Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Src kinases: a hub for NMDA receptor regulation

Key Points

  • Src family tyrosine kinases (SFKs) upregulate the function of NMDA (N-methyl-D-aspartate) receptors (NMDARs) and act as a molecular hub on which various signalling pathways converge. The catalytic activity of SFKs is tightly controlled, mainly through intramolecular interactions and through phosphorylation and dephosphorylation of SFKs. SFKs can be activated by various protein tyrosine phosphatases (PTPs) or by extrinsic ligands that disrupt the intramolecular interactions.

  • There is extensive evidence that SFKs increase NMDAR channel gating without altering NMDAR single-channel conductance. Specific inhibitors have implicated Src in the upregulation of NMDAR function, but it is unclear whether other SFKs are involved in this regulation in vivo. The upregulation of NMDAR function by SFKs is opposed by the STEP61 isoform of the striatal enriched tyrosine phosphatase (STEP) family.

  • The NR2B subunit of the NMDAR is the main tyrosine-phosphorylated protein in the postsynaptic density, and the NR2A subunit is also phosphorylated on tyrosine. Both of these subunits have long, intracellular carboxy (C)-terminal tails with 25 tyrosine residues on each. It is unclear which residues undergo phosphorylation to mediate the effects of SFKs on NMDAR function.

  • SFK-mediated phosphorylation of NR2 subunits might also be involved in the increase in NMDAR levels at the synaptic membrane that follows tetanic stimulation. Phosphorylation of the C-terminal tails might interfere with the internalization of the receptors.

  • Signalling pathways that converge on the SFKs to influence NMDAR function include G-protein-coupled receptors, receptor protein tyrosine kinase signalling, the Ras pathway, and the cytokine receptor and integrin pathways.

  • NMDARs are crucial for several types of long-term plasticity in the CNS, such as long-term potentiation (LTP). SFKs are necessary for the induction of LTP in area CA1 of the hippocampus. A model is proposed in which tetanic stimulation activates CAKβ, which activates Src and allows tonic suppression of NMDAR function by STEP to be overcome. The resulting boost in the influx of Ca2+ is coupled with the reduction of the Mg2+ block by depolarization to set in motion the cascade that leads to potentiation at the synapse.

  • NMDARs have also been implicated in less desirable forms of plasticity, including those involved in chronic pain and epilepsy. The modulation of NMDARs by SFKs is likely to be involved in these functions as well.

  • Cerebral ischaemia also seems to involve NMDARs, and SFK signalling is increased in transient ischaemia, along with the phosphorylation of NR2 subunits. Furthermore, SFK-mediated NMDAR phosphorylation has also been implicated in neurodegeneration in Huntington's disease. The involvement of SFKs in these and other pathological processes should be investigated further.

Abstract

In the central nervous system, synaptic strength is regulated partly by changes in the function and number of postsynaptic glutamate receptors. The NMDA (N-methyl-D-aspartate) subtype of glutamate receptor (NMDAR) is regulated in part by the opposing actions of protein tyrosine kinases and phosphotyrosine phosphatases. Members of the Src family of protein tyrosine kinases upregulate NMDAR function, thereby gating the production of NMDAR-dependent synaptic potentiation. Src family kinases (SFKs) are a crucial point of convergence for signalling pathways that enhance NMDAR activity, so that SFKs act as a molecular hub for the control of NMDARs. These kinases regulate synaptic strength and are therefore vital for processes that underlie physiological and pathological plasticity in the brain and spinal cord.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure and regulation of Src family kinases (SFKs).
Figure 2: Regulation of NMDAR (N-methyl-D-aspartate receptor) gating by the balance of tyrosine phosphorylation and dephosphorylation.
Figure 3: Sites of tyrosine phosphorylation of NMDAR (N-methyl-D-aspartate receptor) subunits by Src family kinases (SFKs).
Figure 4: Convergence of signalling pathways on Src family kinases (SFKs).
Figure 5: Implications for Src family kinase (SFK)–NMDAR (N-methyl-D-aspartate receptor) signalling in plasticity and toxicity.

Similar content being viewed by others

References

  1. Stehelin, D., Varmus, H. E., Bishop, J. M. & Vogt, P. K. DNA related to the transforming gene(s) of avian sarcoma viruses is present in normal avian DNA. Nature 260, 170–173 (1976).

    CAS  PubMed  Google Scholar 

  2. Kuo, W. L., Chung, K. C. & Rosner, M. R. Differentiation of central nervous system neuronal cells by fibroblast-derived growth factor requires at least two signaling pathways: roles for Ras and Src. Mol. Cell. Biol. 17, 4633–4643 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Hoffman-Kim, D. et al. pp60(c-src) is a negative regulator of laminin-1-mediated neurite outgrowth in chick sensory neurons. Mol. Cell. Neurosci. 21, 81–93 (2002).

    CAS  PubMed  Google Scholar 

  4. Wang, Y. T. & Salter, M. W. Regulation of NMDA receptors by tyrosine kinases and phosphatases. Nature 369, 233–235 (1994). This was the first report to show that tyrosine phosphorylation regulates the function of NMDARs. Intracellular application of recombinant Src was found to potentiate NMDAR currents, making the NMDAR the first ion channel in the CNS to be shown to be modulated by SFKs.

    CAS  PubMed  Google Scholar 

  5. Fadool, D. A., Holmes, T. C., Berman, K., Dagan, D. & Levitan, I. B. Tyrosine phosphorylation modulates current amplitude and kinetics of a neuronal voltage-gated potassium channel. J. Neurophysiol. 78, 1563–1573 (1997).

    CAS  PubMed  Google Scholar 

  6. Cataldi, M. et al. Protein-tyrosine kinases activate while protein-tyrosine phosphatases inhibit L-type calcium channel activity in pituitary GH3 cells. J. Biol. Chem. 271, 9441–9446 (1996).

    CAS  PubMed  Google Scholar 

  7. Moss, S. J., Gorrie, G. H., Amato, A. & Smart, T. G. Modulation of GABAA receptors by tyrosine phosphorylation. Nature 377, 344–348 (1995).

    CAS  PubMed  Google Scholar 

  8. Wan, Q. et al. Modulation of GABAA receptor function by tyrosine phosphorylation of beta subunits. J. Neurosci. 17, 5062–5069 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Wang, K. et al. Regulation of the neuronal nicotinic acetylcholine receptor by Src family tyrosine kinases. J. Biol. Chem. 279, 8779–8786 (2004).

    CAS  PubMed  Google Scholar 

  10. Sadowski, I., Stone, J. C. & Pawson, T. A noncatalytic domain conserved among cytoplasmic protein-tyrosine kinases modifies the kinase function and transforming activity of Fujinami sarcoma virus P130gag-fps. Mol. Cell. Biol. 6, 4396–4408 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Moran, M. F. et al. Src homology region 2 domains direct protein-protein interactions in signal transduction. Proc. Natl Acad. Sci. USA 87, 8622–8626 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Ren, R., Mayer, B. J., Cicchetti, P. & Baltimore, D. Identification of a ten-amino acid proline-rich SH3 binding site. Science 259, 1157–1161 (1993).

    CAS  PubMed  Google Scholar 

  13. Resh, M. D. Interaction of tyrosine kinase oncoproteins with cellular membranes. Biochim. Biophys. Acta 1155, 307–322 (1993).

    CAS  PubMed  Google Scholar 

  14. Okada, M. & Nakagawa, H. A protein tyrosine kinase involved in regulation of pp60c-src function. J. Biol. Chem. 264, 20886–20893 (1989).

    CAS  PubMed  Google Scholar 

  15. Klages, S. et al. Ctk: a protein-tyrosine kinase related to Csk that defines an enzyme family. Proc. Natl Acad. Sci. USA 91, 2597–2601 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Liu, X. et al. Regulation of c-Src tyrosine kinase activity by the Src SH2 domain. Oncogene 8, 1119–1126 (1993).

    CAS  PubMed  Google Scholar 

  17. Xu, W., Harrison, S. C. & Eck, M. J. Three-dimensional structure of the tyrosine kinase c-Src. Nature 385, 595–602 (1997).

    CAS  PubMed  Google Scholar 

  18. Cooper, J. A., Gould, K. L., Cartwright, C. A. & Hunter, T. Tyr527 is phosphorylated in pp60c-src: implications for regulation. Science 231, 1431–1434 (1986).

    CAS  PubMed  Google Scholar 

  19. Superti-Furga, G., Fumagalli, S., Koegl, M., Courtneidge, S. A. & Draetta, G. Csk inhibition of c-Src activity requires both the SH2 and SH3 domains of Src. EMBO J. 12, 2625–2634 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Zheng, X. M., Wang, Y. & Pallen, C. J. Cell transformation and activation of pp60c-src by overexpression of a protein tyrosine phosphatase. Nature 359, 336–339 (1992).

    CAS  PubMed  Google Scholar 

  21. Fang, K. S., Sabe, H., Saito, H. & Hanafusa, H. Comparative study of three protein-tyrosine phosphatases. Chicken protein-tyrosine phosphatase lambda dephosphorylates c-Src tyrosine 527. J. Biol. Chem. 269, 20194–20200 (1994).

    CAS  PubMed  Google Scholar 

  22. Bjorge, J. D., Pang, A. & Fujita, D. J. Identification of protein-tyrosine phosphatase 1B as the major tyrosine phosphatase activity capable of dephosphorylating and activating c-Src in several human breast cancer cell lines. J. Biol. Chem. 275, 41439–41446 (2000).

    CAS  PubMed  Google Scholar 

  23. Somani, A. K., Bignon, J. S., Mills, G. B., Siminovitch, K. A. & Branch, D. R. Src kinase activity is regulated by the SHP-1 protein-tyrosine phosphatase. J. Biol. Chem. 272, 21113–21119 (1997).

    CAS  PubMed  Google Scholar 

  24. Peng, Z. Y. & Cartwright, C. A. Regulation of the Src tyrosine kinase and Syp tyrosine phosphatase by their cellular association. Oncogene 11, 1955–1962 (1995).

    CAS  PubMed  Google Scholar 

  25. Hanke, J. H. et al. Discovery of a novel, potent, and Src family-selective tyrosine kinase inhibitor. Study of Lck- and FynT-dependent T cell activation. J. Biol. Chem. 271, 695–701 (1996).

    CAS  PubMed  Google Scholar 

  26. Ma, Y. C., Huang, J., Ali, S., Lowry, W. & Huang, X. Y. Src tyrosine kinase is a novel direct effector of G proteins. Cell 102, 635–646 (2000).

    CAS  PubMed  Google Scholar 

  27. Thornton, C., Yaka, R., Dinh, S. & Ron, D. H-Ras modulates NMDA receptor function via inhibition of Src tyrosine kinase activity. J. Biol. Chem. 278, 23823–23829 (2003).

    CAS  PubMed  Google Scholar 

  28. Smart, J. E. et al. Characterization of sites for tyrosine phosphorylation in the transforming protein of Rous sarcoma virus (pp60v-src) and its normal cellular homologue (pp60c-src). Proc. Natl Acad. Sci. USA 78, 6013–6017 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Xu, W., Doshi, A., Lei, M., Eck, M. J. & Harrison, S. C. Crystal structures of c-Src reveal features of its autoinhibitory mechanism. Mol. Cell 3, 629–638 (1999).

    CAS  PubMed  Google Scholar 

  30. Gonfloni, S., Weijland, A., Kretzschmar, J. & Superti-Furga, G. Crosstalk between the catalytic and regulatory domains allows bidirectional regulation of Src. Nature Struct. Biol. 7, 281–286 (2000).

    CAS  PubMed  Google Scholar 

  31. McBain, C. J. & Mayer, M. L. N-methyl-D-aspartic acid receptor structure and function. Physiol. Rev. 74, 723–760 (1994).

    CAS  PubMed  Google Scholar 

  32. Husi, H., Ward, M. A., Choudhary, J. S., Blackstock, W. P. & Grant, S. G. Proteomic analysis of NMDA receptor-adhesion protein signaling complexes. Nature Neurosci. 3, 661–669 (2000).

    CAS  PubMed  Google Scholar 

  33. Wang, Y. T., Yu, X. M. & Salter, M. W. Ca2+-independent reduction of N-methyl-D-aspartate channel activity by protein tyrosine phosphatase. Proc. Natl Acad. Sci. USA 93, 1721–1725 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Kohr, G. & Seeburg, P. H. Subtype-specific regulation of recombinant NMDA receptor-channels by protein tyrosine kinases of the src family. J. Physiol. (Lond.) 492, 445–452 (1996).

    Google Scholar 

  35. Chen, C. & Leonard, J. P. Protein tyrosine kinase-mediated potentiation of currents from cloned NMDA receptors. J. Neurochem. 67, 194–200 (1996).

    CAS  PubMed  Google Scholar 

  36. Roche, S., Koegl, M., Barone, M. V., Roussel, M. F. & Courtneidge, S. A. DNA synthesis induced by some but not all growth factors requires Src family protein tyrosine kinases. Mol. Cell. Biol. 15, 1102–1109 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Yu, X. M., Askalan, R., Keil, G. J. & Salter, M. W. NMDA channel regulation by channel-associated protein tyrosine kinase Src. Science 275, 674–678 (1997). The authors show that endogenous Src upregulates the activity of NMDAR channels. They also find that the action of Src requires a sequence within the unique domain of Src (Src(40–58)) and that Src is a component of the NMDAR complex.

    CAS  PubMed  Google Scholar 

  38. Lu, Y. M., Roder, J. C., Davidow, J. & Salter, M. W. Src activation in the induction of long-term potentiation in CA1 hippocampal neurons. Science 279, 1363–1367 (1998). This paper presents evidence that Src activation is necessary and sufficient for the induction of LTP in CA1 pyramidal neurons in hippocampal slices. LTP induction is prevented by blocking Src and occluded by directly activating Src. Src activity is increased in CA1 hippocampal slices after tetanic stimulation of Schaffer collateral inputs.

    CAS  PubMed  Google Scholar 

  39. Lei, G. et al. Gain control of N-methyl-D-aspartate receptor activity by receptor-like protein tyrosine phosphatase α. EMBO J. 21, 2977–2989 (2002). This paper shows that PTPα, an activator of SFKs, is a component of the NMDAR complex and potentiates NMDAR currents in a SFK-dependent manner. LTP in CA1 pyramidal neurons in hippocampal slices is reduced by inhibiting endogenous PTPα.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Bhandari, V., Lim, K. L. & Pallen, C. J. Physical and functional interactions between receptor-like protein-tyrosine phosphatase α and p59fyn. J. Biol. Chem. 273, 8691–8698 (1998).

    CAS  PubMed  Google Scholar 

  41. Harder, K. W., Moller, N. P., Peacock, J. W. & Jirik, F. R. Protein-tyrosine phosphatase α regulates Src family kinases and alters cell-substratum adhesion. J. Biol. Chem. 273, 31890–31900 (1998).

    CAS  PubMed  Google Scholar 

  42. Ponniah, S., Wang, D. Z., Lim, K. L. & Pallen, C. J. Targeted disruption of the tyrosine phosphatase PTPα leads to constitutive downregulation of the kinases Src and Fyn. Curr. Biol. 9, 535–538 (1999).

    CAS  PubMed  Google Scholar 

  43. Huang, Y. et al. CAKβ/Pyk2 kinase is a signaling link for induction of long-term potentiation in CA1 hippocampus. Neuron 29, 485–496 (2001).

    CAS  PubMed  Google Scholar 

  44. Suzuki, T. & Okumura-Noji, K. NMDA receptor subunits ε1 (NR2A) and ε2 (NR2B) are substrates for Fyn in the postsynaptic density fraction isolated from the rat brain. Biochem. Biophys. Res. Commun. 216, 582–588 (1995).

    CAS  PubMed  Google Scholar 

  45. Kalia, L. V. & Salter, M. W. Interactions between Src family protein tyrosine kinases and PSD-95. Neuropharmacology 45, 720–728 (2003).

    CAS  PubMed  Google Scholar 

  46. Yaka, R. et al. NMDA receptor function is regulated by the inhibitory scaffolding protein, RACK1. Proc. Natl Acad. Sci. USA 99, 5710–5715 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Roche, S., Fumagalli, S. & Courtneidge, S. A. Requirement for Src family protein tyrosine kinases in G2 for fibroblast cell division. Science 269, 1567–1569 (1995).

    CAS  PubMed  Google Scholar 

  48. Ali, D. W. & Salter, M. W. NMDA receptor regulation by Src kinase signalling in excitatory synaptic transmission and plasticity. Curr. Opin. Neurobiol. 11, 336–342 (2001).

    CAS  PubMed  Google Scholar 

  49. Oyama, T. et al. Immunocytochemical localization of the striatal enriched protein tyrosine phosphatase in the rat striatum: a light and electron microscopic study with a complementary DNA-generated polyclonal antibody. Neuroscience 69, 869–880 (1995).

    CAS  PubMed  Google Scholar 

  50. Boulanger, L. M. et al. Cellular and molecular characterization of a brain-enriched protein tyrosine phosphatase. J. Neurosci. 15, 1532–1544 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Pelkey, K. A. et al. Tyrosine phosphatase STEP is a tonic brake on induction of long-term potentiation. Neuron 34, 127–138 (2002). The authors show that STEP is a component of the NMDAR complex. STEP was the first PTP to be found to suppress the activity of NMDARs by opposing the action of Src. The authors also show that activity of STEP tonically suppresses induction of LTP in CA1 neurons; inhibiting STEP produces LTP even without tetanus.

    CAS  PubMed  Google Scholar 

  52. Hironaka, K., Umemori, H., Tezuka, T., Mishina, M. & Yamamoto, T. The protein-tyrosine phosphatase PTPMEG interacts with glutamate receptor δ2 and ε subunits. J. Biol. Chem. 275, 16167–16173 (2000).

    CAS  PubMed  Google Scholar 

  53. Lin, S. Y. et al. Brain-derived neurotrophic factor enhances association of protein tyrosine phosphatase PTP1D with the NMDA receptor subunit NR2B in the cortical postsynaptic density. Brain Res. Mol. Brain Res. 70, 18–25 (1999).

    CAS  PubMed  Google Scholar 

  54. Levine, E. S., Dreyfus, C. F., Black, I. B. & Plummer, M. R. Brain-derived neurotrophic factor rapidly enhances synaptic transmission in hippocampal neurons via postsynaptic tyrosine kinase receptors. Proc. Natl Acad. Sci. USA 92, 8074–8077 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Lin, S. Y. et al. BDNF acutely increases tyrosine phosphorylation of the NMDA receptor subunit 2B in cortical and hippocampal postsynaptic densities. Brain Res. Mol. Brain Res. 55, 20–27 (1998).

    CAS  PubMed  Google Scholar 

  56. Moon, I. S., Apperson, M. L. & Kennedy, M. B. The major tyrosine-phosphorylated protein in the postsynaptic density fraction is N-methyl-D-aspartate receptor subunit 2B. Proc. Natl Acad. Sci. USA 91, 3954–3958 (1994). This paper is the first to report tyrosine phosphorylation of an NR2 subunit, namely NR2B. The results indicate that NMDAR function might be regulated by tyrosine phosphorylation of a receptor subunit protein and/or that NMDARs participate in signalling through tyrosine phosphorylation.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Lau, L. F. & Huganir, R. L. Differential tyrosine phosphorylation of N-methyl-D-aspartate receptor subunits. J. Biol. Chem. 270, 20036–20041 (1995).

    CAS  PubMed  Google Scholar 

  58. Yang, M. & Leonard, J. P. Identification of mouse NMDA receptor subunit NR2A C-terminal tyrosine sites phosphorylated by coexpression with v-Src. J. Neurochem. 77, 580–588 (2001).

    CAS  PubMed  Google Scholar 

  59. Nakazawa, T. et al. Characterization of Fyn-mediated tyrosine phosphorylation sites on GluR ε2 (NR2B) subunit of the N-methyl-D-aspartate receptor. J. Biol. Chem. 276, 693–699 (2001). References 58 and 59 identify tyrosine residues that are phosphorylated by SFKs in the C-terminal tails of NR2A and NR2B, respectively. The main site of phosphorylation of NR2B is Y1472. With a phosphospecific antibody, this residue is found to be basally phosphorylated in the brain and to be hyperphosphorylated in CA1 hippocampal slices after tetanic stimulation of Schaffer collateral inputs.

    CAS  PubMed  Google Scholar 

  60. Cheung, H. H. & Gurd, J. W. Tyrosine phosphorylation of the N-methyl-D-aspartate receptor by exogenous and postsynaptic density-associated Src-family kinases. J. Neurochem. 78, 524–534 (2001).

    CAS  PubMed  Google Scholar 

  61. Zheng, F., Gingrich, M. B., Traynelis, S. F. & Conn, P. J. Tyrosine kinase potentiates NMDA receptor currents by reducing tonic zinc inhibition. Nature Neurosci. 1, 185–191 (1998). The authors show that for NR1/NR2A and NR1/NR2B receptors expressed heterologously, tyrosine phosphorylation potentiates NMDAR currents by reducing tonic inhibition by zinc. So, an intracellular biochemical event, phosphorylation, affects regulation at an extracellular site on the NMDAR.

    CAS  PubMed  Google Scholar 

  62. Xiong, Z. G. et al. Src potentiation of NMDA receptors in hippocampal and spinal neurons is not mediated by reducing zinc inhibition. J. Neurosci. 19, RC37 (1999). This paper shows that the mechanism identified in reference 61 is not responsible for the upregulation of NMDAR activity by Src in hippocampal or spinal cord neurons.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Nada, S. et al. Identification of PSD-93 as a substrate for the Src family tyrosine kinase Fyn. J. Biol. Chem. 278, 47610–47621 (2003).

    CAS  PubMed  Google Scholar 

  64. Gurd, J. W. & Bissoon, N. The N-methyl-D-aspartate receptor subunits NR2A and NR2B bind to the SH2 domains of phospholipase C-γ. J. Neurochem. 69, 623–630 (1997).

    CAS  PubMed  Google Scholar 

  65. Hisatsune, C., Umemori, H., Mishina, M. & Yamamoto, T. Phosphorylation-dependent interaction of the N-methyl-D-aspartate receptor epsilon 2 subunit with phosphatidylinositol 3-kinase. Genes Cells 4, 657–666 (1999).

    CAS  PubMed  Google Scholar 

  66. Takagi, N. et al. The effect of transient global ischemia on the interaction of Src and Fyn with the N-methyl-D-aspartate receptor and postsynaptic densities: possible involvement of Src homology 2 domains. J. Cereb. Blood Flow Metab. 19, 880–888 (1999).

    CAS  PubMed  Google Scholar 

  67. Bi, R., Rong, Y., Bernard, A., Khrestchatisky, M. & Baudry, M. Src-mediated tyrosine phosphorylation of NR2 subunits of N-methyl-D-aspartate receptors protects from calpain-mediated truncation of their C-terminal domains. J. Biol. Chem. 275, 26477–26483 (2000).

    CAS  PubMed  Google Scholar 

  68. Rong, Y., Lu, X., Bernard, A., Khrestchatisky, M. & Baudry, M. Tyrosine phosphorylation of ionotropic glutamate receptors by Fyn or Src differentially modulates their susceptibility to calpain and enhances their binding to spectrin and PSD-95. J. Neurochem. 79, 382–390 (2001).

    CAS  PubMed  Google Scholar 

  69. Malenka, R. C. & Nicoll, R. A. Long-term potentiation — a decade of progress? Science 285, 1870–1874 (1999).

    CAS  PubMed  Google Scholar 

  70. Grosshans, D. R., Clayton, D. A., Coultrap, S. J. & Browning, M. D. LTP leads to rapid surface expression of NMDA but not AMPA receptors in adult rat CA1. Nature Neurosci. 5, 27–33 (2002). The authors show that LTP in the CA1 region of the adult rat hippocampus leads to rapid surface expression of NMDARs. NMDARs were previously thought to undergo only relatively slow turnover. PKC and SFK activities were required, because inhibition of either PKC or SFKs prevented the increase in NMDAR surface expression.

    CAS  PubMed  Google Scholar 

  71. Vissel, B., Krupp, J. J., Heinemann, S. F. & Westbrook, G. L. A use-dependent tyrosine dephosphorylation of NMDA receptors is independent of ion flux. Nature Neurosci. 4, 587–596 (2001). Recombinant NR1/NR2A receptors expressed in HEK293 cells exhibit a steady decline of the peak amplitudes of NMDAR currents with regular agonist application. This activity-dependent decline of NMDAR-mediated currents is prevented by intracellular application of recombinant Src or a PTP inhibitor, and involves Y842 in the NR2A C-terminal tail.

    CAS  PubMed  Google Scholar 

  72. Roche, K. W. et al. Molecular determinants of NMDA receptor internalization. Nature Neurosci. 4, 794–802 (2001).

    CAS  PubMed  Google Scholar 

  73. Marsh, M. & McMahon, H. T. The structural era of endocytosis. Science 285, 215–220 (1999).

    CAS  PubMed  Google Scholar 

  74. Marino, M. J., Rouse, S. T., Levey, A. I., Potter, L. T. & Conn, P. J. Activation of the genetically defined m1 muscarinic receptor potentiates N-methyl-D-aspartate (NMDA) receptor currents in hippocampal pyramidal cells. Proc. Natl Acad. Sci. USA 95, 11465–11470 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Lu, W. Y. et al. G-protein-coupled receptors act via protein kinase C and Src to regulate NMDA receptors. Nature Neurosci. 2, 331–338 (1999). This paper is the first description of a signalling pathway upstream of the SFK-mediated upregulation of NMDARs. Stimulation of endogenous PKC potentiates NMDAR currents and the PKC-stimulated potentiation requires Src. Activating either muscarinic or lysophosphatidic acid types of GPCRs upregulates NMDAR currents through the PKC–Src cascade.

    CAS  PubMed  Google Scholar 

  76. Xiong, Z. G. et al. Regulation of N-methyl-D-aspartate receptor function by constitutively active protein kinase C. Mol. Pharmacol. 54, 1055–1063 (1998).

    CAS  PubMed  Google Scholar 

  77. Dikic, I., Tokiwa, G., Lev, S., Courtneidge, S. A. & Schlessinger, J. A role for Pyk2 and Src in linking G-protein-coupled receptors with MAP kinase activation. Nature 383, 547–550 (1996).

    CAS  PubMed  Google Scholar 

  78. Kotecha, S. A. et al. Co-stimulation of mGluR5 and NMDA receptors is required for potentiation of excitatory synaptic transmission in hippocampal neurons. J. Biol. Chem. 278, 27742–27749 (2003).

    CAS  PubMed  Google Scholar 

  79. Benquet, P., Gee, C. E. & Gerber, U. Two distinct signaling pathways upregulate NMDA receptor responses via two distinct metabotropic glutamate receptor subtypes. J. Neurosci. 22, 9679–9686 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Heidinger, V. et al. Metabotropic glutamate receptor 1-induced upregulation of NMDA receptor current: mediation through the Pyk2/Src-family kinase pathway in cortical neurons. J. Neurosci. 22, 5452–5461 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Chang, B. Y., Conroy, K. B., Machleder, E. M. & Cartwright, C. A. RACK1, a receptor for activated C kinase and a homolog of the β subunit of G proteins, inhibits activity of src tyrosine kinases and growth of NIH 3T3 cells. Mol. Cell. Biol. 18, 3245–3256 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Roberto, M. & Brunelli, M. PACAP-38 enhances excitatory synaptic transmission in the rat hippocampal CA1 region. Learn. Mem. 7, 303–311 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Yaka, R., He, D. Y., Phamluong, K. & Ron, D. Pituitary adenylate cyclase-activating polypeptide (PACAP(1-38)) enhances N-methyl-D-aspartate receptor function and brain-derived neurotrophic factor expression via RACK1. J. Biol. Chem. 278, 9630–9638 (2003).

    CAS  PubMed  Google Scholar 

  84. Vaudry, D. et al. Pituitary adenylate cyclase-activating polypeptide and its receptors: from structure to functions. Pharmacol. Rev. 52, 269–324 (2000).

    CAS  PubMed  Google Scholar 

  85. Takasu, M. A., Dalva, M. B., Zigmond, R. E. & Greenberg, M. E. Modulation of NMDA receptor-dependent calcium influx and gene expression through EphB receptors. Science 295, 491–495 (2002). This is the first report of a receptor protein tyrosine kinase pathway upstream of NMDAR potentiation by SFKs. Activation of EphB receptors results in increased NMDAR-dependent Ca2+ responses and tyrosine phosphorylation of NR2B subunits. SFK activation is necessary for the EphB-mediated NR2B phosphorylation.

    CAS  PubMed  Google Scholar 

  86. Dalva, M. B. et al. EphB receptors interact with NMDA receptors and regulate excitatory synapse formation. Cell 103, 945–956 (2000).

    CAS  PubMed  Google Scholar 

  87. Manabe, T. et al. Regulation of long-term potentiation by H-Ras through NMDA receptor phosphorylation. J. Neurosci. 20, 2504–2511 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Finkbeiner, S. & Greenberg, M. E. Ca2+-dependent routes to Ras: mechanisms for neuronal survival, differentiation, and plasticity? Neuron 16, 233–236 (1996).

    CAS  PubMed  Google Scholar 

  89. Viviani, B. et al. Interleukin-1β enhances NMDA receptor-mediated intracellular calcium increase through activation of the Src family of kinases. J. Neurosci. 23, 8692–8700 (2003). Activation of IL-1RI enhances NMDAR-mediated Ca2+ responses in cultured hippocampal neurons and this is prevented by SFK inhibition. SFKs do not directly facilitate IL-1RI-mediated signal transduction and thus the IL-1RI pathway is upstream of SFK activity.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Hakansson, M. L., Brown, H., Ghilardi, N., Skoda, R. C. & Meister, B. Leptin receptor immunoreactivity in chemically defined target neurons of the hypothalamus. J. Neurosci. 18, 559–572 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Shanley, L. J., Irving, A. J. & Harvey, J. Leptin enhances NMDA receptor function and modulates hippocampal synaptic plasticity. J. Neurosci. 21, RC186 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Lin, B., Arai, A. C., Lynch, G. & Gall, C. M. Integrins regulate NMDA receptor-mediated synaptic currents. J. Neurophysiol. 89, 2874–2878 (2003).

    CAS  PubMed  Google Scholar 

  93. Giancotti, F. G. & Ruoslahti, E. Integrin signaling. Science 285, 1028–1032 (1999).

    CAS  PubMed  Google Scholar 

  94. Grant, S. G. et al. Impaired long-term potentiation, spatial learning, and hippocampal development in fyn mutant mice. Science 258, 1903–1910 (1992).

    CAS  PubMed  Google Scholar 

  95. O'Dell, T. J., Kandel, E. R. & Grant, S. G. Long-term potentiation in the hippocampus is blocked by tyrosine kinase inhibitors. Nature 353, 558–560 (1991). This paper reports the first evidence that tyrosine kinases are necessary for the induction, but not the maintenance, of LTP in area CA1 of the hippocampus.

    CAS  PubMed  Google Scholar 

  96. Rosenblum, K., Dudai, Y. & Richter-Levin, G. Long-term potentiation increases tyrosine phosphorylation of the N-methyl-D-aspartate receptor subunit 2B in rat dentate gyrus in vivo. Proc. Natl Acad. Sci. USA 93, 10457–10460 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Rostas, J. A. et al. Enhanced tyrosine phosphorylation of the 2B subunit of the N-methyl-D-aspartate receptor in long-term potentiation. Proc. Natl Acad. Sci. USA 93, 10452–10456 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Petrone, A. et al. Receptor protein tyrosine phosphatase alpha is essential for hippocampal neuronal migration and long-term potentiation. EMBO J. 22, 4121–4131 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Lauri, S. E., Taira, T. & Rauvala, H. High-frequency synaptic stimulation induces association of fyn and c-src to distinct phosphorylated components. Neuroreport 11, 997–1000 (2000).

    CAS  PubMed  Google Scholar 

  100. Yu, X. M. & Salter, M. W. Gain control of NMDA-receptor currents by intracellular sodium. Nature 396, 469–474 (1998).

    CAS  PubMed  Google Scholar 

  101. Salter, M. W. Src, N-methyl-D-aspartate (NMDA) receptors, and synaptic plasticity. Biochem. Pharmacol. 56, 789–798 (1998).

    CAS  PubMed  Google Scholar 

  102. Yu, X. M. & Salter, M. W. Src, a molecular switch governing gain control of synaptic transmission mediated by N-methyl-D-aspartate receptors. Proc. Natl Acad. Sci. USA 96, 7697–7704 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Woolf, C. J. & Salter, M. W. Neuronal plasticity: increasing the gain in pain. Science 288, 1765–1769 (2000).

    CAS  PubMed  Google Scholar 

  104. Guo, W. et al. Tyrosine phosphorylation of the NR2B subunit of the NMDA receptor in the spinal cord during the development and maintenance of inflammatory hyperalgesia. J. Neurosci. 22, 6208–6217 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Battaglia, A. A., Sehayek, K., Grist, J., McMahon, S. B. & Gavazzi, I. EphB receptors and ephrin-B ligands regulate spinal sensory connectivity and modulate pain processing. Nature Neurosci. 6, 339–340 (2003).

    CAS  PubMed  Google Scholar 

  106. Mody, I. Synaptic plasticity in kindling. Adv. Neurol. 79, 631–643 (1999).

    CAS  PubMed  Google Scholar 

  107. Cain, D. P., Grant, S. G., Saucier, D., Hargreaves, E. L. & Kandel, E. R. Fyn tyrosine kinase is required for normal amygdala kindling. Epilepsy Res. 22, 107–114 (1995).

    CAS  PubMed  Google Scholar 

  108. Kojima, N., Ishibashi, H., Obata, K. & Kandel, E. R. Higher seizure susceptibility and enhanced tyrosine phosphorylation of N-methyl-D-aspartate receptor subunit 2B in fyn transgenic mice. Learn. Mem. 5, 429–445 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Moussa, R. C., Ikeda-Douglas, C. J., Thakur, V., Milgram, N. W. & Gurd, J. W. Seizure activity results in increased tyrosine phosphorylation of the N-methyl-D-aspartate receptor in the hippocampus. Brain Res. Mol. Brain Res. 95, 36–47 (2001).

    CAS  PubMed  Google Scholar 

  110. Sanna, P. P. et al. A role for Src kinase in spontaneous epileptiform activity in the CA3 region of the hippocampus. Proc. Natl Acad. Sci. USA 97, 8653–8657 (2000). This paper shows that Src kinase activity is increased in an in vitro model of epileptiform activity in the CA3 region of hippocampal slices. The frequency of epileptiform discharges is reduced by inhibition of SFKs, consistent with a role for SFKs in epilepsy.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Takagi, N. et al. Transient ischemia differentially increases tyrosine phosphorylation of NMDA receptor subunits 2A and 2B. J. Neurochem. 69, 1060–1065 (1997).

    CAS  PubMed  Google Scholar 

  112. Cheung, H. H. et al. Altered association of protein tyrosine kinases with postsynaptic densities after transient cerebral ischemia in the rat brain. J. Cereb. Blood Flow Metab. 20, 505–512 (2000).

    CAS  PubMed  Google Scholar 

  113. Cheung, H. H., Teves, L., Wallace, M. C. & Gurd, J. W. Inhibition of protein kinase C reduces ischemia-induced tyrosine phosphorylation of the N-methyl-D-aspartate receptor. J. Neurochem. 86, 1441–1449 (2003).

    CAS  PubMed  Google Scholar 

  114. Hashimoto, R., Fujimaki, K., Jeong, M. R., Christ, L. & Chuang, D. M. Lithium-induced inhibition of Src tyrosine kinase in rat cerebral cortical neurons: a role in neuroprotection against N-methyl-D-aspartate receptor-mediated excitotoxicity. FEBS Lett. 538, 145–148 (2003).

    CAS  PubMed  Google Scholar 

  115. Cattaneo, E. et al. Loss of normal huntingtin function: new developments in Huntington's disease research. Trends Neurosci. 24, 182–188 (2001).

    CAS  PubMed  Google Scholar 

  116. Song, C., Zhang, Y., Parsons, C. G. & Liu, Y. F. Expression of polyglutamine-expanded huntingtin induces tyrosine phosphorylation of N-methyl-D-aspartate receptors. J. Biol. Chem. 278, 33364–33369 (2003).

    CAS  PubMed  Google Scholar 

  117. Sun, Y., Savanenin, A., Reddy, P. H. & Liu, Y. F. Polyglutamine-expanded huntingtin promotes sensitization of N-methyl-D-aspartate receptors via post–synaptic density 95. J. Biol. Chem. 276, 24713–24718 (2001).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work of the authors is supported by the Canadian Institutes of Health Research (CIHR). M.W.S. is a member of the CIHR group on 'The Synapse'.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael W. Salter.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

LocusLink

CAKβ

Chk

Csk

EphB

Fyn

H-Ras

IL-1β

IL-1RI

Lck

Lyn

NR2A

NR2B

Ob-Rb

PTPα

PTPλ

PTP1B

PTP1C

PTP1D

PTPMEG

RACK1

Src

Yes

FURTHER INFORMATION

Michael W. Salter's homepage

Glossary

G-PROTEIN-COUPLED RECEPTORS

(GPCRs). A large family of receptors that couple to second-messenger generation through multiple heterotrimeric G-proteins, consisting of Gα and Gβγ subunits. Members of this receptor family are grouped according to the G-protein subtypes to which they are coupled and include Gs-, Gq- and Gi-coupled receptors.

MYRISTOYLATION

A covalent protein modification in which myristate, a 14-carbon saturated fatty acid, is added to N-terminal glycine. Fatty acid modifications, including myristoylation, palmitoylation and prenylation, increase protein hydrophobicity and facilitate interactions with lipid bilayers.

PALMITOYLATION

A post-translational modification of proteins in which palmitate, a 16-carbon saturated fatty acid, is added to a cysteine residue. Unlike other lipid modifications such as myristoylation and prenylation, palmitoylation is reversible.

POSTSYNAPTIC DENSITY

(PSD). A primary structural component of excitatory synapses, first identified morphologically as an electron-dense intracellular structure adjacent to the postsynaptic membrane at excitatory synapses. Subsequently, biochemical methods were developed for the isolation and purification of a PSD fraction from the brain.

LONG-TERM POTENTIATION

A persistent enhancement in the efficacy of synaptic transmission that is considered to be a model of learning and memory.

CLATHRIN-MEDIATED ENDOCYTOSIS

A mode of vesicular transport that is involved in the internalization and recycling of receptors by clathrin-coated endocytic vesicles. The main components of the endocytic clathrin coats are the adaptor protein complex AP2 and clathrin.

HYPERALGESIA

An increased sensitivity to pain in which noxious stimuli evoke a greater and more prolonged pain.

KINDLING

A model of epilepsy in which repeated electrical or chemical stimulation of limbic structures, such as the amygdala or hippocampus, evokes progressively more severe electrical and behavioural responses, culminating in a generalized seizure. The kindled state is highly stable and can persist for months to years.

HUNTINGTON'S DISEASE

A late-onset, autosomal-dominant neurodegenerative disorder that is characterized by abnormalities of movement and dementia. The mutation that underlies Huntington's disease is a CAG/polyglutamine repeat expansion in the gene that encodes the huntingtin protein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salter, M., Kalia, L. Src kinases: a hub for NMDA receptor regulation. Nat Rev Neurosci 5, 317–328 (2004). https://doi.org/10.1038/nrn1368

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn1368

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing