Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Insulin and IGF receptor signalling in neural-stem-cell homeostasis

Key Points

  • Insulin-like growth factor I (IGF-I) and insulin-like growth factor II (IGF-II) are synthesized in the brain and their levels decline with ageing

  • IGF-I and IGF-II exert different effects on neural stem cells (NSCs)

  • IGF-I collaborates with other mitogens to enlarge the pool of neural progenitors

  • IGF-II specifically promotes NSC self-renewal and stem-cell replication through the insulin receptor isoform A

  • IGF-II does not affect NSC self-renewal through the IGF-II receptor

Abstract

Neural stem cells (NSCs) are found in two regions in the adult brain: the subgranular zone (SGZ) in the hippocampal dentate gyrus and the subventricular zone (SVZ) adjacent to the lateral ventricles. Similarly to other somatic stem cells, adult NSCs are found within specialized niches that are organized to facilitate NSC self-renewal. Alterations in stem-cell homeostasis can contribute to the consequences of neurodegenerative diseases, healthy ageing and tissue repair after damage. Insulin and the insulin-like growth factors (IGFs) function in stem-cell homeostasis across species. Studies in the mammalian central nervous system support essential roles for IGF and/or insulin signalling in NSC self-renewal, neurogenesis, cognition and sensory function through distinct ligand–receptor interactions. IGF-II is of particular interest as a result of its production by the choroid plexus and presence in cerebrospinal fluid (CSF). CSF regulates and supports the development, division and migration of cells in the adult brain and is required for NSC maintenance. In this Review, we discuss emerging data on the functions of IGF-II and IGF and/or insulin receptor signalling in the context of NSC regulation in the SVZ and SGZ. We also propose a model for IGF-II in which the choroid plexus is a major component of the NSC niche.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Neurogenic regions in the adult brain.
Figure 2: Structure of the neonatal subventricular zone.
Figure 3: Proposed model for the actions of IGFs in the subventricular zone.

Similar content being viewed by others

References

  1. Ihrie, R. A. & Alvarez-Buylla, A. Lake-front property: a unique germinal niche by the lateral ventricles of the adult brain. Neuron 70, 674–686 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Owen-Lynch, P. J., Draper, C. E., Mashayekhi, F., Bannister, C. M. & Miyan, J. A. Defective cell cycle control underlies abnormal cortical development in the hydrocephalic Texas rat. Brain 126, 623–631 (2003).

    Article  PubMed  Google Scholar 

  3. Tavazoie, M. et al. A specialized vascular niche for adult neural stem cells. Cell Stem Cell 3, 279–288 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lim, D. A. & Alvarez-Buylla, A. Adult neural stem cells stake their ground. Trends Neurosci. 37, 563–571 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Doetsch, F., Caille, I., Lim, D. A., Garcia-Verdugo, J. M. & Alvarez-Buylla, A. Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 97, 703–716 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. Gregg, C. & Weiss, S. CNTF/LIF/gp130 receptor complex signaling maintains a VZ precursor differentiation gradient in the developing ventral forebrain. Development 132, 565–578 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Sawamoto, K. et al. New neurons follow the flow of cerebrospinal fluid in the adult brain. Science 311, 629–632 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Ziegler, A. N. et al. IGF-II promotes stemness of neural restricted precursors. Stem Cells 30, 1265–1276 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lehtinen, M. K. et al. The cerebrospinal fluid provides a proliferative niche for neural progenitor cells. Neuron 69, 893–905 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bracko, O. et al. Gene expression profiling of neural stem cells and their neuronal progeny reveals IGF2 as a regulator of adult hippocampal neurogenesis. J. Neurosci. 32, 3376–3387 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Silverberg, G. D. et al. The cerebrospinal fluid production rate is reduced in dementia of the Alzheimer's type. Neurology 57, 1763–1766 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Walter, H. J. et al. Distinct sites of insulin-like growth factor (IGF)-II expression and localization in lesioned rat brain: possible roles of IGF binding proteins (IGFBPs) in the mediation of IGF-II activity. Endocrinology 140, 520–532 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Li, G. & Pleasure, S. J. Morphogenesis of the dentate gyrus: what we are learning from mouse mutants. Dev. Neurosci. 27, 93–99 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Shepherd, G. M. (Ed.) The Synaptic Organization of the Brain (Oxford University Press, 2004).

    Book  Google Scholar 

  15. Palmer, T. D., Takahashi, J. & Gage, F. H. The adult rat hippocampus contains primordial neural stem cells. Mol. Cell. Neurosci. 8, 389–404 (1997).

    Article  CAS  PubMed  Google Scholar 

  16. Song, H. J., Stevens, C. F. & Gage, F. H. Neural stem cells from adult hippocampus develop essential properties of functional CNS neurons. Nat. Neurosci. 5, 438–445 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Fuentealba, L. C., Obernier, K. & Alvarez-Buylla, A. Adult neural stem cells bridge their niche. Cell Stem Cell 10, 698–708 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhao, C., Teng, E. M., Summers, R. G. Jr, Ming, G. L. & Gage, F. H. Distinct morphological stages of dentate granule neuron maturation in the adult mouse hippocampus. J. Neurosci. 26, 3–11 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Takahashi, T., Nowakowski, R. S. & Caviness, V. S. Jr. Early ontogeny of the secondary proliferative population of the embryonic murine cerebral wall. J. Neurosci. 15, 6058–6068 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Thomaidou, D., Mione, M. C., Cavanagh, J. F. & Parnavelas, J. G. Apoptosis and its relation to the cell cycle in the developing cerebral cortex. J. Neurosci. 17, 1075–1085 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bayer, S. A. & Altman, J. Neocortical Development (Raven Press, 1991).

    Google Scholar 

  22. Lewis, P. D. & Lai, M. Cell generation in the subependymal layer of the rat brain during the early postnatal period. Brain Res. 77, 520–525 (1974).

    Article  Google Scholar 

  23. Kershman, J. The medulloblast and the medulloblastoma. Arch. Neurol. Psychiatr. 40, 937–967 (1938).

    Article  Google Scholar 

  24. Globus, J. H. & Kuhlenbeck, H. Subependymal cell plate (matrix) and its relation to brain tumors of ependymal type. J. Neuropathol. 3, 1–35 (1944).

    Article  Google Scholar 

  25. Menn, B. et al. Origin of oligodendrocytes in the subventricular zone of the adult brain. J. Neurosci. 26, 7907–7918 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Snapyan, M. et al. Vasculature guides migrating neuronal precursors in the adult mammalian forebrain via brain-derived neurotrophic factor signaling. J. Neurosci. 29, 4172–4188 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Whitman, M. C., Fan, W., Rela, L., Rodriguez-Gil, D. J. & Greer, C. A. Blood vessels form a migratory scaffold in the rostral migratory stream. J. Comp. Neurol. 516, 94–104 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Curtis, M. A. et al. Human neuroblasts migrate to the olfactory bulb via a lateral ventricular extension. Science 315, 1243–1249 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Sanai, N. et al. Corridors of migrating neurons in the human brain and their decline during infancy. Nature 478, 382–386 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kirschenbaum, B. et al. In vitro neuronal production and differentiation by precursor cells derived from the adult human forebrain. Cereb. Cortex 4, 576–589 (1994).

    Article  CAS  PubMed  Google Scholar 

  31. Privat, A. & Leblond, C. P. The subependymal layer and neighboring region in the brain of the young rat. J. Comp. Neurol. 146, 227–302 (1972).

    Article  Google Scholar 

  32. Doetsch, F., Garcia-Verdugo, J. M. & Alvarez-Buylla, A. Cellular composition and three-dimensional organization of the subventricular germinal zone in the adult mammalian brain. J. Neurosci. 17, 5046–5061 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Merkle, F. T., Tramontin, A. D., Garcia-Verdugo, J. M. & Alvarez-Buylla, A. Radial glia give rise to adult neural stem cells in the subventricular zone. Proc. Natl Acad. Sci. USA 101, 17528–17532 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Merkle, F. T., Mirzadeh, Z. & Alvarez-Buylla, A. Mosaic organization of neural stem cells in the adult brain. Science 317, 381–384 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Mirzadeh, Z., Merkle, F. T., Soriano-Navarro, M., Garcia-Verdugo, J. M. & Alvarez-Buylla, A. Neural stem cells confer unique pinwheel architecture to the ventricular surface in neurogenic regions of the adult brain. Cell Stem Cell 3, 265–278 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Shen, Q. et al. Adult SVZ stem cells lie in a vascular niche: a quantitative analysis of niche cell–cell interactions. Cell Stem Cell 3, 289–300 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Doetsch, F., Garcia-Verdugo, J. M. & Alvarez-Buylla, A. Regeneration of a germinal layer in the adult mammalian brain. Proc. Natl Acad. Sci. USA 96, 11619–11624 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Levison, S. W. & Goldman, J. E. Multipotential and lineage restricted precursors coexist in the mammalian perinatal subventricular zone. J. Neurosci. Res. 48, 83–94 (1997).

    Article  CAS  PubMed  Google Scholar 

  39. Young, G. M. & Levison, S. W. Persistence of multipotential progenitors in the juvenile rat subventricular zone. Dev. Neurosci. 18, 255–265 (1996).

    Article  CAS  PubMed  Google Scholar 

  40. Paterson, J. A., Privat, A., Ling, E. A. & Leblond, C. P. Investigation of glial cells in semithin sections. 3. Transformation of subependymal cells into glial cells as shown by radioautography after 3H-thymidine injection into the lateral ventricle of the brain of young rats. J. Comp. Neurol. 149, 83–102 (1973).

    Article  CAS  PubMed  Google Scholar 

  41. Engelhardt, B. & Sorokin, L. The blood-brain and the blood-cerebrospinal fluid barriers: function and dysfunction. Semin. Immunopathol. 31, 497–511 (2009).

    Article  PubMed  Google Scholar 

  42. Segal, M. B. The choroid plexuses and the barriers between the blood and the cerebrospinal fluid. Cell. Mol. Neurobiol. 20, 183–196 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. Stylianopoulou, F., Herbert, J., Soares, M. B. & Efstratiadis, A. Expression of the insulin-like growth factor II gene in the choroid plexus and the leptomeninges of the adult rat central nervous system. Proc. Natl Acad. Sci. USA 85, 141–145 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bondy, C. A., Werner, H., Roberts, C. T. Jr & LeRoith, D. Cellular pattern of insulin-like growth factor-I (IGF-I) and type I IGF receptor gene expression in early organogenesis: comparison with IGF-II gene expression. Mol. Endocrinol. 4, 1386–1398 (1990).

    Article  CAS  PubMed  Google Scholar 

  45. Bunn, R. C., King, W. D., Winkler, M. K. & Fowlkes, J. L. Early developmental changes in IGF-I, IGF-II, IGF binding protein-1, and IGF binding protein-3 concentration in the cerebrospinal fluid of children. Pediatr. Res. 58, 89–93 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Bartlett, W. P., Li, X. S. & Williams, M. Expression of IGF-1 mRNA in the murine subventricular zone during postnatal development. Brain Res. Mol. Brain Res. 12, 285–291 (1992).

    Article  CAS  PubMed  Google Scholar 

  47. Bartke, A. et al. Insulin-like growth factor 1 (IGF-1) and aging: controversies and new insights. Biogerontology 4, 1–8 (2003).

    Article  CAS  PubMed  Google Scholar 

  48. Chen, R. L., Kassem, N. A., Sadeghi, M. & Preston, J. E. Insulin-like growth factor-II uptake into choroid plexus and brain of young and old sheep. J. Gerontol. A Biol. Sci. Med. Sci. 63, 141–148 (2008).

    Article  PubMed  Google Scholar 

  49. Kelijman, M. Age-related alterations of the growth hormone/insulin-like-growth-factor I axis. J. Am. Geriatr. Soc. 39, 295–307 (1991).

    Article  CAS  PubMed  Google Scholar 

  50. Logan, A. et al. Coordinated pattern of expression and localization of insulin-like growth factor-II (IGF-II) and IGF-binding protein-2 in the adult rat brain. Endocrinology 135, 2255–2264 (1994).

    Article  CAS  PubMed  Google Scholar 

  51. Nilsson, C., Hultberg, B. M. & Gammeltoft, S. Autocrine role of insulin-like growth factor II secretion by the rat choroid plexus. Eur. J. Neurosci. 8, 629–635 (1996).

    Article  CAS  PubMed  Google Scholar 

  52. Efstratiadis, A. Genetics of mouse growth. Int. J. Dev. Biol. 42, 955–976 (1998).

    CAS  PubMed  Google Scholar 

  53. Kitamura, T., Kahn, C. R. & Accili, D. Insulin receptor knockout mice. Annu. Rev. Physiol. 65, 313–332 (2003).

    Article  CAS  PubMed  Google Scholar 

  54. Burns, J. L. & Hassan, A. B. Cell survival and proliferation are modified by insulin-like growth factor 2 between days 9 and 10 of mouse gestation. Development 128, 3819–3830 (2001).

    Article  CAS  PubMed  Google Scholar 

  55. DeChiara, T. M., Efstratiadis, A. & Robertson, E. J. A growth-deficiency phenotype in heterozygous mice carrying an insulin-like growth factor II gene disrupted by targeting. Nature 345, 78–80 (1990).

    Article  CAS  PubMed  Google Scholar 

  56. Baker, J., Liu, J. P., Robertson, E. J. & Efstratiadis, A. Role of insulin-like growth factors in embryonic and postnatal growth. Cell 75, 73–82 (1993).

    Article  CAS  PubMed  Google Scholar 

  57. Yamaguchi, Y., Flier, J. S., Benecke, H., Ransil, B. J. & Moller, D. E. Ligand-binding properties of the two isoforms of the human insulin receptor. Endocrinology 132, 1132–1138 (1993).

    Article  CAS  PubMed  Google Scholar 

  58. Denley, A. et al. Structural determinants for high-affinity binding of insulin-like growth factor II to insulin receptor (IR)-A, the exon 11 minus isoform of the IR. Mol. Endocrinol. 18, 2502–2512 (2004).

    Article  CAS  PubMed  Google Scholar 

  59. Belfiore, A., Frasca, F., Pandini, G., Sciacca, L. & Vigneri, R. Insulin receptor isoforms and insulin receptor/insulin-like growth factor receptor hybrids in physiology and disease. Endocr. Rev. 30, 586–623 (2009).

    Article  CAS  PubMed  Google Scholar 

  60. Dupont, J. & LeRoith, D. Insulin and insulin-like growth factor I receptors: similarities and differences in signal transduction. Horm. Res. 55 (Suppl. 2), 22–26 (2001).

    CAS  PubMed  Google Scholar 

  61. Brown, J., Jones, E. Y. & Forbes, B. E. Interactions of IGF-II with the IGF2R/cation-independent mannose-6-phosphate receptor mechanism and biological outcomes. Vitam. Horm. 80, 699–719 (2009).

    Article  CAS  PubMed  Google Scholar 

  62. Louvi, A., Accili, D. & Efstratiadis, A. Growth-promoting interaction of IGF-II with the insulin receptor during mouse embryonic development. Dev. Biol. 189, 33–48 (1997).

    Article  CAS  PubMed  Google Scholar 

  63. DeChiara, T. M., Robertson, E. J. & Efstratiadis, A. Parental imprinting of the mouse insulin-like growth factor II gene. Cell 64, 849–859 (1991).

    CAS  PubMed  Google Scholar 

  64. Frasca, F. et al. Insulin receptor isoform A, a newly recognized, high-affinity insulin-like growth factor II receptor in fetal and cancer cells. Mol. Cell Biol. 19, 3278–3288 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. D'Ercole, A. J., Ye, P. & O'Kusky, J. R. Mutant mouse models of insulin-like growth factor actions in the central nervous system. Neuropeptides 36, 209–220 (2002).

    Article  CAS  PubMed  Google Scholar 

  66. Reinhardt, R. R. & Bondy, C. A. Insulin-like growth factors cross the blood–brain barrier. Endocrinology 135, 1753–1761 (1994).

    Article  CAS  PubMed  Google Scholar 

  67. Carson, M., Behringer, R., Brinster, R. & McMorris, F. Insulin-like growth factor I increases brain growth and central nervous system myelination in transgenic mice. Neuron 10, 729–740 (1993).

    Article  CAS  PubMed  Google Scholar 

  68. Ye, P., Carson, J. & D'Ercole, A. J. In vivo actions of insulin-like growth factor-I (IGF-I) on brain myelination: studies of IGF-I and IGF binding protein (IGFBP-1) transgenic mice. J. Neurosci. 15, 7344–7356 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Beck, K., Powell-Braxton, L., Widmer, H., Valverde, J. & Hefti, F. Igf1 gene disruption results in reduced brain size, CNS hypomyelination, and loss of hippocampal granule and striatal parvalbumin-containing neurons. Neuron 14, 717–730 (1995).

    Article  CAS  PubMed  Google Scholar 

  70. Kappeler, L. et al. Brain IGF-1 receptors control mammalian growth and lifespan through a neuroendocrine mechanism. PLoS Biol. 6, e254 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Ye, P., Li, L., Richards, G., DiAugustine, R. P. & D'Ercole, A. J. Myelination is altered in insulin-like growth factor-I null mutant mice. J. Neurosci. 22, 6041–6051 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Zeger, M. et al. Insulin-like growth factor type 1 receptor signaling in the cells of oligodendrocyte lineage is required for normal in vivo oligodendrocyte development and myelination. Glia 55, 400–411 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Walenkamp, M. J., Losekoot, M. & Wit, J. M. Molecular IGF-1 and IGF-1 receptor defects: from genetics to clinical management. Endocr. Dev. 24, 128–137 (2013).

    Article  CAS  PubMed  Google Scholar 

  74. Netchine, I. et al. Partial primary deficiency of insulin-like growth factor (IGF)-I activity associated with IGF1 mutation demonstrates its critical role in growth and brain development. J. Clin. Endocrinol. Metab. 94, 3913–3921 (2009).

    Article  CAS  PubMed  Google Scholar 

  75. Witsch, J. et al. Intragenic deletions of the IGF1 receptor gene in five individuals with psychiatric phenotypes and developmental delay. Eur. J. Hum. Genet. 21, 1304–1307 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. LaFever, L. & Drummond-Barbosa, D. Direct control of germline stem cell division and cyst growth by neural insulin in Drosophila. Science 309, 1071–1073 (2005).

    Article  CAS  PubMed  Google Scholar 

  77. Hsu, H. J. & Drummond-Barbosa, D. Insulin levels control female germline stem cell maintenance via the niche in Drosophila. Proc. Natl Acad. Sci. USA 106, 1117–1121 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Pimentel, B., de la Rosa, E. J. & de Pablo, F. Insulin acts as an embryonic growth factor for Drosophila neural cells. Biochem. Biophys. Res. Commun. 226, 855–861 (1996).

    Article  CAS  PubMed  Google Scholar 

  79. Siegrist, S. E., Haque, N. S., Chen, C. H., Hay, B. A. & Hariharan, I. K. Inactivation of both foxo and reaper promotes long-term adult neurogenesis in Drosophila. Curr. Biol. 20, 643–648 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Broughton, S. & Partridge, L. Insulin/IGF-like signalling, the central nervous system and aging. Biochem. J. 418, 1–12 (2009).

    Article  CAS  PubMed  Google Scholar 

  81. Toyoshima, Y. et al. The role of insulin receptor signaling in zebrafish embryogenesis. Endocrinology 149, 5996–6005 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Erickson, R. I., Paucar, A. A., Jackson, R. L., Visnyei, K. & Kornblum, H. Roles of insulin and transferrin in neural progenitor survival and proliferation. J. Neurosci. Res. 86, 1884–1894 (2008).

    Article  CAS  PubMed  Google Scholar 

  83. Li, Y. & Geng, Y. J. A potential role for insulin-like growth factor signaling in induction of pluripotent stem cell formation. Growth Horm. IGF Res. 20, 391–398 (2010).

    Article  CAS  PubMed  Google Scholar 

  84. Rafalski, V. A. & Brunet, A. Energy metabolism in adult neural stem cell fate. Prog. Neurobiol. 93, 182–203 (2011).

    Article  CAS  PubMed  Google Scholar 

  85. Lehtinen, M. K. & Walsh, C. A. Neurogenesis at the brain–cerebrospinal fluid interface. Annu. Rev. Cell Dev. Biol. 27, 653–679 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Alagappan, D. et al. Insulin-like growth factor receptor signaling is necessary for epidermal growth factor mediated proliferation of SVZ neural precursors in vitro following neonatal hypoxia–ischemia. Front. Neurol. 5, 79 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Ziegler, A. N., Chidambaram, S., Forbes, B. E., Wood, T. L. & Levison, S. W. Insulin-like growth factor-II (IGF-II) and IGF-II analogs with enhanced insulin receptor-a binding affinity promote neural stem cell expansion. J. Biol. Chem. 289, 4626–4633 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Bendall, S. C. et al. IGF and FGF cooperatively establish the regulatory stem cell niche of pluripotent human cells in vitro. Nature 448, 1015–1021 (2007).

    Article  CAS  PubMed  Google Scholar 

  89. Ingram, W. J., Wicking, C. A., Grimmond, S. M., Forrest, A. R. & Wainwright, B. J. Novel genes regulated by sonic hedgehog in pluripotent mesenchymal cells. Oncogene 21, 8196–8205 (2002).

    Article  CAS  PubMed  Google Scholar 

  90. Wang, L. et al. Self-renewal of human embryonic stem cells requires insulin-like growth factor-1 receptor and ERBB2 receptor signaling. Blood 110, 4111–4119 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Pandini, G. et al. Differential gene expression induced by insulin and insulin-like growth factor-II through the insulin receptor isoform A. J. Biol. Chem. 278, 42178–42189 (2003).

    Article  CAS  PubMed  Google Scholar 

  92. Sciacca, L. et al. Signaling differences from the A and B isoforms of the insulin receptor (IR) in 32D cells in the presence or absence of IR substrate-1. Endocrinology 144, 2650–2658 (2003).

    Article  CAS  PubMed  Google Scholar 

  93. Reynolds, B. A., Tetzlaff, W. & Weiss, S. A multipotent EGF-responsive striatal embryonic progenitor cell produces neurons and astrocytes. J. Neurosci. 12, 4565–4574 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Morshead, C. M. et al. Neural stem cells in the adult mammalian forebrain: a relatively quiescent subpopulation of subependymal cells. Neuron 13, 1071–1082 (1994).

    Article  CAS  PubMed  Google Scholar 

  95. Reynolds, B. A. & Weiss, S. Clonal and population analyses demonstrate that an EGF-responsive mammalian embryonic CNS precursor is a stem cell. Dev. Biol. 175, 1–13 (1996).

    Article  CAS  PubMed  Google Scholar 

  96. Reynolds, B. A. & Rietze, R. L. Neural stem cells and neurospheres—re-evaluating the relationship. Nat. Methods 2, 333–336 (2005).

    Article  CAS  PubMed  Google Scholar 

  97. Brewer, G. J., Torricelli, J. R., Evege, E. K. & Price, P. J. Optimized survival of hippocampal neurons in B27-supplemented Neurobasal, a new serum-free medium combination. J. Neurosci. Res. 35, 567–576 (1993).

    Article  CAS  PubMed  Google Scholar 

  98. Arsenijevic, Y., Weiss, S., Schneider, B. & Aebischer, P. Insulin-like growth factor-I is necessary for neural stem cell proliferation and demonstrates distinct actions of epidermal growth factor and fibroblast growth factor-2. J. Neurosci. 21, 194–202 (2001).

    Article  Google Scholar 

  99. Aberg, M. A. et al. IGF-I has a direct proliferative effect in adult hippocampal progenitor cells. Mol. Cell. Neurosci. 24, 23–40 (2003).

    Article  CAS  PubMed  Google Scholar 

  100. Hu, J. F., Vu, T. H. & Hoffman, A. R. Differential biallelic activation of three insulin-like growth factor II promoters in the mouse central nervous system. Mol. Endocrinol. 9, 628–636 (1995).

    CAS  PubMed  Google Scholar 

  101. Pham, N. V., Nguyen, M. T., Hu, J. F., Vu, T. H. & Hoffman, A. R. Dissociation of IGF2 and H19 imprinting in human brain. Brain Res. 810, 1–8 (1998).

    Article  CAS  PubMed  Google Scholar 

  102. Gregg, C., Zhang, J., Butler, J. E., Haig, D. & Dulac, C. Sex-specific parent-of-origin allelic expression in the mouse brain. Science 329, 682–685 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Gregg, C. et al. High-resolution analysis of parent-of-origin allelic expression in the mouse brain. Science 329, 643–648 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Harper, K. M., Tunc-Ozcan, E., Graf, E. N., Herzing, L. B. & Redei, E. E. Intergenerational and parent of origin effects of maternal calorie restriction on Igf2 expression in the adult rat hippocampus. Psychoneuroendocrinology 45, 187–191 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Buono, K. D., Vadlamuri, D., Gan, Q. & Levison, S. W. Leukemia inhibitory factor is essential for subventricular zone neural stem cell and progenitor homeostasis as revealed by a novel flow cytometric analysis. Dev. Neurosci. 34, 449–462 (2012).

    Article  CAS  PubMed  Google Scholar 

  106. Agis-Balboa, R. C. et al. A hippocampal insulin-growth factor 2 pathway regulates the extinction of fear memories. EMBO J. 30, 4071–4083 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Chen, D. Y. et al. A critical role for IGF-II in memory consolidation and enhancement. Nature 469, 491–497 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Blum, G., Gazit, A. & Levitzki, A. Substrate competitive inhibitors of IGF-1 receptor kinase. Biochemistry 39, 15705–15712 (2000).

    Article  CAS  PubMed  Google Scholar 

  109. Alberini, C. M. & Chen, D. Y. Memory enhancement: consolidation, reconsolidation and insulin-like growth factor 2. Trends Neurosci. 35, 274–283 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Pascual-Lucas, M. et al. Insulin-like growth factor 2 reverses memory and synaptic deficits in APP transgenic mice. EMBO Mol. Med. 6, 1246–1262 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Belfiore, A. & Malaguarnera, R. Insulin receptor and cancer. Endocr. Relat. Cancer 18, R125–R147 (2011).

    Article  CAS  PubMed  Google Scholar 

  112. Zhao, C., Deng, W. & Gage, F. H. Mechanisms and functional implications of adult neurogenesis. Cell 132, 645–660 (2008).

    Article  CAS  PubMed  Google Scholar 

  113. Baker, J., Lie, J.-P., Robertson, E. J. & Efstratiadis, A. Role of insulin-like growth factors in embryonic and postnatal growth. Cell 75, 73–82 (1993).

    Article  CAS  PubMed  Google Scholar 

  114. Ludwig, T. et al. Mouse mutants lacking the type 2 IGF receptor (IGF2R) are rescued from perinatal lethality in Igf2 and Igf1r null backgrounds. Dev. Biol. 177, 517–535 (1996).

    Article  CAS  PubMed  Google Scholar 

  115. Accili, D. et al. Early neonatal death in mice homozygous for a null allele of the insulin receptor gene. Nat. Genet. 12, 106–109 (1996).

    Article  CAS  PubMed  Google Scholar 

  116. Liu, J. P., Baker, J., Perkins, A. S., Robertson, E. J. & Efstratiadis, A. Mice carrying null mutations of the genes encoding insulin-like growth factor I (Igf-1) and type 1 IGF receptor (Igf1r). Cell 75, 59–72 (1993).

    CAS  PubMed  Google Scholar 

  117. Aberg, M. A., Aberg, N. D., Hedbacker, H., Oscarsson, J. & Eriksson, P. S. Peripheral infusion of IGF-I selectively induces neurogenesis in the adult rat hippocampus. J. Neurosci. 20, 2896–2903 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Lichtenwalner, R. J. et al. Intracerebroventricular infusion of insulin-like growth factor-I ameliorates the age-related decline in hippocampal neurogenesis. Neuroscience 107, 603–613 (2001).

    Article  CAS  PubMed  Google Scholar 

  119. Hodge, R. D., D'Ercole, A. J. & O'Kusky, J. R. Insulin-like growth factor-I accelerates the cell cycle by decreasing G1 phase length and increases cell cycle reentry in the embryonic cerebral cortex. J. Neurosci. 24, 10201–10210 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Popken, G. J. et al. In vivo effects of insulin-like growth factor-I (IGF-I) on prenatal and early postnatal development of the central nervous system. Eur. J. Neurosci. 19, 2056–2068 (2004).

    Article  PubMed  Google Scholar 

  121. Mairet-Coello, G., Tury, A. & DiCicco-Bloom, E. Insulin-like growth factor-1 promotes G1/S cell cycle progression through bidirectional regulation of cyclins and cyclin-dependent kinase inhibitors via the phosphatidylinositol 3-kinase/Akt pathway in developing rat cerebral cortex. J. Neurosci. 29, 775–788 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Frederick, T. J., Min., J., Altieri, S. C., Mitchell, N. E. & Wood, T. L. Synergistic induction of cyclin D1 in oligodendrocyte progenitor cells by IGF-I and FGF-2 requires differential stimulation of multiple signaling pathways. Glia 55, 1011–1022 (2007).

    Article  PubMed  Google Scholar 

  123. Frederick, T. J. & Wood, T. L. IGF-I and FGF-2 coordinately enhance cyclin D1 and cyclin E–cdk2 association and activity to promote G1 progression in oligodendrocyte progenitor cells. Mol. Cell. Neurosci. 25, 480–492 (2004).

    Article  CAS  PubMed  Google Scholar 

  124. Jiang, F., Frederick, T. J. & Wood, T. L. IGF-I synergizes with FGF-2 to stimulate oligodendrocyte progenitor entry into the cell cycle. Dev. Biol. 232, 414–423 (2001).

    Article  CAS  PubMed  Google Scholar 

  125. O'Kusky, J. R., Ye, P. & D'Ercole, A. J. Insulin-like growth factor-I promotes neurogenesis and synaptogenesis in the hippocampal dentate gyrus during postnatal development. J. Neurosci. 20, 8435–8442 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Arsenijevic, Y. & Weiss, S. Insulin-like growth factor-I is a differentiation factor for postmitotic CNS stem cell-derived neuronal precursors: distinct actions from those of brain-derived neurotrophic factor. J. Neurosci. 18, 2118–2128 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Brooker, G. J. et al. Endogenous IGF-1 regulates the neuronal differentiation of adult stem cells. J. Neurosci. Res. 59, 332–341 (2000).

    Article  CAS  PubMed  Google Scholar 

  128. Hsieh, J. et al. IGF-I instructs multipotent adult neural progenitor cells to become oligodendrocytes. J. Cell Biol. 164, 111–122 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Drago, J., Murphy, M., Carroll, S. M., Harvey, R. P. & Bartlett, P. F. Fibroblast growth factor-mediated proliferation of central nervous system precursors depends on endogenous production of insulin-like growth factor I. Proc. Natl Acad. Sci. USA 88, 2199–2203 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank S. Chidambaram for assistance with Figure 2. S.W.L. and T.L.W. acknowledge research support from the NIH (NIH-NINDS R21NS076874). A.N.Z. acknowledges research support from the NIH (NIH-NINDS F31NS065607).

Author information

Authors and Affiliations

Authors

Contributions

A.N.Z., S.W.L. and T.L.W. researched data for the article, provided substantial contributions to discussions of the content, wrote the article and edited the manuscript before submission.

Corresponding author

Correspondence to Teresa L. Wood.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ziegler, A., Levison, S. & Wood, T. Insulin and IGF receptor signalling in neural-stem-cell homeostasis. Nat Rev Endocrinol 11, 161–170 (2015). https://doi.org/10.1038/nrendo.2014.208

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2014.208

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing