, 1209–1222 (2005).

    Article  PubMed  Google Scholar 

  66. Weissman, D. H. & Banich, M. T. The cerebral hemispheres cooperate to perform complex but not simple tasks. Neuropsychology 14, 41–59 (2000).

    Article  CAS  PubMed  Google Scholar 

  67. Sun, F. T., Miller, L. M. & D'Esposito, M. Measuring temporal dynamics of functional networks using phase spectrum of fMRI data. Neuroimage 28, 227–237 (2005).

    Article  PubMed  Google Scholar 

  68. Taylor, H. G. & Heilman, K. M. Left-hemisphere motor dominance in righthanders. Cortex 16, 587–603 (1980).

    Article  CAS  PubMed  Google Scholar 

  69. Goldberg, E., Podell, K. & Lovell, M. Lateralization of frontal lobe functions and cognitive novelty. J. Neuropsychiatry Clin. Neurosci. 6, 371–378 (1994).

    Article  CAS  PubMed  Google Scholar 

  70. Himmelbach, M. & Karnath, H. O. Goal-directed hand movements are not affected by the biased space representation in spatial neglect. J. Cogn. Neurosci. 15, 972–980 (2003).

    Article  PubMed  Google Scholar 

  71. Swinnen, S. P. Intermanual coordination: from behavioural principles to neural-network interactions. Nature Rev. Neurosci. 3, 348–359 (2002).

    Article  CAS  Google Scholar 

  72. Debaere, F., Wenderoth, N., Sunaert, S., Van Hecke, P. & Swinnen, S. P. Changes in brain activation during the acquisition of a new bimanual coordination task. Neuropsychologia 42, 855–867 (2004).

    Article  CAS  PubMed  Google Scholar 

  73. Johansen-Berg, H. et al. The role of ipsilateral premotor cortex in hand movement after stroke. Proc. Natl Acad. Sci. USA 99, 14518–14523 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Johansen-Berg, H. & Matthews, P. M. Attention to movement modulates activity in sensori-motor areas, including primary motor cortex. Exp. Brain Res. 142, 13–24 (2002).

    Article  PubMed  Google Scholar 

  75. Rowe, J., Friston, K., Frackowiak, R. & Passingham, R. Attention to action: specific modulation of corticocortical interactions in humans. Neuroimage 17, 988–998 (2002).

    Article  PubMed  Google Scholar 

  76. Ellenberg, L. & Sperry, R. W. Lateralized division of attention in the commissurotomized and intact brain. Neuropsychologia 18, 411–418 (1980).

    Article  CAS  PubMed  Google Scholar 

  77. Geffen, G. M., Jones, D. L. & Geffen, L. B. Interhemispheric control of manual motor activity. Behav. Brain Res. 20, 131–140 (1994).

    Article  Google Scholar 

  78. Duque, J. et al. Kinematically specific interhemispheric inhibition operating in the process of generation of a voluntary movement. Cereb. Cortex 15, 588–593 (2005).

    Article  CAS  PubMed  Google Scholar 

  79. Netz, J., Ziemann, U. & Homberg, V. Hemispheric asymmetry of transcallosal inhibition in man. Exp. Brain Res. 104, 527–533 (1995).

    Article  CAS  PubMed  Google Scholar 

  80. Garvey, M. A. et al. Cortical correlates of neuromotor development in healthy children. Clin. Neurophysiol. 114, 1662–1670 (2003).

    Article  CAS  PubMed  Google Scholar 

  81. Serrien, D. J. & Brown, P. The functional role of interhemispheric synchronization in the control of bimanual timing tasks. Exp. Brain Res. 147, 268–272 (2002).

    Article  PubMed  Google Scholar 

  82. Preilowski, B. F. Possible contribution of the anterior forebrain commissures to bilateral motor coordination. Neuropsychologia 10, 267–277 (1972).

    Article  CAS  PubMed  Google Scholar 

  83. Andres, F. G. et al. Functional coupling of human cortical sensorimotor areas during bimanual skill acquisition. Brain 122, 855–870 (1999).

    Article  PubMed  Google Scholar 

  84. Franz, E. A., Waldie, K. E. & Smith, M. J. The effect of callosotomy on novel versus familiar bimanual actions: a neural dissociation between controlled and automatic processes? Psychol. Sci. 11, 82–85 (2000).

    Article  CAS  PubMed  Google Scholar 

  85. Serrien, D. J. & Brown, P. The integration of cortical and behavioural dynamics during initial learning of a motor task. Eur. J. Neurosci. 17, 1098–1104 (2003).

    Article  PubMed  Google Scholar 

  86. Cardoso de Oliveira, S., Gribova, A., Donchin, O., Bergman, H. & Vaadia, E. Neural interactions between motor cortical hemispheres during bimanual and unimanual arm movements. Eur. J. Neurosci. 14, 1881–1896 (2001).

    Article  CAS  PubMed  Google Scholar 

  87. Hazeltine, E., Diedrichsen, J., Kennerley, S. W. & Ivry, R. B. Bimanual cross-talk during reaching movements is primarily related to response selection, not the specification of motor parameters. Psychol. Res. 67, 56–70 (2003).

    Article  PubMed  Google Scholar 

  88. Marteniuk, R. G., MacKenzie, C. L. & Baba, D. M. Bimanual movement control: information processing and interaction effects. Q. J. Exp. Psychol. A 36, 335–365 (1984).

    Article  Google Scholar 

  89. Swinnen, S. P., Young, D. E., Walter, C. B. & Serrien, D. J. Control of asymmetrical bimanual movements. Exp. Brain Res. 85, 163–173 (1991).

    Article  CAS  PubMed  Google Scholar 

  90. Diedrichsen, J., Hazeltine, E., Nurss, W. K. & Ivry, R. B. The role of the corpus callosum in the coupling of bimanual isometric force pulses. J. Neurophysiol. 90, 2409–2418 (2003).

    Article  PubMed  Google Scholar 

  91. Singer, W. Synchronization of cortical activity and its putative role in information processing and learning. Annu. Rev. Neurosci. 18, 555–586 (1993).

    Article  Google Scholar 

  92. Bressler, S. L. Large-scale cortical networks and cognition. Brain Res. Brain Res. Rev. 20, 288–304 (1995).

    Article  CAS  PubMed  Google Scholar 

  93. Varela, F., Lachaux, J. P., Rodriguez, E. & Martinerie, J. The brainweb: phase synchronization and large-scale integration. Nature Rev. Neurosci. 2, 229–239 (2001).

    Article  CAS  Google Scholar 

  94. Brovelli, A. et al. Beta oscillations in a large-scale sensorimotor cortical network: directional influences revealed by Granger causal activity. Proc. Natl Acad. Sci. USA 101, 9849–9854 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Pollok, B., Gross, J., Muller, K., Aschersleben, G. & Schnitzler, A. The cerebral oscillatory network associated with auditorily paced finger movements. Neuroimage 24, 646–655 (2005).

    Article  PubMed  Google Scholar 

  96. Fries, P. A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends Cogn. Sci. 9, 474–480 (2005).

    Article  PubMed  Google Scholar 

  97. Liang, H., Bressler, S. L., Ding, M., Truccolo, W. A. & Nakamura, R. Synchronized activity in prefrontal cortex during anticipation of visuomotor processing. Neuroreport 13, 2011–2015 (2002).

    Article  PubMed  Google Scholar 

  98. Serrien, D. J., Fisher, R. J. & Brown, P. Transient increases of synchronized neural activity during movement preparation: influence of cognitive constraints. Exp. Brain Res. 153, 27–34 (2003).

    Article  PubMed  Google Scholar 

  99. Hummel, F. & Gerloff, C. Larger interregional synchrony is associated with greater behavioral success in a complex sensory integration task in humans. Cereb. Cortex 15, 670–678 (2005).

    Article  PubMed  Google Scholar 

  100. Escalante-Mead, P. R., Minshew, N. J. & Sweeney, J. A. Abnormal brain lateralization in high-functioning autism. J. Autism Dev. Disord. 33, 539–543 (2003).

    Article  PubMed  Google Scholar 

  101. Friston, K. J. The disconnection hypothesis. Schizophr. Res. 30, 115–125 (1998).

    Article  CAS  PubMed  Google Scholar 

  102. Tononi, G., Edelman, G. M. & Sporns, O. Complexity and coherency: integrating information in the brain. Trends Cogn. Sci. 2, 474–484 (1998).

    Article  CAS  PubMed  Google Scholar 

  103. Bressler, S. L. & Kelso, J. A. S. Cortical coordination dynamics and cognition. Trends Cogn. Sci. 5, 26–36 (2001).

    Article  PubMed  Google Scholar 

  104. McIntosh, A. R. Contexts and catalysts: a resolution of the localization and integration of function in the brain. Neuroinformatics 2, 175–182 (2004).

    Article  PubMed  Google Scholar 

  105. Iacoboni, M. & Zaidel, E. Interhemispheric visuo-motor integration in humans: the role of the superior parietal cortex. Neuropsychologia 42, 419–425 (2004).

    Article  PubMed  Google Scholar 

  106. Miller, C. A. Degree of lateralization as a hierarchy of manual and cognitive skill levels. Neuropsychologia 20, 155–162 (1982).

    Article  CAS  PubMed  Google Scholar 

  107. Annett, M. The growth of manual preference and speed. Br. J. Psychol. 61, 545–558 (1970).

    Article  CAS  PubMed  Google Scholar 

  108. Peters, M. Why the preferred hand taps more quickly than the non-preferred hand: three experiments on handedness. Can. J. Psychol. 34, 62–71 (1980).

    Article  Google Scholar 

  109. Roy, E. A., Bryden, P. & Cavill, S. Hand differences in pegboard performance through development. Brain Cogn. 53, 315–317 (2003).

    Article  PubMed  Google Scholar 

  110. Bryden, P. J., Pryde, K. M. & Roy, E. A. A performance measure of the degree of hand preference. Brain Cogn. 44, 402–414 (2000).

    Article  CAS  PubMed  Google Scholar 

  111. Guiard, Y. Asymmetric division of labor in human skilled bimanual action: the kinematic chain as a model. J. Mot. Behav. 19, 486–517 (1987).

    Article  CAS  PubMed  Google Scholar 

  112. Swinnen, S. P., Jardin, K. & Meulenbroek, R. Between-limb asynchronies during bimanual coordination: effects of manual dominance and attentional cueing. Neuropsychologia 34, 1203–1213 (1996).

    Article  CAS  PubMed  Google Scholar 

  113. Kaminski, M. J. & Blinowska, J. A new method of the description of information flow in the brain structures. Biol. Cybern. 65, 203–210 (1991).

    Article  CAS  PubMed  Google Scholar 

  114. Gerloff, C. et al. Functional coupling and regional activation of human cortical motor areas during simple, internally paced and externally paced finger movements. Brain 121, 1513–1531 (1998).

    Article  PubMed  Google Scholar 

  115. Strens, L. H. et al. Corticocortical coupling in chronic stroke: its relevance to recovery. Neurology 63, 475–484 (2004).

    Article  CAS  PubMed  Google Scholar 

  116. Silberstein, P. et al. Cortico-cortical coupling in Parkinson's disease and its modulation by therapy. Brain 128, 1277–1291 (2005).

    Article  PubMed  Google Scholar 

  117. Serrien, D. J., Orth, M., Evans, A. H., Lees, A. J. & Brown, P. Motor inhibition in patients with Gilles de la Tourette syndrome: functional activation patterns as revealed by EEG coherence. Brain 128, 116–125 (2005).

    Article  PubMed  Google Scholar 

  118. Schnitzler, A. & Gross, J. Normal and pathological oscillatory communication in the brain. Nature Rev. Neurosci. 6, 285–296 (2005).

    Article  CAS  Google Scholar 

  119. Martin, J. H. Neuroanatomy: Text and Atlas 2nd edn (Appleton & Lange, Stamford, Connecticut, 1996).

    Google Scholar 

Download references

Acknowledgements

The authors' work was supported by the School of Psychology, University of Nottingham, UK (D.J.S.), the National Institutes of Health, USA (R.B.I.), and the Flanders Fund for Scientific Research, Belgium, and the Research Fund of Katholieke Universiteit Leuven, Belgium (S.P.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deborah J. Serrien.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Serrien, D., Ivry, R. & Swinnen, S. Dynamics of hemispheric specialization and integration in the context of motor control. Nat Rev Neurosci 7, 160–166 (2006). https://doi.org/10.1038/nrn1849

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn1849

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing