Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Prefrontal–hippocampal interactions in episodic memory

Key Points

  • The prefrontal cortex (PFC) and hippocampus support complementary functions in episodic memory.

  • Connections between the PFC and the hippocampus are particularly important for episodic memory.

  • In addition, these areas interact bidirectionally through oscillatory synchrony.

  • Distinct types of interactions between the PFC and hippocampus are supported by a direct hippocampus–PFC connection and by bidirectional pathways via intermediaries in the thalamus and perirhinal and lateral entorhinal cortices.

  • This Review outlines a model of how the PFC and hippocampus interact during episodic memory tasks.

Abstract

The roles of the hippocampus and prefrontal cortex (PFC) in memory processing — individually or in concert — are a major topic of interest in memory research. These brain areas have distinct and complementary roles in episodic memory, and their interactions are crucial for learning and remembering events. Considerable evidence indicates that the PFC and hippocampus become coupled via oscillatory synchrony that reflects bidirectional flow of information. Furthermore, newer studies have revealed specific mechanisms whereby neural representations in the PFC and hippocampus are mediated through direct connections or through intermediary regions. These findings suggest a model of how the hippocampus and PFC, along with their intermediaries, operate as a system that uses the current context of experience to retrieve relevant memories.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Functions of the prefrontal cortex and the hippocampus in memory.
Figure 2: Indirect and direct prefrontal–hippocampal pathways.
Figure 3: Prefrontal–hippocampal interactions.
Figure 4: A model of prefrontal–hippocampal functional interactions.

Similar content being viewed by others

References

  1. Scoville, W. B. & Milner, B. Loss of recent memory after bilateral hippocampal lesions. J. Neurol. Neurosurg. Psychiatry 20, 11–21 (1957).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Cohen, N. J. & Eichenbaum, H. Memory, Amnesia, and the Hippocampal System (MIT Press, 1993).

    Google Scholar 

  3. Eichenbaum, H. Hippocampus: cognitive processes and neural representations that underlie declarative memory. Neuron 44, 109–120 (2004).

    CAS  PubMed  Google Scholar 

  4. Eichenbaum, H. Memory: organization and control. Annu. Rev. Psychol. 68, 19–45 (2017).

    PubMed  Google Scholar 

  5. Eacott, M. J. & Norman, G. Integrated memory for object, place, and context in rats: a possible model of episodic-like memory? J. Neurosci. 24, 1948–1953 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Langston, R. F. & Wood, E. R. Associative recognition and the hippocampus: differential effects of hippocampal lesions on object–place, object–context and object–place–context memory. Hippocampus 20, 1139–1153 (2010).

    PubMed  Google Scholar 

  7. Butterly, D. A., Petroccione, M. A. & Smith, D. M. Hippocampal context processing is critical for interference free recall of odor memories in rats. Hippocampus 22, 906–913 (2012).

    PubMed  Google Scholar 

  8. Corcoran, K. A. & Maren, S. Hippocampal inactivation disrupts contextual retrieval of fear memory after extinction. J. Neurosci. 21, 1720–1726 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Holland, P. C. & Bouton, M. E. Hippocampus and context in classical conditioning. Curr. Opin. Neurobiol. 9, 195–202 (1999).

    CAS  PubMed  Google Scholar 

  10. Moita, M. A. P., Rosis, S., Zhou, Y., LeDoux, J. E. & Blair, H. T. Hippocampal place cells acquire location-specific responses to the conditioned stimulus during auditory fear conditioning. Neuron 37, 485–497 (2003).

    CAS  PubMed  Google Scholar 

  11. Manns, J. R. & Eichenbaum, H. A cognitive map for object memory in the hippocampus. Learn. Mem. 16, 616–624 (2009).

    PubMed  PubMed Central  Google Scholar 

  12. Komorowski, R. W., Manns, J. R. & Eichenbaum, H. Robust conjunctive item–place coding by hippocampal neurons parallels learning what happens where. J. Neurosci. 29, 9918–9929 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Itskov, P. M., Vinnik, E. & Diamond, M. E. Hippocampal representation of touch-guided behavior in rats: persistent and independent traces of stimulus and reward location. PLoS ONE 6, e16462 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Itskov, P. M., Vinnik, E., Honey, C., Schnupp, J. & Diamond, M. E. Sound sensitivity of neurons in rat hippocampus during performance of a sound-guided task. J. Neurophysiol. 107, 1822–1834 (2012).

    PubMed  PubMed Central  Google Scholar 

  15. Vinnik, E., Antopolskiy, S., Itskov, P. M. & Diamond, M. E. Auditory stimuli elicit hippocampal neuronal responses during sleep. Front. Syst. Neurosci. 6, 49 (2012).

    PubMed  PubMed Central  Google Scholar 

  16. MacDonald, C. J., Carrow, S., Place, R. & Eichenbaum, H. Distinct hippocampal time cell sequences represent odor memories in immobilized rats. J. Neurosci. 33, 14607–14616 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Bulkin, D. A., Law, L. M. & Smith, D. M. Placing memories in context: hippocampal representations promote retrieval of appropriate memories. Hippocampus 26, 958–971 (2016).

    PubMed  PubMed Central  Google Scholar 

  18. Kjelstrup, K. B. et al. Finite scale of spatial representation in the hippocampus. Science 321, 140–143 (2008).

    CAS  PubMed  Google Scholar 

  19. Royer, S., Sirota, A., Patel, J. & Buzsáki, G. Distinct representations and theta dynamics in dorsal and ventral hippocampus. J. Neurosci. 30, 1777–1787 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Komorowski, R. W. et al. Ventral hippocampal neurons are shaped by experience to represent behaviorally relevant contexts. J. Neurosci. 33, 8079–8087 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Poppenk, J., Evensmoen, H. R., Moscovitch, M. & Nadel, L. Long-axis specialization of the human hippocampus. Trends Cogn. Sci. 17, 230–240 (2013).

    PubMed  Google Scholar 

  22. Strange, B. A., Witter, M. P., Lein, E. S. & Moser, E. I. Functional organization of the hippocampal longitudinal axis. Nat. Rev. Neurosci. 15, 655–669 (2014).

    CAS  PubMed  Google Scholar 

  23. Milner, B., Corkin, S. & Teuber, H.-L. Further analysis of the hippocampal amnesic syndrome: 14-year follow-up study of H.M. Neuropsychol. 6, 215–234 (1968).

    Google Scholar 

  24. Moscovitch, M. Memory and working-with-memory: a component process model based on modules and central systems. J. Cogn. Neurosci. 4, 257–267 (1992).

    CAS  PubMed  Google Scholar 

  25. Dobbins, I. G., Foley, H., Schacter, D. L. & Wagner, A. D. Executive control during episodic retrieval: multiple prefrontal processes subserve source memory. Neuron 35, 989–996 (2002).

    CAS  PubMed  Google Scholar 

  26. Postle, B. R. Working memory as an emergent property of the mind and brain. Neuroscience 139, 23–38 (2006).

    CAS  PubMed  Google Scholar 

  27. Ranganath, C. & Blumenfield, R. in Learning and Memory: A Comprehensive Reference (ed. Byrne, J. H.) 261–279 (Oxford Univ. Press, 2008).

    Google Scholar 

  28. Kuhl, B. A. & Wagner, A. D. in Encyclopedia of Neuroscience 437–444 (Elsevier, 2009).

    Google Scholar 

  29. Preston, A. R. & Eichenbaum, H. Interplay of hippocampus and prefrontal cortex in memory. Curr. Biol. 23, R764–R773 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Szczepanski, S. M. & Knight, R. T. Insights into human behavior from lesions to the prefrontal cortex. Neuron 83, 1002–1018 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Shimamura, A. P., Jurica, P. J., Mangels, J. A., Gershberg, F. B. & Knight, R. T. Susceptibility to memory interference effects following frontal lobe damage: findings from tests of paired-associate learning. J. Cogn. Neurosci. 7, 144–152 (1995).

    CAS  PubMed  Google Scholar 

  32. Eichenbaum, H., Fortin, N., Sauvage, M., Robitsek, R. J. & Farovik, A. An animal model of amnesia that uses Receiver Operating Characteristics (ROC) analysis to distinguish recollection from familiarity deficits in recognition memory. Neuropsychologia 48, 2281–2289 (2010).

    CAS  PubMed  Google Scholar 

  33. Fortin, N. J., Wright, S. P. & Eichenbaum, H. Recollection-like memory retrieval in rats is dependent on the hippocampus. Nature 431, 188–191 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Farovik, A., Dupont, L. M., Arce, M. & Eichenbaum, H. Medial prefrontal cortex supports recollection, but not familiarity, in the rat. J. Neurosci. 28, 13428–13434 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Robitsek, R. J., Fortin, N. J., Koh, M. T., Gallagher, M. & Eichenbaum, H. Cognitive aging: a common decline of episodic recollection and spatial memory in rats. J. Neurosci. 28, 8945–8954 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Chudasama, Y., Doobay, V. M. & Liu, Y. Hippocampal–prefrontal cortical circuit mediates inhibitory response control in the rat. J. Neurosci. 32, 10915–10924 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Giustino, T. F. & Maren, S. The role of the medial prefrontal cortex in the conditioning and extinction of fear. Front. Behav. Neurosci. 9, 298 (2015).

    PubMed  PubMed Central  Google Scholar 

  38. Anderson, M. C., Bunce, J. G. & Barbas, H. Prefrontal–hippocampal pathways underlying inhibitory control over memory. Neurobiol. Learn. Mem. 134, 145–161 (2016).

    PubMed  Google Scholar 

  39. Rich, E. L. & Shapiro, M. L. Prelimbic/infralimbic inactivation impairs memory for multiple task switches, but not flexible selection of familiar tasks. J. Neurosci. 27, 4747–4755 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Ragozzino, M. E., Detrick, S. & Kesner, R. P. Involvement of the prelimbic–infralimbic areas of the rodent prefrontal cortex in behavioral flexibility for place and response learning. J. Neurosci. 19, 4585–4594 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Ragozzino, M. E., Kim, J., Hassert, D., Minniti, N. & Kiang, C. The contribution of the rat prelimbic–infralimbic areas to different forms of task switching. Behav. Neurosci. 117, 1054–1065 (2003).

    PubMed  Google Scholar 

  42. Brown, V. J. & Bowman, E. M. Rodent models of prefrontal cortical function. Trends Neurosci. 25, 340–343 (2002).

    CAS  PubMed  Google Scholar 

  43. Marquis, J.-P., Killcross, S. & Haddon, J. E. Inactivation of the prelimbic, but not infralimbic, prefrontal cortex impairs the contextual control of response conflict in rats. Eur. J. Neurosci. 25, 559–566 (2007).

    PubMed  Google Scholar 

  44. Guise, K. G. & Shapiro, M. Medial prefrontal cortex reduces memory interference by modifying hippocampal encoding. Neuron 94, 183–192.e8 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Rich, E. L. & Shapiro, M. Rat prefrontal cortical neurons selectively code strategy switches. J. Neurosci. 29, 7208–7219 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Durstewitz, D., Vittoz, N. M., Floresco, S. B. & Seamans, J. K. Abrupt transitions between prefrontal neural ensemble states accompany behavioral transitions during rule learning. Neuron 66, 438–448 (2010).

    CAS  PubMed  Google Scholar 

  47. Karlsson, M. P., Tervo, D. G. R. & Karpova, A. Y. Network resets in medial prefrontal cortex mark the onset of behavioral uncertainty. Science 338, 135–139 (2012).

    CAS  PubMed  Google Scholar 

  48. Ma, L., Hyman, J. M., Durstewitz, D., Phillips, A. G. & Seamans, J. K. A. Quantitative analysis of context-dependent remapping of medial frontal cortex neurons and ensembles. J. Neurosci. 36, 8258–8272 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Morrissey, M. D., Insel, N. & Takehara-Nishiuchi, K. Generalizable knowledge outweighs incidental details in prefrontal ensemble code over time. eLife 6, e22177 (2017).

    PubMed  PubMed Central  Google Scholar 

  50. Tomita, H., Ohbayashi, M., Nakahara, K., Hasegawa, I. & Miyashita, Y. Top-down signal from prefrontal cortex in executive control of memory retrieval. Nature 401, 699–703 (1999).

    CAS  PubMed  Google Scholar 

  51. Buschman, T. J., Denovellis, E. L., Diogo, C., Bullock, D. & Miller, E. K. Synchronous oscillatory neural ensembles for rules in the prefrontal cortex. Neuron 76, 838–846 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Stokes, M. G. et al. Dynamic coding for cognitive control in prefrontal cortex. Neuron 78, 364–375 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Blackman, R. K. et al. Monkey prefrontal neurons reflect logical operations for cognitive control in a variant of the AX Continuous Performance Task (AX-CPT). J. Neurosci. 36, 4067–4079 (2016).

    PubMed  PubMed Central  Google Scholar 

  54. Miller, E. K., Freedman, D. J. & Wallis, J. D. The prefrontal cortex: categories, concepts and cognition. Phil. Trans. R. Soc. 357, 1123–1136 (2002).

    Google Scholar 

  55. Euston, D. R., Gruber, A. J. & McNaughton, B. L. The role of medial prefrontal cortex in memory and decision making. Neuron 76, 1057–1070 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Miller, E. K. & Cohen, J. D. An integrative theory of prefrontal cortex function. Annu. Rev. Neurosci. 24, 167–202 (2001).

    CAS  PubMed  Google Scholar 

  57. Rosene, D. & Van Hoesen, G. Hippocampal efferents reach widespread areas of cerebral cortex and amygdala in the rhesus monkey. Science 198, 315–317 (1977).

    CAS  PubMed  Google Scholar 

  58. Witter, M. P., Groenewegen, H. J., Lopes da Silva, F. H. & Lohman, A. H. Functional organization of the extrinsic and intrinsic circuitry of the parahippocampal region. Prog. Neurobiol. 33, 161–253 (1989).

    CAS  PubMed  Google Scholar 

  59. Burwell, R. D., Witter, M. P. & Amaral, D. G. Perirhinal and postrhinal cortices of the rat: a review of the neuroanatomical literature and comparison with findings from the monkey brain. Hippocampus 5, 390–408 (1995).

    CAS  PubMed  Google Scholar 

  60. Lavenex, P., Suzuki, W. A. & Amaral, D. G. Perirhinal and parahippocampal cortices of the macaque monkey: projections to the neocortex. J. Comp. Neurol. 447, 394–420 (2002).

    PubMed  Google Scholar 

  61. Jay, T. M., Glowinski, J. & Thierry, A. M. Selectivity of the hippocampal projection to the prelimbic area of the prefrontal cortex in the rat. Brain Res. 505, 337–340 (1989).

    CAS  PubMed  Google Scholar 

  62. Jay, T. M. & Witter, M. P. Distribution of hippocampal CA1 and subicular efferents in the prefrontal cortex of the rat studied by means of anterograde transport of Phaseolus vulgaris-leucoagglutinin. J. Comp. Neurol. 313, 574–586 (1991).

    CAS  PubMed  Google Scholar 

  63. Hoover, W. B. & Vertes, R. P. Anatomical analysis of afferent projections to the medial prefrontal cortex in the rat. Brain Struct. Funct. 212, 149–179 (2007).

    PubMed  Google Scholar 

  64. Jadhav, S. P., Rothschild, G., Roumis, D. K. & Frank, L. M. Coordinated excitation and inhibition of prefrontal ensembles during awake hippocampal sharp-wave ripple events. Neuron 90, 113–127 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Dolleman-Van Der Weel, M. J. & Witter, M. P. Projections from the nucleus reuniens thalami to the entorhinal cortex, hippocampal field CA1, and the subiculum in the rat arise from different populations of neurons. J. Comp. Neurol. 364, 637–650 (1996).

    CAS  PubMed  Google Scholar 

  66. Vertes, R. P. Analysis of projections from the medial prefrontal cortex to the thalamus in the rat, with emphasis on nucleus reuniens. J. Comp. Neurol. 442, 163–187 (2002).

    PubMed  Google Scholar 

  67. Vertes, R. P. Interactions among the medial prefrontal cortex, hippocampus and midline thalamus in emotional and cognitive processing in the rat. Neuroscience 142, 1–20 (2006).

    CAS  PubMed  Google Scholar 

  68. Vertes, R. P., Hoover, W. B., Szigeti-Buck, K. & Leranth, C. Nucleus reuniens of the midline thalamus: link between the medial prefrontal cortex and the hippocampus. Brain Res. Bull. 71, 601–609 (2007).

    PubMed  PubMed Central  Google Scholar 

  69. Cassel, J.-C. et al. The reuniens and rhomboid nuclei: neuroanatomy, electrophysiological characteristics and behavioral implications. Prog. Neurobiol. 111, 34–52 (2013).

    PubMed  PubMed Central  Google Scholar 

  70. Ketz, N. A., Jensen, O. & O'Reilly, R. C. Thalamic pathways underlying prefrontal cortex–medial temporal lobe oscillatory interactions. Trends Neurosci. 38, 3–12 (2015).

    CAS  PubMed  Google Scholar 

  71. Mitchell, A. S. et al. Advances in understanding mechanisms of thalamic relays in cognition and behavior. J. Neurosci. 34, 15340–15346 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Burwell, R. D. & Amaral, D. G. Cortical afferents of the perirhinal, postrhinal, and entorhinal cortices of the rat. J. Comp. Neurol. 398, 179–205 (1998).

    CAS  PubMed  Google Scholar 

  73. Witter, M. P., Wouterlood, F. G., Naber, P. A. & Van Haeften, T. Anatomical organization of the parahippocampal–hippocampal network. Ann. NY Acad. Sci. 911, 1–24 (2000).

    CAS  PubMed  Google Scholar 

  74. Apergis-Schoute, J., Pinto, A. & Paré, D. Ultrastructural organization of medial prefrontal inputs to the rhinal cortices. Eur. J. Neurosci. 24, 135–144 (2006).

    PubMed  Google Scholar 

  75. Agster, K. L. & Burwell, R. D. Cortical efferents of the perirhinal, postrhinal, and entorhinal cortices of the rat. Hippocampus 19, 1159–1186 (2009).

    PubMed  PubMed Central  Google Scholar 

  76. Igarashi, K. M., Lu, L., Colgin, L. L., Moser, M.-B. & Moser, E. I. Coordination of entorhinal–hippocampal ensemble activity during associative learning. Nature 510, 143–147 (2014).

    CAS  PubMed  Google Scholar 

  77. Keene, C. S. et al. Complementary functional organization of neuronal activity patterns in the perirhinal, lateral entorhinal, and medial entorhinal cortices. J. Neurosci. 36, 3660–3675 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Eichenbaum, H., Yonelinas, A. P. & Ranganath, C. The medial temporal lobe and recognition memory. Annu. Rev. Neurosci. 30, 123–152 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Barker, G. R. I., Bird, F., Alexander, V. & Warburton, E. C. Recognition memory for objects, place, and temporal order: a disconnection analysis of the role of the medial prefrontal cortex and perirhinal cortex. J. Neurosci. 27, 2948–2957 (2007). This study provides compelling evidence that ipsilateral pathways between the PFC and the hippocampus are essential for memory.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Hannesson, D. K., Howland, J. G. & Phillips, A. G. Interaction between perirhinal and medial prefrontal cortex is required for temporal order but not recognition memory for objects in rats. J. Neurosci. 24, 4596–4604 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Barker, G. R. I. et al. Separate elements of episodic memory subserved by distinct hippocampal–prefrontal connections. Nat. Neurosci. 20, 242–250 (2017).

    CAS  PubMed  Google Scholar 

  82. Chao, O. Y., Huston, J. P., Li, J.-S., Wang, A.-L. & de Souza Silva, M. A. The medial prefrontal cortex–lateral entorhinal cortex circuit is essential for episodic-like memory and associative object-recognition. Hippocampus 26, 633–645 (2016).

    PubMed  Google Scholar 

  83. Floresco, S. B., Seamans, J. K. & Phillips, A. G. Selective roles for hippocampal, prefrontal cortical, and ventral striatal circuits in radial-arm maze tasks with or without a delay. J. Neurosci. 17, 1880–1890 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Wang, G.-W. & Cai, J.-X. Disconnection of the hippocampal–prefrontal cortical circuits impairs spatial working memory performance in rats. Behav. Brain Res. 175, 329–336 (2006).

    PubMed  Google Scholar 

  85. Siapas, A. G., Lubenov, E. V. & Wilson, M. A. Prefrontal phase locking to hippocampal theta oscillations. Neuron 46, 141–151 (2005).

    CAS  PubMed  Google Scholar 

  86. Jones, M. W. & Wilson, M. A. Theta rhythms coordinate hippocampal–prefrontal interactions in a spatial memory task. PLoS Biol. 3, e402 (2005).

    PubMed  PubMed Central  Google Scholar 

  87. Sigurdsson, T., Stark, K. L., Karayiorgou, M., Gogos, J. A. & Gordon, J. A. Impaired hippocampal–prefrontal synchrony in a genetic mouse model of schizophrenia. Nature 464, 763–767 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Hyman, J. M., Zilli, E. A., Paley, A. M. & Hasselmo, M. E. Medial prefrontal cortex cells show dynamic modulation with the hippocampal theta rhythm dependent on behavior. Hippocampus 15, 739–749 (2005).

    PubMed  Google Scholar 

  89. Hyman, J. M., Zilli, E. A., Paley, A. M. & Hasselmo, M. E. Working memory performance correlates with prefrontal–hippocampal theta interactions but not with prefrontal neuron firing rates. Front. Integr. Neurosci. 4, 2 (2010).

    PubMed  PubMed Central  Google Scholar 

  90. Benchenane, K. et al. Coherent theta oscillations and reorganization of spike timing in the hippocampal–prefrontal network upon learning. Neuron 66, 921–936 (2010). This study shows that oscillatory synchrony between the PFC and the hippocampus is essential for the organization of memory representations during learning.

    CAS  PubMed  Google Scholar 

  91. Kim, J., Delcasso, S. & Lee, I. Neural correlates of object-in-place learning in hippocampus and prefrontal cortex. J. Neurosci. 31, 16991–17006 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Place, R., Farovik, A., Brockmann, M. & Eichenbaum, H. Bidirectional prefrontal–hippocampal interactions support context-guided memory. Nat. Neurosci. 19, 992–994 (2016) This study describes successive phases of interactions, whereby cueing by a context involves flow of information from the hippocampus to the PFC, whereas retrieval of context-appropriate memories involves flow of information from the PFC to the hippocampus.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. O'Neill, P.-K., Gordon, J. A. & Sigurdsson, T. Theta oscillations in the medial prefrontal cortex are modulated by spatial working memory and synchronize with the hippocampus through its ventral subregion. J. Neurosci. 33, 14211–14224 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Backus, A. R., Schoffelen, J.-M., Szebényi, S., Hanslmayr, S. & Doeller, C. F. Hippocampal–prefrontal theta oscillations support memory integration. Curr. Biol. 26, 450–457 (2016).

    CAS  PubMed  Google Scholar 

  95. Canolty, R. T. & Knight, R. T. The functional role of cross-frequency coupling. Trends Cogn. Sci. 14, 506–515 (2010).

    PubMed  PubMed Central  Google Scholar 

  96. Gordon, J. A. Oscillations and hippocampal–prefrontal synchrony. Curr. Opin. Neurobiol. 21, 486–491 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Colgin, L. L. Oscillations and hippocampal–prefrontal synchrony. Curr. Opin. Neurobiol. 21, 467–474 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Hallock, H. L., Wang, A. & Griffin, A. L. Ventral midline thalamus is critical for hippocampal–prefrontal synchrony and spatial working memory. J. Neurosci. 36, 8372–8389 (2016). This study provides strong evidence that the Re is crucial to oscillatory synchrony between the PFC and the hippocampus.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Thierry, A. M., Gioanni, Y., Dégénétais, E. & Glowinski, J. Hippocampo–prefrontal cortex pathway: anatomical and electrophysiological characteristics. Hippocampus 10, 411–419 (2000).

    CAS  PubMed  Google Scholar 

  100. Spellman, T. et al. Hippocampal–prefrontal input supports spatial encoding in working memory. Nature 522, 309–314 (2015). This study provides compelling evidence of a role for the direct ventral hippocampus to PFC projection in the encoding of specific memories.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Ye, X., Kapeller-Libermann, D., Travaglia, A., Inda, M. C. & Alberini, C. M. Direct dorsal hippocampal–prelimbic cortex connections strengthen fear memories. Nat. Neurosci. 20, 52–61 (2017).

    CAS  PubMed  Google Scholar 

  102. Xu, W. & Südhof, T. C. A neural circuit for memory specificity and generalization. Science 339, 1290–1295 (2013). This study provided the first evidence of a key role for the Re in prefrontal–hippocampal interactions that support memory.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Ito, H. T., Zhang, S.-J., Witter, M. P., Moser, E. I. & Moser, M.-B. A prefrontal–thalamo–hippocampal circuit for goal-directed spatial navigation. Nature 522, 50–55 (2015). This study provides compelling evidence that the Re is essential to the role of the PFC in guiding specificity of spatial memory representations in the hippocampus.

    CAS  PubMed  Google Scholar 

  104. Rajasethupathy, P. et al. Projections from neocortex mediate top-down control of memory retrieval. Nature 526, 653–659 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Navawongse, R. & Eichenbaum, H. Distinct pathways for rule-based retrieval and spatial mapping of memory representations in hippocampal neurons. J. Neurosci. 33, 1002–1013 (2013). This study shows that top-down control of memory by the PFC involves suppression of inappropriate memories in the hippocampus.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Jo, Y. S. & Lee, I. Disconnection of the hippocampal–perirhinal cortical circuits severely disrupts object–place paired associative memory. J. Neurosci. 30, 9850–9858 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Paz, R., Bauer, E. P. & Paré, D. Learning-related facilitation of rhinal interactions by medial prefrontal inputs. J. Neurosci. 27, 6542–6551 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Tse, D. et al. Schema-dependent gene activation and memory encoding in neocortex. Science 333, 891–895 (2011).

    CAS  PubMed  Google Scholar 

  109. Zeithamova, D. & Preston, A. R. Flexible memories: differential roles for medial temporal lobe and prefrontal cortex in cross-episode binding. J. Neurosci. 30, 14676–14684 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Milivojevic, B., Vicente-Grabovetsky, A. & Doeller, C. F. Insight reconfigures hippocampal–prefrontal memories. Curr. Biol. 25, 821–830 (2015).

    CAS  PubMed  Google Scholar 

  111. Bontempi, B., Laurent-Demir, C., Destrade, C. & Jaffard, R. Time-dependent reorganization of brain circuitry underlying long-term memory storage. Nature 400, 671–675 (1999).

    CAS  PubMed  Google Scholar 

  112. Maviel, T., Durkin, T. P., Menzaghi, F. & Bontempi, B. Sites of neocortical reorganization critical for remote spatial memory. Science 305, 96–99 (2004).

    CAS  PubMed  Google Scholar 

  113. Frankland, P. W., Bontempi, B., Talton, L. E., Kaczmarek, L. & Silva, A. J. The involvement of the anterior cingulate cortex in remote contextual fear memory. Science 304, 881–883 (2004).

    CAS  PubMed  Google Scholar 

  114. Lesburguères, E. et al. Early tagging of cortical networks is required for the formation of enduring associative memory. Science 331, 924–928 (2011).

    PubMed  Google Scholar 

  115. Kitamura, T. et al. Engrams and circuits crucial for systems consolidation of a memory. Science 356, 73–78 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Li, Y. et al. A distinct entorhinal cortex to hippocampal CA1 direct circuit for olfactory associative learning. Nat. Neurosci. 20, 559–570 (2017).

    CAS  PubMed  Google Scholar 

  117. Gordon, J. A. On being a circuit psychiatrist. Nat. Neurosci. 19, 1385–1386 (2016).

    CAS  PubMed  Google Scholar 

  118. Preuss, T. M. Do rats have prefrontal cortex? The Rose–Woolsey–Akert program reconsidered. J. Cogn. Neurosci. 7, 1–24 (1995).

    CAS  PubMed  Google Scholar 

  119. Uylings, H. B. M., Groenewegen, H. J. & Kolb, B. Do rats have a prefrontal cortex? Behav. Brain Res. 146, 3–17 (2003).

    PubMed  Google Scholar 

  120. Uylings, H. B. & van Eden, C. G. Qualitative and quantitative comparison of the prefrontal cortex in rat and in primates, including humans. Prog. Brain Res. 85, 31–62 (1990).

    CAS  PubMed  Google Scholar 

  121. Groenewegen, H. J. & Uylings, H. B. The prefrontal cortex and the integration of sensory, limbic and autonomic information. Prog. Brain Res. 126, 3–28 (2000).

    CAS  PubMed  Google Scholar 

  122. Heilbronner, S. R., Rodriguez-Romaguera, J., Quirk, G. J., Groenewegen, H. J. & Haber, S. N. Circuit-based corticostriatal homologies between rat and primate. Biol. Psychiatry 80, 509–521 (2016).

    PubMed  PubMed Central  Google Scholar 

  123. Leonard, C. M. Finding prefrontal cortex in the rat. Brain Res. 1645, 1–3 (2016).

    CAS  PubMed  Google Scholar 

  124. Birrell, J. M. & Brown, V. J. Medial frontal cortex mediates perceptual attentional set shifting in the rat. J. Neurosci. 20, 4320–4324 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Dias, R., Robbins, T. W. & Roberts, A. C. Dissociation in prefrontal cortex of affective and attentional shifts. Nature 380, 69–72 (1996).

    CAS  PubMed  Google Scholar 

  126. Dalley, J. W., Cardinal, R. N. & Robbins, T. W. Prefrontal executive and cognitive functions in rodents: neural and neurochemical substrates. Neurosci. Biobehav. Rev. 28, 771–784 (2004).

    CAS  PubMed  Google Scholar 

  127. Chudasama, Y. Animal models of prefrontal-executive function. Behav. Neurosci. 125, 327–343 (2011).

    PubMed  Google Scholar 

  128. Bizon, J. L., Foster, T. C., Alexander, G. E. & Glisky, E. L. Characterizing cognitive aging of working memory and executive function in animal models. Front. Aging Neurosci. 4, 19 (2012).

    PubMed  PubMed Central  Google Scholar 

  129. Benes, F. M., McSparren, J., Bird, E. D., SanGiovanni, J. P. & Vincent, S. L. Deficits in small interneurons in prefrontal and cingulate cortices of schizophrenic and schizoaffective patients. Arch. Gen. Psychiatry. 48, 996–1001 (1991).

    CAS  PubMed  Google Scholar 

  130. Weinberger, D. R. et al. Prefrontal neurons and the genetics of schizophrenia. Biol. Psychiatry 50, 825–844 (2001).

    CAS  PubMed  Google Scholar 

  131. Heckers, S. & Konradi, C. Hippocampal pathology in schizophrenia. Curr. Top. Behav. Neurosci. 4, 529–553 (2010).

    PubMed  Google Scholar 

  132. Lesh, T. A., Niendam, T. A., Minzenberg, M. J. & Carter, C. S. Cognitive control deficits in schizophrenia: mechanisms and meaning. Neuropsychopharmacology 36, 316–338 (2011).

    PubMed  Google Scholar 

  133. Heckers, S. et al. Impaired recruitment of the hippocampus during conscious recollection in schizophrenia. Nat. Neurosci. 1, 318–323 (1998).

    CAS  PubMed  Google Scholar 

  134. Titone, D., Ditman, T., Holzman, P. S., Eichenbaum, H. & Levy, D. L. Transitive inference in schizophrenia: impairments in relational memory organization. Schizophr. Res. 68, 235–247 (2004).

    PubMed  Google Scholar 

  135. Preston, A. R., Shohamy, D. & Tamminga, C. A. & Wagner, A. D. Hippocampal function, declarative memory, and schizophrenia: anatomic and functional neuroimaging considerations. Curr. Neurol. Neurosci. Rep. 5, 249–256 (2005).

    PubMed  Google Scholar 

  136. Tamminga, C. A., Stan, A. D. & Wagner, A. D. The hippocampal formation in schizophrenia. Am. J. Psychiatry. 167, 1178–1193 (2010).

    PubMed  Google Scholar 

  137. Ranganath, C., Minzenberg, M. J. & Ragland, J. D. The cognitive neuroscience of memory function and dysfunction in schizophrenia. Biol. Psychiatry 64, 18–25 (2008).

    PubMed  PubMed Central  Google Scholar 

  138. Armstrong, K., Williams, L. E. & Heckers, S. Revised associative inference paradigm confirms relational memory impairment in schizophrenia. Neuropsychology 26, 451–458 (2012).

    PubMed  PubMed Central  Google Scholar 

  139. Polyn, S. M. et al. Temporal context and the organisational impairment of memory search in schizophrenia. Cogn. Neuropsychiatry 20, 296–310 (2015).

    PubMed  Google Scholar 

  140. Friston, K. J. & Frith, C. D. Schizophrenia: a disconnection syndrome? Clin. Neurosci. 3, 89–97 (1995).

    CAS  PubMed  Google Scholar 

  141. Fletcher, P. The missing link: a failure of fronto–hippocampal integration in schizophrenia. Nat. Neurosci. 1, 266–267 (1998).

    CAS  PubMed  Google Scholar 

  142. Meyer-Lindenberg, A. S. et al. Regionally specific disturbance of dorsolateral prefrontal–hippocampal functional connectivity in schizophrenia. Arch. Gen. Psychiatry. 62, 379–386 (2005).

    PubMed  Google Scholar 

  143. Barch, D. M. et al. Selective deficits in prefrontal cortex function in medication-naive patients with schizophrenia. Arch. Gen. Psychiatry. 58, 280–288 (2001).

    CAS  PubMed  Google Scholar 

  144. Samudra, N. et al. Alterations in hippocampal connectivity across the psychosis dimension. Psychiatry Res. 233, 148–157 (2015).

    PubMed  PubMed Central  Google Scholar 

  145. Hemsley, D. R. The schizophrenic experience: taken out of context? Schizophr. Bull. 31, 43–53 (2005).

    PubMed  Google Scholar 

  146. Holmes, A. J. et al. Prefrontal functioning during context processing in schizophrenia and major depression: an event-related fMRI study. Schizophr. Res. 76, 199–206 (2005).

    PubMed  Google Scholar 

  147. Reilly, J. L. et al. Impaired context processing is attributable to global neuropsychological impairment in schizophrenia and psychotic bipolar disorder. Schizophr. Bull. 43, 397–406 (2017).

    PubMed  Google Scholar 

  148. Kamigaki, T. & Dan, Y. Delay activity of specific prefrontal interneuron subtypes modulates memory-guided behavior. Nat. Neurosci. 20, 854–863 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The author acknowledges funding from the US National Institute of Mental Health (grant numbers MH094263, MH051570 and MH052090).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Howard Eichenbaum.

Ethics declarations

Competing interests

The author declares no competing financial interests.

PowerPoint slides

Glossary

Oscillatory synchrony

Coordination of local field potential oscillations and spiking activity in two connected brain areas. Usually observed as a locking of the phase of oscillatory activity within a specific frequency band.

Recognition memory

The ability to remember stimuli presented earlier, by later correctly recognizing those stimuli and by correctly rejecting other stimuli that were not previously experienced.

Wisconsin Card Sorting Test

A card-sorting task in which participants must switch strategies to sort cards according to different parameters, such as rank, suit or colour.

Nucleus reuniens

(Re). A midline nucleus at the centre of the thalamus that bidirectionally connects the prefrontal cortex with the hippocampus.

Crossed lesions

Unilateral inactivation or lesion of each of two areas in opposing hemispheres, thus leaving each area intact in one hemisphere but eliminating ipsilateral connections between them.

Theta oscillations

Oscillations in the local field potential or spiking activity in the 4–12 Hz frequency band originating in the medial septum.

Local field potentials

Recorded electrical activity patterns that reflect both synaptic potentials and spiking activity of many neighbouring neurons within a brain area. Oscillatory patterns in local field potential reflect synchronous neural activity at particular frequencies.

Phase shifts

Changes in the temporal coordination of spiking activity that, in many brain areas, is closely time-locked to the phase of a particular oscillation in the local field potential.

Gamma

Oscillations in the local field potential in low (30–80 Hz) or high (80–140 Hz) frequency bands (defined differently among different studies).

Post-learning consolidation

A prolonged period (hours to months) after learning, over which memories that are initially unstable become stable. This process is thought to involve the integration of new episodic memories into a semantic memory network.

Circuit psychiatry

The use of powerful neurobiological tools to identify, monitor and manipulate specific brain circuits to advance knowledge of normal brain function and mental disorders.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eichenbaum, H. Prefrontal–hippocampal interactions in episodic memory. Nat Rev Neurosci 18, 547–558 (2017). https://doi.org/10.1038/nrn.2017.74

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn.2017.74

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing