Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Rediscovering area CA2: unique properties and functions

Key Points

  • Hippocampal area CA2, contrary to popular perception, has a distinct molecular profile and connectivity compared with its neighbouring areas CA1 and CA3.

  • The 'molecular' definition of area CA2 differs substantially from the 'classic' definition in rodents.

  • Plasticity at some synapses in CA2 is severely limited by robust calcium handling processes and some gene expression in CA2 pyramidal neurons. Nevertheless, CA2 synapses can be modulated by caffeine and by the neuropeptides oxytocin and vasopressin, which mediate social behaviours.

  • Knockout of a vasopressin receptor, which is highly expressed in area CA2, causes impairments in several forms of social recognition memory in mice. Silencing or destroying CA2 neurons leads to similar deficits.

  • CA2 neurons have place fields, but carry less spatial information than those in area CA1 or CA3. CA2 place fields are highly unstable over time and remap upon exposure to social and novel contexts, suggesting a potential mechanism for encoding time and modified contexts.

  • CA2 neurons are resistant to cell death in response to many forms of insults in humans and animal models. Moreover, CA2 neurons may contribute to epileptic activity found in temporal lobe epilepsy.

Abstract

Hippocampal area CA2 has several features that distinguish it from CA1 and CA3, including a unique gene expression profile, failure to display long-term potentiation and relative resistance to cell death. A recent increase in interest in the CA2 region, combined with the development of new methods to define and manipulate its neurons, has led to some exciting new discoveries on the properties of CA2 neurons and their role in behaviour. Here, we review these findings and call attention to the idea that the definition of area CA2 ought to be revised in light of gene expression data.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Hippocampal area CA2 in the mouse brain.
Figure 2: Connectivity of CA2 neurons within the rodent hippocampal circuit.
Figure 3: Comparison of neuron spatial firing in CA regions.
Figure 4: A role for CA2 in social memory.

Similar content being viewed by others

References

  1. van Strien, N. M., Cappaert, N. L. M. & Witter, M. P. The anatomy of memory: an interactive overview of the parahippocampal–hippocampal network. Nat. Rev. Neurosci. 10, 272–282 (2009).

    Article  CAS  PubMed  Google Scholar 

  2. Buzsaki, G. & Moser, E. I. Memory, navigation and theta rhythm in the hippocampal-entorhinal system. Nat. Neurosci. 16, 130–138 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Geva-Sagiv, M., Las, L., Yovel, Y. & Ulanovsky, N. Spatial cognition in bats and rats: from sensory acquisition to multiscale maps and navigation. Nat. Rev. Neurosci. 16, 94–108 (2015).

    Article  CAS  PubMed  Google Scholar 

  4. Goosens, K. A. Hippocampal regulation of aversive memories. Curr. Opin. Neurobiol. 21, 460–466 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Felix-Ortiz, A. C. & Tye, K. M. Amygdala inputs to the ventral hippocampus bidirectionally modulate social behavior. J. Neurosci. 34, 586–595 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lorente de Nó, R. Studies on the structure of the cerebral cortex. II. Continuation of the study of the ammonic system. J. Psychol. Neurol. 46, 113–177 (1934). This paper introduced the hippocampal CA subfield terminology and defined CA2 as a region that is distinct from area CA3.

    Google Scholar 

  7. Lein, E. S., Zhao, X. & Gage, F. H. Defining a molecular atlas of the hippocampus using DNA microarrays and high-throughput in situ hybridization. J. Neurosci. 24, 3879–3889 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lein, E. S., Callaway, E. M., Albright, T. D. & Gage, F. H. Redefining the boundaries of the hippocampal CA2 subfield in the mouse using gene expression and 3-dimensional reconstruction. J. Comp. Neurol. 485, 1–10 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Kohara, K. et al. Cell type-specific genetic and optogenetic tools reveal hippocampal CA2 circuits. Nat. Neurosci. 17, 269–279 (2014). This is the first description of CA1 'deep' neurons as the main target of CA2 pyramidal neurons, which contrast with the calbindin 1-immunopositive CA1 'superficial' neurons primarily targeted by CA3 neurons.

    Article  CAS  PubMed  Google Scholar 

  10. Cui, Z., Gerfen, C. R. & Young, W. S. Hypothalamic and other connections with dorsal CA2 area of the mouse hippocampus. J. Comp. Neurol. 521, 1844–1866 (2013). This is one of the first studies to specifically examine the synaptic input to and output from area CA2, reporting connections from the PVN and to the SuM.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhang, L. & Hernández, V. S. Synaptic innervation to rat hippocampus by vasopressin-immuno-positive fibres from the hypothalamic supraoptic and paraventricular nuclei. Neuroscience 228, 139–162 (2013).

    Article  CAS  PubMed  Google Scholar 

  12. Yanagihara, M. & Niimi, K. Substance P-like immunoreactive projection to the hippocampal formation from the posterior hypothalamus in the cat. Brain Res. Bull. 22, 689–694 (1989).

    Article  CAS  PubMed  Google Scholar 

  13. Nadler, J. V., Perry, B. W. & Cotman, C. W. Intraventricular kainic acid preferentially destroys hippocampal pyramidal cells. Nature 271, 676–677 (1978). This paper contained the first report that CA2 is resistant to cell death in an animal model of epilepsy.

    Article  CAS  PubMed  Google Scholar 

  14. Sloviter, R. S. & Damiano, B. P. Sustained electrical stimulation of the perforant path duplicates kainate-induced electrophysiological effects and hippocampal damage in rats. Neurosci. Lett. 24, 279–284 (1981).

    Article  CAS  PubMed  Google Scholar 

  15. Zhao, M., Choi, Y.-S., Obrietan, K. & Dudek, S. M. Synaptic plasticity (and the lack thereof) in hippocampal CA2 neurons. J. Neurosci. 27, 12025–12032 (2007). This is the first report of the lack of typical LTP induction in CA2 pyramidal neurons in the SR.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. McLardy, T. Some cell and fibre peculiarities of uncal hippocampus. Prog. Brain Res. 3, 71–78 (1963).

    Article  Google Scholar 

  17. Laurberg, S. & Zimmer, J. Aberrant hippocampal mossy fibers in cats. Brain Res. 188, 555–559 (1980).

    Article  CAS  PubMed  Google Scholar 

  18. Hirama, J., Shoumura, K., Ichinohe, N., You, S. & Yonekura, H. Cornu ammonis of the cat: lack of a separate field of CA2. J. Hirnforsch. 38, 487–493 (1997).

    CAS  PubMed  Google Scholar 

  19. San Antonio, A., Liban, K., Ikrar, T., Tsyganovskiy, E. & Xu, X. Distinct physiological and developmental properties of hippocampal CA2 subfield revealed by using anti-Purkinje cell protein 4 (PCP4) immunostaining. J. Comp. Neurol. 522, 1333–1354 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Munoz, D. G. The distribution of chromogranin A-like immunoreactivity in the human hippocampus coincides with the pattern of resistance to epilepsy-induced neuronal damage. Ann. Neurol. 27, 266–275 (1990).

    Article  CAS  PubMed  Google Scholar 

  21. Gaarskjaer, F. B. The organization and development of the hippocampal mossy fiber system. Brain Res. 396, 335–357 (1986).

    Article  CAS  PubMed  Google Scholar 

  22. Woodhams, P. L., Celio, M. R., Ulfig, N. & Witter, M. P. Morphological and functional correlates of borders in the entorhinal cortex and hippocampus. Hippocampus 3, 303–311 (1993).

    PubMed  Google Scholar 

  23. Ishizuka, N., Weber, J. & Amaral, D. G. Organization of intrahippocampal projections originating from CA3 pyramidal cells in the rat. J. Comp. Neurol. 295, 580–623 (1990).

    Article  CAS  PubMed  Google Scholar 

  24. Emoto, N. et al. Basic fibroblast growth factor (FGF) in the central nervous system: identification of specific loci of basic FGF expression in the rat brain. Growth Factors 2, 21–29 (1989).

    Article  CAS  PubMed  Google Scholar 

  25. Phillips, H. S., Hains, J. M., Laramee, G. R., Rosenthal, A. & Winslow, J. W. Widespread expression of BDNF but not NT3 by target areas of basal forebrain cholinergic neurons. Science 250, 290–294 (1990).

    Article  CAS  PubMed  Google Scholar 

  26. Zhao, X. et al. Transcriptional profiling reveals strict boundaries between hippocampal subregions. J. Comp. Neurol. 441, 187–196 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Mercer, A., Trigg, H. L. & Thomson, A. M. Characterization of neurons in the CA2 subfield of the adult rat hippocampus. J. Neurosci. 27, 7329–7338 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lee, S. E. et al. RGS14 is a natural suppressor of both synaptic plasticity in CA2 neurons and hippocampal-based learning and memory. Proc. Natl Acad. Sci. USA 107, 16994–16998 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Shinohara, Y. et al. Hippocampal CA3 and CA2 have distinct bilateral innervation patterns to CA1 in rodents. Eur. J. Neurosci. 35, 702–710 (2012).

    Article  PubMed  Google Scholar 

  30. Alexander, G. M. et al. Social and novel contexts modify hippocampal CA2 representations of space. Nat. Commun. 7, 10300 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wyszynski, M. et al. Differential regional expression and ultrastructural localization of α-actinin-2, a putative NMDA receptor-anchoring protein, in rat brain. J. Neurosci. 18, 1383–1392 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tóth, K. & Freund, T. F. Calbindin D28k-containing nonpyramidal cells in the rat hippocampus: their immunoreactivity for GABA and projection to the medial septum. Neuroscience 49, 793–805 (1992).

    Article  PubMed  Google Scholar 

  33. Maglóczky, Z., Acsády, L. & Freund, T. F. Principal cells are the postsynaptic targets of supramammillary afferents in the hippocampus of the rat. Hippocampus 4, 322–334 (1994).

    Article  PubMed  Google Scholar 

  34. Haglund, L., Swanson, L. W. & Köhler, C. The projection of the supramammillary nucleus to the hippocampal formation: an immunohistochemical and anterograde transport study with the lectin PHA-L in the rat. J. Comp. Neurol. 229, 171–185 (1984).

    Article  CAS  PubMed  Google Scholar 

  35. Nitsch, R. & Leranth, C. Substance P-containing hypothalamic afferents to the monkey hippocampus: an immunocytochemical, tracing, and coexistence study. Exp. Brain Res. 101, 231–240 (1994).

    Article  CAS  PubMed  Google Scholar 

  36. Gall, C. & Selawski, L. Supramammillary afferents to guinea pig hippocampus contain substance P-like immunoreactivity. Neurosci. Lett. 51, 171–176 (1984).

    Article  CAS  PubMed  Google Scholar 

  37. Borhegyi, Z. & Leranth, C. Distinct substance P- and calretinin-containing projections from the supramammillary area to the hippocampus in rats; a species difference between rats and monkeys. Exp. Brain Res. 115, 369–374 (1997).

    Article  CAS  PubMed  Google Scholar 

  38. Tamamaki, N., Abe, K. & Nojyo, Y. Three-dimensional analysis of the whole axonal arbors originating from single CA2 pyramidal neurons in the rat hippocampus with the aid of a computer graphic technique. Brain Res. 452, 255–272 (1988).

    Article  CAS  PubMed  Google Scholar 

  39. Lein, E. S. et al. Genome-wide atlas of gene expression in the adult mouse brain. Nature 445, 168–176 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Swanson, L. W., Wyss, J. M. & Cowan, W. M. An autoradiographic study of the organization of intrahippocampal association pathways in the rat. J. Comp. Neurol. 181, 681–715 (1978).

    Article  CAS  PubMed  Google Scholar 

  41. Llorens-Martín, M., Jurado-Arjona, J., Avila, J. & Hernández, F. Novel connection between newborn granule neurons and the hippocampal CA2 field. Exp. Neurol. 263, 285–292 (2015).

    Article  PubMed  Google Scholar 

  42. Opendak, M. & Gould, E. Adult neurogenesis: a substrate for experience-dependent change. Trends Cogn. Sci. 19, 151–161 (2015).

    Article  PubMed  Google Scholar 

  43. Borhegyi, Z. & Leranth, C. Substance P innervation of the rat hippocampal formation. J. Comp. Neurol. 384, 41–58 (1997).

    Article  CAS  PubMed  Google Scholar 

  44. Dong, H.-W., Swanson, L. W., Chen, L., Fanselow, M. S. & Toga, A. W. Genomic–anatomic evidence for distinct functional domains in hippocampal field CA1. Proc. Natl Acad. Sci. USA 106, 11794–11799 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Slomianka, L., Amrein, I., Knuesel, I., Sørensen, J. C. & Wolfer, D. P. Hippocampal pyramidal cells: the reemergence of cortical lamination. Brain Struct. Funct. 216, 301–317 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Lee, S.-H. et al. Parvalbumin-positive basket cells differentiate among hippocampal pyramidal cells. Neuron 82, 1129–1144 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Mizuseki, K., Diba, K., Pastalkova, E. & Buzsáki, G. Hippocampal CA1 pyramidal cells form functionally distinct sublayers. Nat. Neurosci. 14, 1174–1181 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Valero, M. et al. Determinants of different deep and superficial CA1 pyramidal cell dynamics during sharp-wave ripples. Nat. Neurosci. 18, 1281–1290 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ropireddy, D., Bachus, S. E. & Ascoli, G. A. Non-homogeneous stereological properties of the rat hippocampus from high-resolution 3D serial reconstruction of thin histological sections. Neuroscience 205, 91–111 (2012).

    Article  CAS  PubMed  Google Scholar 

  50. Andersen, P., Bliss, T. V. P. & Skrede, K. K. Lamellar organization of hippocampal excitatory pathways. Exp. Brain Res. 13, 222–238 (1971).

    CAS  PubMed  Google Scholar 

  51. Sekino, Y., Obata, K., Tanifuji, M., Mizuno, M. & Murayama, J. Delayed signal propagation via CA2 in rat hippocampal slices revealed by optical recording. J. Neurophysiol. 78, 1662–1668 (1997).

    Article  CAS  PubMed  Google Scholar 

  52. Rowland, D. C. et al. Transgenically targeted rabies virus demonstrates a major monosynaptic projection from hippocampal area CA2 to medial entorhinal layer II neurons. J. Neurosci. 33, 14889–14898 (2013). This study found that some CA2 neurons project back to the entorhinal cortex, which is one of the sources of input to CA2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hitti, F. L. & Siegelbaum, S. A. The hippocampal CA2 region is essential for social memory. Nature 508, 88–92 (2014). This study was the first to silence CA2 synapses in mice, which resulted in a deficit in social recognition memory.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ishizuka, N., Cowan, W. M. & Amaral, D. G. A quantitative analysis of the dendritic organization of pyramidal cells in the rat hippocampus. J. Comp. Neurol. 362, 17–45 (1995).

    Article  CAS  PubMed  Google Scholar 

  55. Bartesaghi, R. & Ravasi, L. Pyramidal neuron types in field CA2 of the guinea pig. Brain Res. Bull. 50, 263–273 (1999).

    Article  CAS  PubMed  Google Scholar 

  56. Piskorowski, R. A. & Chevaleyre, V. Synaptic integration by different dendritic compartments of hippocampal CA1 and CA2 pyramidal neurons. Cell. Mol. Life Sci. 69, 75–88 (2011).

    Article  CAS  PubMed  Google Scholar 

  57. Sun, Q., Srinivas, K. V., Sotayo, A. & Siegelbaum, S. A. Dendritic Na+ spikes enable cortical input to drive action potential output from hippocampal CA2 pyramidal neurons. eLife 3, e04551 (2014).

    Article  PubMed Central  Google Scholar 

  58. Chevaleyre, V. & Siegelbaum, S. A. Strong CA2 pyramidal neuron synapses define a powerful disynaptic cortico-hippocampal loop. Neuron 66, 560–572 (2010). The paper provides the first electrophysiological characterization of the entorhinal cortex layer II synapses formed onto CA2 pyramidal neurons in a slice preparation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Piskorowski, R. A. & Chevaleyre, V. Delta-opioid receptors mediate unique plasticity onto parvalbumin-expressing interneurons in area CA2 of the hippocampus. J. Neurosci. 33, 14567–14578 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Botcher, N. A., Falck, J. E., Thomson, A. M. & Mercer, A. Distribution of interneurons in the CA2 region of the rat hippocampus. Front. Neuroanat. 8, 104 (2014). This is a comprehensive study of the different types of interneurons enriched in area CA2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Talley, E. M., Solorzano, G., Lei, Q., Kim, D. & Bayliss, D. A. CNS distribution of members of the two-pore-domain (KCNK) potassium channel family. J. Neurosci. 21, 7491–7505 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Mathie, A., Al-Moubarak, E. & Veale, E. L. Gating of two pore domain potassium channels. J. Physiol. (Lond.) 588, 3149–3156 (2010).

    Article  CAS  Google Scholar 

  63. Chang, P. Y., Taylor, P. E. & Jackson, M. B. Voltage imaging reveals the CA1 region at the CA2 border as a focus for epileptiform discharges and long-term potentiation in hippocampal slices. J. Neurophysiol. 98, 1309–1322 (2007).

    Article  PubMed  Google Scholar 

  64. Caruana, D. A., Alexander, G. M. & Dudek, S. M. New insights into the regulation of synaptic plasticity from an unexpected place: hippocampal area CA2. Learn. Mem. 19, 391–400 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Boulanger, L. M. et al. Cellular and molecular characterization of a brain-enriched protein tyrosine phosphatase. J. Neurosci. 15, 1532–1544 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Pelkey, K. A. et al. Tyrosine phosphatase STEP is a tonic brake on induction of long-term potentiation. Neuron 34, 127–138 (2002).

    Article  CAS  PubMed  Google Scholar 

  67. Nasrallah, K., Piskorowski, R. A. & Chevaleyre, V. Inhibitory plasticity permits the recruitment of CA2 pyramidal neurons by CA3. eNeuro http://dx.doi.org/10.1523/ENEURO.0049-15.2015 (2015).

  68. Simons, S. B., Escobedo, Y., Yasuda, R. & Dudek, S. M. Regional differences in hippocampal calcium handling provide a cellular mechanism for limiting plasticity. Proc. Natl Acad. Sci. USA 106, 14080–14084 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Sangameswaran, L., Hempstead, J. & Morgan, J. I. Molecular cloning of a neuron-specific transcript and its regulation during normal and aberrant cerebellar development. Proc. Natl Acad. Sci. USA 86, 5651–5655 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Fukaya, M., Yamazaki, M., Sakimura, K. & Watanabe, M. Spatial diversity in gene expression for VDCCγ subunit family in developing and adult mouse brains. Neurosci. Res. 53, 376–383 (2005).

    Article  CAS  PubMed  Google Scholar 

  71. Kato, A. S., Siuda, E. R., Nisenbaum, E. S. & Bredt, D. S. AMPA receptor subunit-specific regulation by a distinct family of type II TARPs. Neuron 59, 986–996 (2008).

    Article  CAS  PubMed  Google Scholar 

  72. Soto, D. et al. Selective regulation of long-form calcium-permeable AMPA receptors by an atypical TARP, γ-5. Nat. Neurosci. 12, 277–285 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Vellano, C. P., Lee, S. E., Dudek, S. M. & Hepler, J. R. RGS14 at the interface of hippocampal signaling and synaptic plasticity. Trends Pharmacol. Sci. 32, 666–674 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Lee, H.-J., Caldwell, H. K., Macbeth, A. H., Tolu, S. G. & Young, W. S. A conditional knockout mouse line of the oxytocin receptor. Endocrinology 149, 3256–3263 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Young, W. S., Li, J., Wersinger, S. R. & Palkovits, M. The vasopressin 1b receptor is prominent in the hippocampal area CA2 where it is unaffected by restraint stress or adrenalectomy. Neuroscience 143, 1031–1039 (2006). This is the first report of expression of a receptor for a social neuropeptide in hippocampal area CA2, which prompted interest in area CA2 in the realm of social behaviour.

    Article  CAS  PubMed  Google Scholar 

  76. Pagani, J. H. et al. Role of the vasopressin 1b receptor in rodent aggressive behavior and synaptic plasticity in hippocampal area CA2. Mol. Psychiatry 20, 490–499 (2015).

    Article  CAS  PubMed  Google Scholar 

  77. Ochiishi, T. et al. High level of adenosine A1 receptor-like immunoreactivity in the CA2/CA3a region of the adult rat hippocampus. Neuroscience 93, 955–967 (1999).

    Article  CAS  PubMed  Google Scholar 

  78. Simons, S. B., Caruana, D. A., Zhao, M. & Dudek, S. M. Caffeine-induced synaptic potentiation in hippocampal CA2 neurons. Nat. Neurosci. 15, 23–25 (2012).

    Article  CAS  Google Scholar 

  79. Mons, N., Segu, L., Nogues, X. & Buhot, M. C. Effects of age and spatial learning on adenylyl cyclase mRNA expression in the mouse hippocampus. Neurobiol. Aging 25, 1095–1106 (2004).

    Article  CAS  PubMed  Google Scholar 

  80. Visel, A., Alvarez-Bolado, G., Thaller, C. & Eichele, G. Comprehensive analysis of the expression patterns of the adenylate cyclase gene family in the developing and adult mouse brain. J. Comp. Neurol. 496, 684–697 (2006).

    Article  CAS  PubMed  Google Scholar 

  81. Watson, C. & Paxinos, G. Chemoarchitecton Atlas Mouse Brain (Academic Press, 2009).

    Google Scholar 

  82. Evans, P. R., Lee, S. E., Smith, Y. & Hepler, J. R. Postnatal developmental expression of regulator of G protein signaling 14 (RGS14) in the mouse brain. J. Comp. Neurol. 522, 186–203 (2013).

    Article  CAS  Google Scholar 

  83. Lee, Y.-S. & Silva, A. J. The molecular and cellular biology of enhanced cognition. Nat. Rev. Neurosci. 10, 126–140 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Wintzer, M. E., Boehringer, R., Polygalov, D. & McHugh, T. J. The hippocampal CA2 ensemble is sensitive to contextual change. J. Neurosci. 34, 3056–3066 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Mankin, E. A., Diehl, G. W., Sparks, F. T., Leutgeb, S. & Leutgeb, J. K. Hippocampal CA2 activity patterns change over time to a larger extent than between spatial contexts. Neuron 85, 190–201 (2015). The paper provides the first electrophysiological characterization of rat CA2 neuron firing in vivo . The authors note that place fields are unstable and so may provide a substrate for time coding in the hippocampus.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Martig, A. K. & Mizumori, S. J. Y. Ventral tegmental area disruption selectively affects CA1/CA2 but not CA3 place fields during a differential reward working memory task. Hippocampus 21, 172–184 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Lee, H., Wang, C., Deshmukh, S. S. & Knierim, J. J. Neural population evidence of functional heterogeneity along the CA3 transverse axis: pattern completion versus pattern separation. Neuron 87, 1093–1105 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Lu, L., Igarashi, K. M., Witter, M. P., Moser, E. I. & Moser, M.-B. Topography of place maps along the CA3-to-CA2 axis of the hippocampus. Neuron 87, 1078–1092 (2015).

    Article  CAS  PubMed  Google Scholar 

  89. von Heimendahl, M., Rao, R. P. & Brecht, M. Weak and nondiscriminative responses to conspecifics in the rat hippocampus. J. Neurosci. 32, 2129–2141 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Lee, H.-J., Macbeth, A. H., Pagani, J. H. & Young, W. S. Oxytocin: the great facilitator of life. Prog. Neurobiol. 88, 127–151 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Wersinger, S. R., Ginns, E. I., O'Carroll, A.-M., Lolait, S. J. & Young, W. S. Vasopressin V1b receptor knockout reduces aggressive behavior in male mice. Mol. Psychiatry 7, 975–984 (2002).

    Article  CAS  PubMed  Google Scholar 

  92. Wersinger, S. R., Temple, J. L., Caldwell, H. K. & Young, W. S. Inactivation of the oxytocin and the vasopressin (Avp) 1b receptor genes, but not the Avp 1a receptor gene, differentially impairs the Bruce effect in laboratory mice (Mus musculus). Endocrinology 149, 116–121 (2008).

    Article  CAS  PubMed  Google Scholar 

  93. DeVito, L. M. et al. Vasopressin 1b receptor knock-out impairs memory for temporal order. J. Neurosci. 29, 2676–2683 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Stevenson, E. L. & Caldwell, H. K. Lesions to the CA2 region of the hippocampus impair social memory in mice. Eur. J. Neurosci. 40, 3294–3301 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Tymianski, M. Emerging mechanisms of disrupted cellular signaling in brain ischemia. Nat. Neurosci. 14, 1369–1373 (2011).

    Article  CAS  PubMed  Google Scholar 

  96. Hatanpaa, K. J. et al. Hippocampal sclerosis in dementia, epilepsy, and ischemic injury: differential vulnerability of hippocampal subfields. J. Neuropathol. Exp. Neurol. 73, 136–142 (2014).

    Article  CAS  PubMed  Google Scholar 

  97. Sommer, W. Erkrankung des ammonshorns als aetiologisches moment der epilepsie. Arch. Psychiat. Nervenkr. 10, 631–675 (in German) (1880).

    Article  Google Scholar 

  98. Corsellis, J. A. & Bruton, C. J. Neuropathology of status epilepticus in humans. Adv. Neurol. 34, 129–139 (1983).

    CAS  PubMed  Google Scholar 

  99. Bratz, E. Ammonshornbefunde bei epileptikern. Arch. Psychiat. Nervenkr. 31, 820–836 (in German) (1899).

    Article  Google Scholar 

  100. Steve, T. A., Jirsch, J. D. & Gross, D. W. Quantification of subfield pathology in hippocampal sclerosis: a systematic review and meta-analysis. Epilepsy Res. 108, 1279–1285 (2014).

    Article  PubMed  Google Scholar 

  101. Maxwell, W. L. et al. There is differential loss of pyramidal cells from the human hippocampus with survival after blunt head injury. J. Neuropathol. Exp. Neurol. 62, 272–279 (2003).

    Article  CAS  PubMed  Google Scholar 

  102. Sloviter, R. S., Sollas, A. L., Barbaro, N. M. & Laxer, K. D. Calcium-binding protein (calbindin-D28K) and parvalbumin immunocytochemistry in the normal and epileptic human hippocampus. J. Comp. Neurol. 308, 381–396 (1991).

    Article  CAS  PubMed  Google Scholar 

  103. Kirino, T. Delayed neuronal death in the gerbil hippocampus following ischemia. Brain Res. 239, 57–69 (1982).

    Article  CAS  PubMed  Google Scholar 

  104. Kotapka, M. J., Graham, D. I., Adams, J. H. & Gennarelli, T. A. Hippocampal pathology in fatal non-missile human head injury. Acta Neuropathol. 83, 530–534 (1992).

    Article  CAS  PubMed  Google Scholar 

  105. Cavazos, J. E., Das, I. & Sutula, T. P. Neuronal loss induced in limbic pathways by kindling: evidence for induction of hippocampal sclerosis by repeated brief seizures. J. Neurosci. 14, 3106–3121 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Miyamoto, O. et al. Neurotoxicity of Clostridium perfringens epsilon-toxin for the rat hippocampus via the glutamatergic system. Infect. Immun. 66, 2501–2508 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Sadowski, M. et al. Pattern of neuronal loss in the rat hippocampus following experimental cardiac arrest-induced ischemia. J. Neurol. Sci. 168, 13–20 (1999).

    Article  CAS  PubMed  Google Scholar 

  108. Yang, G. et al. Regional difference of neuronal vulnerability in the murine hippocampus after transient forebrain ischemia. Brain Res. 870, 195–198 (2000).

    Article  CAS  PubMed  Google Scholar 

  109. Bothe, H. W., Bosma, H. J., Hofer, H., Hossmann, K. A. & Angermeier, W. F. Selective vulnerability of hippocampus and disturbances of memory storage after mild unilateral ischemia of gerbil brain. Stroke 17, 1160–1163 (1986).

    Article  CAS  PubMed  Google Scholar 

  110. Buckmaster, P. S., Wen, X., Toyoda, I., Gulland, F. M. D. & Van Bonn, W. Hippocampal neuropathology of domoic acid-induced epilepsy in California sea lions (Zalophus californianus). J. Comp. Neurol. 522, 1691–1706 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Young, D. & Dragunow, M. Neuronal injury following electrically induced status epilepticus with and without adenosine receptor antagonism. Exp. Neurol. 133, 125–137 (1995).

    Article  CAS  PubMed  Google Scholar 

  112. Xu, B., Michalski, B., Racine, R. J. & Fahnestock, M. Continuous infusion of neurotrophin-3 triggers sprouting, decreases the levels of TrkA and TrkC, and inhibits epileptogenesis and activity-dependent axonal growth in adult rats. Neuroscience 115, 1295–1308 (2002).

    Article  CAS  PubMed  Google Scholar 

  113. Gluckman, P. et al. A role for IGF-1 in the rescue of CNS neurons following hypoxic-ischemic injury. Biochem. Biophys. Res. Commun. 182, 593–599 (1992).

    Article  CAS  PubMed  Google Scholar 

  114. Miltiadous, P., Stamatakis, A. & Stylianopoulou, F. Neuroprotective effects of IGF-I following kainic acid-induced hippocampal degeneration in the rat. Cell. Mol. Neurobiol. 30, 347–360 (2009).

    Article  CAS  PubMed  Google Scholar 

  115. Sun, X. et al. Insulin/PI3K signaling protects dentate neurons from oxygen-glucose deprivation in organotypic slice cultures. J. Neurochem. 112, 377–388 (2010).

    Article  CAS  PubMed  Google Scholar 

  116. Chung, Y. H. et al. Region-specific alterations in insulin-like growth factor-I receptor in the central nervous system of nNOS knockout mice. Brain Res. 1021, 132–139 (2004).

    Article  CAS  PubMed  Google Scholar 

  117. Beilharz, E. J. et al. Differential expression of insulin-like growth factor binding proteins (IGFBP) 4 and 5 mRNA in the rat brain after transient hypoxic-ischemic injury. Brain Res. Mol. Brain Res. 18, 209–215 (1993).

    Article  CAS  PubMed  Google Scholar 

  118. Kang, T.-C. et al. The somatostatin receptors in the normal and epileptic hippocampus of the gerbil: subtype-specific localization and its alteration. Brain Res. 986, 91–102 (2003).

    Article  CAS  PubMed  Google Scholar 

  119. Arida, R. M., Scorza, F. A., de Amorim Carvalho, R. & Cavalheiro, E. A. Proechimys guyannensis: an animal model of resistance to epilepsy. Epilepsia 46 (Suppl. 5), 189–197 (2005).

    Article  PubMed  Google Scholar 

  120. Scorza, C. A. et al. Distinctive hippocampal CA2 subfield of the Amazon rodent Proechimys. Neuroscience 169, 965–973 (2010).

    Article  CAS  PubMed  Google Scholar 

  121. Han, C., Kasai, N. & Torimitsu, K. CA2: the most vulnerable sector to bicuculline exposure in rat hippocampal slice cultures. Neuroreport 16, 333–336 (2005).

    Article  CAS  PubMed  Google Scholar 

  122. Mattson, M. P. & Kater, S. B. Development and selective neurodegeneration in cell cultures from different hippocampal regions. Brain Res. 490, 110–125 (1989).

    Article  CAS  PubMed  Google Scholar 

  123. Wittner, L. et al. The epileptic human hippocampal cornu ammonis 2 region generates spontaneous interictal-like activity in vitro. Brain 132, 3032–3046 (2009).

    Article  PubMed  Google Scholar 

  124. Cohen, I., Navarro, V., Clemenceau, S., Baulac, M. & Miles, R. On the origin of interictal activity in human temporal lobe epilepsy in vitro. Science 298, 1418–1421 (2002).

    Article  CAS  PubMed  Google Scholar 

  125. Williamson, A. & Spencer, D. D. Electrophysiological characterization of CA2 pyramidal cells from epileptic humans. Hippocampus 4, 226–237 (1994).

    Article  CAS  PubMed  Google Scholar 

  126. Wong, R. K. & Traub, R. D. Synchronized burst discharge in disinhibited hippocampal slice. I. Initiation in CA2-CA3 region. J. Neurophysiol. 49, 442–458 (1983).

    Article  CAS  PubMed  Google Scholar 

  127. Häussler, U., Rinas, K., Kilias, A., Egert, U. & Haas, C. A. Mossy fiber sprouting and pyramidal cell dispersion in the hippocampal CA2 region in a mouse model of temporal lobe epilepsy. Hippocampus http://dx.doi.org/10.1002/hipo.22543 (2015).

  128. Lavenex, P., Lavenex, P. B., Bennett, J. L. & Amaral, D. G. Postmortem changes in the neuroanatomical characteristics of the primate brain: hippocampal formation. J. Comp. Neurol. 512, 27–51 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Bauman, M. L. & Kemper, T. L. Neuroanatomic observations of the brain in autism: a review and future directions. Int. J. Dev. Neurosci. 23, 183–187 (2005).

    Article  PubMed  Google Scholar 

  130. Boucher, J., Mayes, A. & Bigham, S. Memory in autistic spectrum disorder. Psychol. Bull. 138, 458–496 (2012).

    Article  PubMed  Google Scholar 

  131. Deykin, E. Y. & MacMahon, B. The incidence of seizures among children with autistic symptoms. Am. J. Psychiatry 136, 1310–1312 (1979).

    Article  CAS  PubMed  Google Scholar 

  132. Shen, E. H., Overly, C. C. & Jones, A. R. The Allen Human Brain Atlas: comprehensive gene expression mapping of the human brain. Trends Neurosci. 35, 711–714 (2012).

    Article  CAS  PubMed  Google Scholar 

  133. Benes, F. M., Kwok, E. W., Vincent, S. L. & Todtenkopf, M. S. A reduction of nonpyramidal cells in sector CA2 of schizophrenics and manic depressives. Biol. Psychiatry 44, 88–97 (1998). This is the first report of disruption of CA2 inhibitory circuitry in a psychiatric disease state.

    Article  CAS  PubMed  Google Scholar 

  134. Zhang, Z. J. & Reynolds, G. P. A selective decrease in the relative density of parvalbumin-immunoreactive neurons in the hippocampus in schizophrenia. Schizophr. Res. 55, 1–10 (2002).

    Article  PubMed  Google Scholar 

  135. Benes, F. M. et al. Regulation of the GABA cell phenotype in hippocampus of schizophrenics and bipolars. Proc. Natl Acad. Sci. USA 104, 10164–10169 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Benes, F. M., Todtenkopf, M. S. & Kostoulakos, P. GluR5,6,7 subunit immunoreactivity on apical pyramidal cell dendrites in hippocampus of schizophrenics and manic depressives. Hippocampus 11, 482–491 (2001).

    Article  CAS  PubMed  Google Scholar 

  137. Gao, X. M. et al. Ionotropic glutamate receptors and expression of N-methyl-d-aspartate receptor subunits in subregions of human hippocampus: effects of schizophrenia. Am. J. Psychiatry 157, 1141–1149 (2000).

    Article  CAS  PubMed  Google Scholar 

  138. Jin, C. Y., Anichtchik, O. & Panula, P. Altered histamine H3 receptor radioligand binding in post-mortem brain samples from subjects with psychiatric diseases. Br. J. Pharmacol. 157, 118–129 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Schobel, S. A. et al. Imaging patients with psychosis and a mouse model establishes a spreading pattern of hippocampal dysfunction and implicates glutamate as a driver. Neuron 78, 81–93 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Fatemi, S. H., Earle, J. A. & McMenomy, T. Reduction in Reelin immunoreactivity in hippocampus of subjects with schizophrenia, bipolar disorder and major depression. Mol. Psychiatry 5, 654–663 (2000).

    Article  CAS  PubMed  Google Scholar 

  141. Berretta, S., Gisabella, B. & Benes, F. M. A rodent model of schizophrenia derived from postmortem studies. Behav. Brain Res. 204, 363–368 (2009).

    Article  CAS  PubMed  Google Scholar 

  142. Pikkarainen, M., Rönkkö, S., Savander, V., Insausti, R. & Pitkänen, A. Projections from the lateral, basal, and accessory basal nuclei of the amygdala to the hippocampal formation in rat. J. Comp. Neurol. 403, 229–260 (1999).

    Article  CAS  PubMed  Google Scholar 

  143. Ding, S.-L., Haber, S. N. & Van Hoesen, G. W. Stratum radiatum of CA2 is an additional target of the perforant path in humans and monkeys. Neuroreport 21, 245–249 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Leranth, C. & Ribak, C. E. Calcium-binding proteins are concentrated in the CA2 field of the monkey hippocampus: a possible key to this region's resistance to epileptic damage. Exp. Brain Res. 85, 129–136 (1991).

    Article  CAS  PubMed  Google Scholar 

  145. Seress, L., Nitsch, R. & Leranth, C. Calretinin immunoreactivity in the monkey hippocampal formation — I. Light and electron microscopic characteristics and co-localization with other calcium-binding proteins. Neuroscience 55, 775–796 (1993).

    Article  CAS  PubMed  Google Scholar 

  146. Utal, A. K., Stopka, A. L., Roy, M. & Coleman, P. D. PEP-19 immunohistochemistry defines the basal ganglia and associated structures in the adult human brain, and is dramatically reduced in Huntington's disease. Neuroscience 86, 1055–1063 (1998).

    Article  CAS  PubMed  Google Scholar 

  147. Zimmermann, B., Girard, F., Mészàr, Z. & Celio, M. R. Expression of the calcium binding proteins Necab-1,-2 and -3 in the adult mouse hippocampus and dentate gyrus. Brain Res. 1528, 1–7 (2013).

    Article  CAS  PubMed  Google Scholar 

  148. Palmiter, R. D., Cole, T. B., Quaife, C. J. & Findley, S. D. ZnT-3, a putative transporter of zinc into synaptic vesicles. Proc. Natl Acad. Sci. USA 93, 14934–14939 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Yamamoto, M., Marshall, P., Hemmendinger, L. M., Boyer, A. B. & Caviness, V. S. Distribution of glucuronic acid-and-sulfate-containing glycoproteins in the central nervous system of the adult mouse. Neurosci. Res. 5, 273–298 (1988).

    Article  CAS  PubMed  Google Scholar 

  150. Costa, C. et al. Mapping of aggrecan, hyaluronic acid, heparan sulphate proteoglycans and aquaporin 4 in the central nervous system of the mouse. J. Chem. Neuroanat. 33, 111–123 (2007).

    Article  CAS  PubMed  Google Scholar 

  151. McRae, P. A., Baranov, E., Sarode, S., Brooks-Kayal, A. R. & Porter, B. E. Aggrecan expression, a component of the inhibitory interneuron perineuronal net, is altered following an early-life seizure. Neurobiol. Dis. 39, 439–448 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Fuxe, K. et al. On the regional distribution of heparan sulfate proteoglycan immunoreactivity in the rat brain. Brain Res. 636, 131–138 (1994).

    Article  CAS  PubMed  Google Scholar 

  153. Brückner, G., Grosche, J., Hartlage-Rübsamen, M., Schmidt, S. & Schachner, M. Region and lamina-specific distribution of extracellular matrix proteoglycans, hyaluronan and tenascin-R in the mouse hippocampal formation. J. Chem. Neuroanat. 26, 37–50 (2003).

    Article  CAS  PubMed  Google Scholar 

  154. Fuxe, K., Tinner, B., Staines, W., David, G. & Agnati, L. F. Regional distribution of neural cell adhesion molecule immunoreactivity in the adult rat telencephalon and diencephalon. Partial colocalization with heparan sulfate proteoglycan immunoreactivity. Brain Res. 746, 25–33 (1997).

    Article  CAS  PubMed  Google Scholar 

  155. Laeremans, A. et al. AMIGO2 mRNA expression in hippocampal CA2 and CA3a. Brain Struct. Funct. 218, 123–130 (2012).

    Article  CAS  Google Scholar 

  156. Barlow, G. M., Micales, B., Lyons, G. E. & Korenberg, J. R. Down syndrome cell adhesion molecule is conserved in mouse and highly expressed in the adult mouse brain. Cytogenet. Cell Genet. 94, 155–162 (2001).

    Article  CAS  PubMed  Google Scholar 

  157. Shen, L. et al. Altered expression of Dscam in temporal lobe tissue from human and experimental animals. Synapse 65, 975–982 (2011).

    Article  CAS  PubMed  Google Scholar 

  158. Eroglu, C. The role of astrocyte-secreted matricellular proteins in central nervous system development and function. J. Cell Commun. Signal. 3, 167–176 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Hawrylycz, M. J. et al. An anatomically comprehensive atlas of the adult human brain transcriptome. Nature 489, 391–399 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Woodward, W. R. et al. Nuclear and cytoplasmic localization of basic fibroblast growth factor in astrocytes and CA2 hippocampal neurons. J. Neurosci. 12, 142–152 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Eckenstein, F. P., Andersson, C., Kuzis, K. & Woodward, W. R. Distribution of acidic and basic fibroblast growth factors in the mature, injured and developing rat nervous system. Prog. Brain Res. 103, 55–64 (1994).

    Article  CAS  PubMed  Google Scholar 

  162. Williams, T. E. et al. Characterization and distribution of basic fibroblast growth factor-containing cells in the rat hippocampus. J. Comp. Neurol. 370, 147–158 (1996).

    Article  CAS  PubMed  Google Scholar 

  163. Gómez-Pinilla, F., van der Wal, E. A. & Cotman, C. W. Possible coordinated gene expressions for FGF receptor, FGF-5, and FGF-2 following seizures. Exp. Neurol. 133, 164–174 (1995).

    Article  PubMed  Google Scholar 

  164. Gonzalez, A. M., Berry, M., Maher, P. A., Logan, A. & Baird, A. A comprehensive analysis of the distribution of FGF-2 and FGFR1 in the rat brain. Brain Res. 701, 201–226 (1995).

    Article  CAS  PubMed  Google Scholar 

  165. Ernfors, P., Ibáñez, C. F., Ebendal, T., Olson, L. & Persson, H. Molecular cloning and neurotrophic activities of a protein with structural similarities to nerve growth factor: developmental and topographical expression in the brain. Proc. Natl Acad. Sci. USA 87, 5454–5458 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Vigers, A. J., Baquet, Z. C. & Jones, K. R. Expression of neurotrophin-3 in the mouse forebrain: insights from a targeted LacZ reporter. J. Comp. Neurol. 416, 398–415 (2000).

    Article  CAS  PubMed  Google Scholar 

  167. Friedman, W. J., Ernfors, P. & Persson, H. Transient and persistent expression of NT-3/HDNF mRNA in the rat brain during postnatal development. J. Neurosci. 11, 1577–1584 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Tucker, M. S. et al. Localization of immunoreactive epidermal growth factor receptor in neonatal and adult rat hippocampus. Brain Res. 631, 65–71 (1993).

    Article  CAS  PubMed  Google Scholar 

  169. Bondy, C., Werner, H., Roberts, C. T. & LeRoith, D. Cellular pattern of type-I insulin-like growth factor receptor gene expression during maturation of the rat brain: comparison with insulin-like growth factors I and II. Neuroscience 46, 909–923 (1992).

    Article  CAS  PubMed  Google Scholar 

  170. Stenvers, K. L., Zimmermann, E. M., Gallagher, M. & Lund, P. K. Expression of insulin-like growth factor binding protein-4 and -5 mRNAs in adult rat forebrain. J. Comp. Neurol. 339, 91–105 (1994).

    Article  CAS  PubMed  Google Scholar 

  171. Stephan, A. H. et al. A dramatic increase of C1q protein in the CNS during normal aging. J. Neurosci. 33, 13460–13474 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Lopez, M. E., Klein, A. D. & Scott, M. P. Complement is dispensable for neurodegeneration in Niemann–Pick disease type C. J. Neuroinflammation 9, 216 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Kwak, S.-E. et al. The expression of somatostatin receptors in the hippocampus of pilocarpine-induced rat epilepsy model. Neuropeptides 42, 569–583 (2008).

    Article  CAS  PubMed  Google Scholar 

  174. Berger, T. & Frotscher, M. Distribution and morphological characteristics of oligodendrocytes in the rat hippocampus in situ and in vitro: an immunocytochemical study with the monoclonal Rip antibody. J. Neurocytol. 23, 61–74 (1994).

    Article  CAS  PubMed  Google Scholar 

  175. Smith, A. S., Williams Avram, S. K., Cymerblit-Sabba, A., Song, J. & Young, W. S. Targeted activation of the hippocampal CA2 area strongly enhances social memory. Mol. Psychiatry http://dx.doi.org/10.1038/mp.2015.189 (2016).

  176. Piskorowski, R. A. et al. Age-dependent specific changes in area CA2 of the hippocampus and social memory deficit in a mouse model of the 22q11.2 deletion syndrome. Neuron 89, 163–176 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank D. Lustberg and other members of the Dudek laboratory for comments on the manuscript. This research was supported by the Intramural Research Program of the National Institute of Environmental Health Sciences, US National Institutes of Health (Z01 ES100221).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serena M. Dudek.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

PowerPoint slides

Glossary

Cornu Ammonis

(CA). Latin for Ammon's horn, CA is now known as the hippocampus proper and was used by Rafael Lorente de Nó when subdividing the regio superior and regio inferior into CA1, CA2, CA3 and CA4.

Mossy fibres

The axons of the dentate gyrus granule neurons most noted for forming very large synapses on the thorny excrescences on proximal dendrites of CA3 neurons, and now known to also form synapses on many CA2 neurons in rats and mice.

Long-term potentiation

(LTP). A lasting increase in the effectiveness of synaptic potentials induced by high-frequency afferent stimulation.

Cell ensembles

A collection of cells that show coordinated firing activity and are thought to encode a particular memory trace or engram.

Place fields

Locations (or places) within a two-dimensional arena at which a particular neuron will fire while the animal traverses it.

Global remapping

Changes in the primary place field location of a neuron in response to a change in the environment — for example, the context or the passage of time.

Excitotoxicity

The property of excitatory amino acids such as glutamate to cause neuron death, beginning with massive depolarization of the cell membrane and influx of calcium.

Status epilepticus

A state of prolonged seizure activity lasting for more than 5 minutes, or multiple seizure events without returning to normal consciousness.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dudek, S., Alexander, G. & Farris, S. Rediscovering area CA2: unique properties and functions. Nat Rev Neurosci 17, 89–102 (2016). https://doi.org/10.1038/nrn.2015.22

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn.2015.22

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing