Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Different drugs for bad bugs: antivirulence strategies in the age of antibiotic resistance

This article has been updated

Key Points

  • Antibiotics are losing efficacy in treating many bacterial diseases owing to increasing drug resistance. Meanwhile, antibiotic development has lagged; the last new antibiotic class was introduced in 2003.

  • Antivirulence is an alternative approach that focuses on interfering with bacterial virulence factors instead of central growth pathways to treat disease.

  • Antivirulence drugs have been approved by the US Food and Drug Administration for bacterial toxin-mediated diseases, and investigational drugs for antibiotic-resistant bacteria have entered clinical trials. Several others are in preclinical development.

  • Antivirulence drugs are likely to have distinct properties from those of antibiotics, including reduced selection pressure (meaning they are less likely to lead to drug resistance) and minimal perturbation of the healthy microbiota.

  • However, antivirulence strategies pose unique challenges for drug development and clinical use, and such drugs may need to be used in combinations or as adjuncts to antibiotics.

  • Increased investment and effort are needed to develop new virulence inhibitors and advance existing ones through the translational pipeline.

Abstract

The rapid evolution and dissemination of antibiotic resistance among bacterial pathogens are outpacing the development of new antibiotics, but antivirulence agents provide an alternative. These agents can circumvent antibiotic resistance by disarming pathogens of virulence factors that facilitate human disease while leaving bacterial growth pathways — the target of traditional antibiotics — intact. Either as stand-alone medications or together with antibiotics, these drugs are intended to treat bacterial infections in a largely pathogen-specific manner. Notably, development of antivirulence drugs requires an in-depth understanding of the roles that diverse virulence factors have in disease processes. In this Review, we outline the theory behind antivirulence strategies and provide examples of bacterial features that can be targeted by antivirulence approaches. Furthermore, we discuss the recent successes and failures of this paradigm, and new developments that are in the pipeline.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The rise of antivirulence approaches.
Figure 2: Antivirulence agents targeting secreted and surface-exposed virulence factors.
Figure 3: Quorum sensing and inhibition in model Gram-positive and Gram-negative pathogens.

Similar content being viewed by others

Change history

  • 05 May 2017

    In Figure 2, mouse αEbpA serum was incorrectly shown to contain an scFv region. The italicization of bacterial species and genes was also incorrect in some places. These have now been corrected in the online versions of the article.

References

  1. Smith, R. & Coast, J. The true cost of antimicrobial resistance. BMJ 346, f1493 (2013).

    Article  PubMed  Google Scholar 

  2. Centers for Disease Control and Prevention. Antibiotic resistance threats in the United States, 2013. http://www.cdc.gov/drugresistance/pdf/ar-threats-2013-508.pdf (CDC, US Department of Health and Human Services, 2013).

  3. Gelband, H. et al. The State of the World's Antibiotics 2015. https://cddep.org/sites/default/files/swa_2015_final.pdf (CDDEP, 2015).

  4. Davies, J. & Davies, D. Origins and evolution of antibiotic resistance. Microbiol. Mol. Biol. Rev. 74, 417–433 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. D'Costa, V. M. et al. Antibiotic resistance is ancient. Nature 477, 457–461 (2011).

    Article  CAS  PubMed  Google Scholar 

  6. Hawkey, P. M. & Jones, A. M. The changing epidemiology of resistance. J. Antimicrob. Chemother. 64 (Suppl. 1), i3–i10 (2009).

    Article  CAS  PubMed  Google Scholar 

  7. Pehrsson, E. C. et al. Interconnected microbiomes and resistomes in low-income human habitats. Nature 533, 212–216 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Liu, Y. Y. et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect. Dis. 16, 161–168 (2016).

    Article  CAS  PubMed  Google Scholar 

  9. Hasman, H. et al. Detection of mcr-1 encoding plasmid-mediated colistin-resistant Escherichia coli isolates from human bloodstream infection and imported chicken meat, Denmark 2015. Euro Surveill. http://dx.doi.org/10.2807/1560-7917.ES.2015.20.49.30085 (2015).

  10. Sievert, D. M. et al. Vancomycin-resistant Staphylococcus aureus in the United States, 2002–2006. Clin. Infect. Dis. 46, 668–674 (2008).

    Article  CAS  PubMed  Google Scholar 

  11. Kumar, M. Multidrug-resistant Staphylococcus aureus, India, 2013–2015. Emerg. Infect. Dis. 22, 1666–1667 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Czaplewski, L. et al. Alternatives to antibiotics-a pipeline portfolio review. Lancet Infect. Dis. 16, 239–251 (2016).

    Article  CAS  PubMed  Google Scholar 

  13. Clatworthy, A. E., Pierson, E. & Hung, D. T. Targeting virulence: a new paradigm for antimicrobial therapy. Nat. Chem. Biol. 3, 541–548 (2007). This review is the first to focus on the antivirulence paradigm for treating infectious diseases.

    Article  CAS  PubMed  Google Scholar 

  14. Casadevall, A. & Pirofski, L. A. Host-pathogen interactions: redefining the basic concepts of virulence and pathogenicity. Infect. Immun. 67, 3703–3713 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Allen, R. C., Popat, R., Diggle, S. P. & Brown, S. P. Targeting virulence: can we make evolution-proof drugs? Nat. Rev. Microbiol. 12, 300–308 (2014).

    Article  CAS  PubMed  Google Scholar 

  16. Moeller, A. H. et al. Cospeciation of gut microbiota with hominids. Science 353, 380–382 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cho, I. & Blaser, M. J. The human microbiome: at the interface of health and disease. Nat. Rev. Genet. 13, 260–270 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gilmore, M. S. et al. Pheromone killing of multidrug-resistant Enterococcus faecalis V583 by native commensal strains. Proc. Natl Acad. Sci. USA 112, 7273–7278 (2015).

    Article  CAS  PubMed  Google Scholar 

  19. Theriot, C. M. & Young, V. B. Interactions between the gastrointestinal microbiome and Clostridium difficile. Annu. Rev. Microbiol. 69, 445–461 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Keeney, K. M., Yurist-Doutsch, S., Arrieta, M. C. & Finlay, B. B. Effects of antibiotics on human microbiota and subsequent disease. Annu. Rev. Microbiol. 68, 217–235 (2014).

    Article  CAS  PubMed  Google Scholar 

  21. Payne, D. J., Gwynn, M. N., Holmes, D. J. & Pompliano, D. L. Drugs for bad bugs: confronting the challenges of antibacterial discovery. Nat. Rev. Drug Discov. 6, 29–40 (2007). This report detailed the difficulties faced by GlaxoSmithKline in developing novel antibiotics in the genomics era.

    Article  CAS  PubMed  Google Scholar 

  22. Ling, L. L. et al. A new antibiotic kills pathogens without detectable resistance. Nature 517, 455–459 (2015).

    Article  CAS  PubMed  Google Scholar 

  23. DiGiandomenico, A. & Sellman, B. R. Antibacterial monoclonal antibodies: the next generation? Curr. Opin. Microbiol. 27, 78–85 (2015).

    Article  CAS  PubMed  Google Scholar 

  24. Alizon, S., Hurford, A., Mideo, N. & Van Baalen, M. Virulence evolution and the trade-off hypothesis: history, current state of affairs and the future. J. Evol. Biol. 22, 245–259 (2009).

    Article  CAS  PubMed  Google Scholar 

  25. Casadevall, A. & Pirofski, L. Host–pathogen interactions: the attributes of virulence. J. Infect. Dis. 184, 337–344 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Rice, L. B. Federal funding for the study of antimicrobial resistance in nosocomial pathogens: no ESKAPE. J. Infect. Dis. 197, 1079–1081 (2008). This report identified a cohort of troublesome antibiotic-resistant pathogens and coined the acronym ESKAPE.

    Article  PubMed  Google Scholar 

  27. Dover, N., Barash, J. R., Hill, K. K., Xie, G. & Arnon, S. S. Molecular characterization of a novel botulinum neurotoxin type H gene. J. Infect. Dis. 209, 192–202 (2014).

    Article  CAS  PubMed  Google Scholar 

  28. Simpson, L. L. Identification of the major steps in botulinum toxin action. Annu. Rev. Pharmacol. Toxicol. 44, 167–193 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Gill, D. M. Bacterial toxins: a table of lethal amounts. Microbiol. Rev. 46, 86–94 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Arnon, S. S. et al. Botulinum toxin as a biological weapon: medical and public health management. JAMA 285, 1059–1070 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Sobel, J., Tucker, N., Sulka, A., McLaughlin, J. & Maslanka, S. Foodborne botulism in the United States, 1990–2000. Emerg. Infect. Dis. 10, 1606–1611 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Arnon, S. S., Schechter, R., Maslanka, S. E., Jewell, N. P. & Hatheway, C. L. Human botulism immune globulin for the treatment of infant botulism. N. Engl. J. Med. 354, 462–471 (2006). This is the first study that demonstrated efficacy of an antivirulence agent in a randomized clinical trial.

    Article  CAS  PubMed  Google Scholar 

  33. Maslanka, S. E. et al. A novel botulinum neurotoxin, previously reported as serotype H, has a hybrid-like structure with regions of similarity to the structures of serotypes A and F and is neutralized with serotype A antitoxin. J. Infect. Dis. 213, 379–385 (2016).

    Article  CAS  PubMed  Google Scholar 

  34. Holty, J. E. et al. Systematic review: a century of inhalational anthrax cases from 1900 to 2005. Ann. Intern. Med. 144, 270–280 (2006).

    Article  PubMed  Google Scholar 

  35. Chen, Z., Moayeri, M. & Purcell, R. Monoclonal antibody therapies against anthrax. Toxins (Basel) 3, 1004–1019 (2011).

    Article  CAS  Google Scholar 

  36. Nestorovich, E. M. & Bezrukov, S. M. Designing inhibitors of anthrax toxin. Expert Opin. Drug Discov. 9, 299–318 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Abrami, L. et al. Hijacking multivesicular bodies enables long-term and exosome-mediated long-distance action of anthrax toxin. Cell Rep. 5, 986–996 (2013).

    Article  CAS  PubMed  Google Scholar 

  38. Migone, T. S. et al. Raxibacumab for the treatment of inhalational anthrax. N. Engl. J. Med. 361, 135–144 (2009). This study reported the mAb raxibacumab directed against an anthrax virulence factor. Raxibacumab became one of the first FDA-approved anthrax therapeutics.

    Article  CAS  PubMed  Google Scholar 

  39. Greig, S. L. Obiltoxaximab: first global approval. Drugs 76, 823–830 (2016).

    Article  CAS  PubMed  Google Scholar 

  40. Yamamoto, B. J. et al. Obiltoxaximab prevents disseminated Bacillus anthracis infection and improves survival during pre- and post-exposure prophylaxis in animal models of inhalational anthrax. Antimicrob. Agents Chemother. 60, 5796–5805 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Schneerson, R. et al. Poly(γ-D-glutamic acid) protein conjugates induce IgG antibodies in mice to the capsule of Bacillus anthracis: a potential addition to the anthrax vaccine. Proc. Natl Acad. Sci. USA 100, 8945–8950 (2003).

    Article  CAS  PubMed  Google Scholar 

  42. Chen, Z. et al. Pre- and postexposure protection against virulent anthrax infection in mice by humanized monoclonal antibodies to Bacillus anthracis capsule. Proc. Natl Acad. Sci. USA 108, 739–744 (2011).

    Article  PubMed  Google Scholar 

  43. Kozel, T. R. et al. Protective and immunochemical activities of monoclonal antibodies reactive with the Bacillus anthracis polypeptide capsule. Infect. Immun. 75, 152–163 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. Leffler, D. A. & Lamont, J. T. Clostridium difficile infection. N. Engl. J. Med. 372, 1539–1548 (2015).

    Article  CAS  PubMed  Google Scholar 

  45. Abt, M. C., McKenney, P. T. & Pamer, E. G. Clostridium difficile colitis: pathogenesis and host defence. Nat. Rev. Microbiol. 10, 609–620 (2016).

    Article  CAS  Google Scholar 

  46. Lessa, F. C. et al. Burden of Clostridium difficile infection in the United States. N. Engl. J. Med. 372, 825–834 (2015).

    Article  CAS  PubMed  Google Scholar 

  47. Akerlund, T. et al. Increased sporulation rate of epidemic Clostridium difficile Type 027/NAP1. J. Clin. Microbiol. 46, 1530–1533 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Carter, G. P., Rood, J. I. & Lyras, D. The role of toxin A and toxin B in the virulence of Clostridium difficile. Trends Microbiol. 20, 21–29 (2012).

    Article  CAS  PubMed  Google Scholar 

  49. Johnson, S. et al. Vancomycin, metronidazole, or tolevamer for Clostridium difficile infection: results from two multinational, randomized, controlled trials. Clin. Infect. Dis. 59, 345–354 (2014).

    Article  CAS  PubMed  Google Scholar 

  50. Lowy, I. et al. Treatment with monoclonal antibodies against Clostridium difficile toxins. N. Engl. J. Med. 362, 197–205 (2010). This study reported the mAb bezlotoxumab directed against a C. difficile toxin. It was later approved by the FDA to reduce recurrence of C. difficile infections.

    Article  CAS  PubMed  Google Scholar 

  51. Bender, K. O. et al. A small-molecule antivirulence agent for treating Clostridium difficile infection. Sci. Transl Med. 7, 306ra148 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Lynch, E. & Kil, J. Development of ebselen, a glutathione peroxidase mimic, for the prevention and treatment of noise-induced hearing loss. Semin. Hear. 30, 47–55 (2009).

    Article  Google Scholar 

  53. Gustafsson, T. N. et al. Ebselen and analogs as inhibitors of Bacillus anthracis thioredoxin reductase and bactericidal antibacterials targeting Bacillus species. Staphylococcus aureus and Mycobacterium tuberculosis. Biochim. Biophys. Acta 1860, 1265–1271 (2016).

    Article  CAS  PubMed  Google Scholar 

  54. Thangamani, S., Younis, W. & Seleem, M. N. Repurposing ebselen for treatment of multidrug-resistant staphylococcal infections. Sci. Rep. 5, 11596 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Darkoh, C., Odo, C. & DuPont, H. L. Accessory gene regulator-1 locus is essential for virulence and pathogenesis of Clostridium difficile. mBio 7, e01237-16 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Martin, M. J. et al. The agr locus regulates virulence and colonization genes in Clostridium difficile 027. J. Bacteriol. 195, 3672–3681 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Dantes, R. et al. National burden of invasive methicillin-resistant Staphylococcus aureus infections, United States, 2011. JAMA Intern. Med. 173, 1970–1978 (2013).

    PubMed  Google Scholar 

  58. Otto, M. Basis of virulence in community-associated methicillin-resistant Staphylococcus aureus. Annu. Rev. Microbiol. 64, 143–162 (2010).

    Article  CAS  PubMed  Google Scholar 

  59. Li, M. et al. MRSA epidemic linked to a quickly spreading colonization and virulence determinant. Nat. Med. 18, 816–819 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Chen, Y., Chatterjee, S. S., Porcella, S. F., Yu, Y. S. & Otto, M. Complete genome sequence of a Panton-Valentine leukocidin-negative community-associated methicillin-resistant Staphylococcus aureus strain of sequence type 72 from Korea. PLoS ONE 8, e72803 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Li, M. et al. Virulence determinants associated with the Asian community-associated methicillin-resistant Staphylococcus aureus lineage ST59. Sci. Rep. 6, 27899 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Moran, G. J. et al. Methicillin-resistant S. aureus infections among patients in the emergency department. N. Engl. J. Med. 355, 666–674 (2006).

    Article  CAS  PubMed  Google Scholar 

  63. Bhakdi, S. & Tranum-Jensen, J. Alpha-toxin of Staphylococcus aureus. Microbiol. Rev. 55, 733–751 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Oganesyan, V. et al. Mechanisms of neutralization of a human anti-alpha-toxin antibody. J. Biol. Chem. 289, 29874–29880 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Sharma-Kuinkel, B. K. et al. Characterization of alpha-toxin hla gene variants, alpha-toxin expression levels, and levels of antibody to alpha-toxin in hemodialysis and postsurgical patients with Staphylococcus aureus bacteremia. J. Clin. Microbiol. 53, 227–236 (2015).

    Article  CAS  PubMed  Google Scholar 

  66. Rouha, H. et al. Five birds, one stone: neutralization of alpha-hemolysin and 4 bi-component leukocidins of Staphylococcus aureus with a single human monoclonal antibody. mAbs 7, 243–254 (2015). This study reported a single mAb that cross-reacted with five different S. aureus toxins that share a conserved epitope.

    Article  CAS  PubMed  Google Scholar 

  67. Badarau, A. et al. Context matters: the importance of dimerization-induced conformation of the LukGH leukocidin of Staphylococcus aureus for the generation of neutralizing antibodies. mAbs 8, 1347–1360 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Vandenesch, F., Lina, G. & Henry, T. Staphylococcus aureus hemolysins, bi-component leukocidins, and cytolytic peptides: a redundant arsenal of membrane-damaging virulence factors? Front. Cell. Infect. Microbiol. 2, 12 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Schneewind, O., Model, P. & Fischetti, V. A. Sorting of protein A to the staphylococcal cell wall. Cell 70, 267–281 (1992).

    Article  CAS  PubMed  Google Scholar 

  70. Mazmanian, S. K., Liu, G., Jensen, E. R., Lenoy, E. & Schneewind, O. Staphylococcus aureus sortase mutants defective in the display of surface proteins and in the pathogenesis of animal infections. Proc. Natl Acad. Sci. USA 97, 5510–5515 (2000).

    Article  CAS  PubMed  Google Scholar 

  71. Zhang, J. et al. Antiinfective therapy with a small molecule inhibitor of Staphylococcus aureus sortase. Proc. Natl Acad. Sci. USA 111, 13517–13522 (2014).

    Article  CAS  PubMed  Google Scholar 

  72. Ji, G., Beavis, R. & Novick, R. P. Bacterial interference caused by autoinducing peptide variants. Science 276, 2027–2030 (1997).

    Article  CAS  PubMed  Google Scholar 

  73. Jarraud, S. et al. Exfoliatin-producing strains define a fourth agr specificity group in Staphylococcus aureus. J. Bacteriol. 182, 6517–6522 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Sully, E. K. et al. Selective chemical inhibition of agr quorum sensing in Staphylococcus aureus promotes host defense with minimal impact on resistance. PLoS Pathog. 10, e1004174 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Smith, R. S. & Iglewski, B. H. P. aeruginosa quorum-sensing systems and virulence. Curr. Opin. Microbiol. 6, 56–60 (2003).

    Article  CAS  PubMed  Google Scholar 

  76. Deziel, E. et al. The contribution of MvfR to Pseudomonas aeruginosa pathogenesis and quorum sensing circuitry regulation: multiple quorum sensing-regulated genes are modulated without affecting lasRI, rhlRI or the production of N-acyl-L-homoserine lactones. Mol. Microbiol. 55, 998–1014 (2005).

    Article  CAS  PubMed  Google Scholar 

  77. Lee, J. et al. A cell-cell communication signal integrates quorum sensing and stress response. Nat. Chem. Biol. 9, 339–343 (2013).

    Article  CAS  PubMed  Google Scholar 

  78. Wagner, S. et al. Novel strategies for the treatment of Pseudomonas aeruginosa infections. J. Med. Chem. 59, 5929–5969 (2016).

    Article  CAS  PubMed  Google Scholar 

  79. Zhu, J. & Kaufmann, G. F. Quo vadis quorum quenching? Curr. Opin. Pharmacol. 13, 688–698 (2013).

    Article  CAS  PubMed  Google Scholar 

  80. Tateda, K. et al. Azithromycin inhibits quorum sensing in Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 45, 1930–1933 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kai, T. et al. A low concentration of azithromycin inhibits the mRNA expression of N-acyl homoserine lactone synthesis enzymes, upstream of lasI or rhlI, in Pseudomonas aeruginosa. Pulm. Pharmacol. Ther. 22, 483–486 (2009).

    Article  CAS  PubMed  Google Scholar 

  82. Kohler, T., Perron, G. G., Buckling, A. & van Delden, C. Quorum sensing inhibition selects for virulence and cooperation in Pseudomonas aeruginosa. PLoS Pathog. 6, e1000883 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Garcia-Contreras, R. et al. Resistance to the quorum-quenching compounds brominated furanone C-30 and 5-fluorouracil in Pseudomonas aeruginosa clinical isolates. Pathog. Dis. 68, 8–11 (2013).

    Article  CAS  PubMed  Google Scholar 

  84. Smith, E. E. et al. Genetic adaptation by Pseudomonas aeruginosa to the airways of cystic fibrosis patients. Proc. Natl Acad. Sci. USA 103, 8487–8492 (2006).

    Article  CAS  PubMed  Google Scholar 

  85. Marvig, R. L., Sommer, L. M., Molin, S. & Johansen, H. K. Convergent evolution and adaptation of Pseudomonas aeruginosa within patients with cystic fibrosis. Nat. Genet. 47, 57–64 (2015).

    Article  CAS  PubMed  Google Scholar 

  86. Starkey, M. et al. Identification of anti-virulence compounds that disrupt quorum-sensing regulated acute and persistent pathogenicity. PLoS Pathog. 10, e1004321 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. DiGiandomenico, A. et al. Identification of broadly protective human antibodies to Pseudomonas aeruginosa exopolysaccharide Psl by phenotypic screening. J. Exp. Med. 209, 1273–1287 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Warrener, P. et al. A novel anti-PcrV antibody providing enhanced protection against Pseudomonas aeruginosa in multiple animal infection models. Antimicrob. Agents Chemother. 58, 4384–4391 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. DiGiandomenico, A. et al. A multifunctional bispecific antibody protects against Pseudomonas aeruginosa. Sci. Transl Med. 6, 262ra155 (2014). This study reported a novel bispecific antibody derivative that targeted two virulence factors simultaneously with improved efficacy in animal models.

    Article  CAS  PubMed  Google Scholar 

  90. Kaper, J. B., Nataro, J. P. & Mobley, H. L. Pathogenic Escherichia coli. Nat. Rev. Microbiol. 2, 123–140 (2004).

    Article  CAS  PubMed  Google Scholar 

  91. McGann, P. et al. Escherichia coli harboring mcr-1 and blaCTX-M on a novel IncF plasmid: first report of mcr-1 in the United States. Antimicrob. Agents Chemother. 60, 4420–4421 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Castanheira, M. et al. Detection of mcr-1 among Escherichia coli clinical isolates collected worldwide as part of the SENTRY antimicrobial surveillance program in 2014 and 2015. Antimicrob. Agents Chemother. 60, 5623–5624 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Mediavilla, J. R. et al. Colistin- and carbapenem-resistant Escherichia coli harboring mcr-1 and blaNDM-5, causing a complicated urinary tract infection in a patient from the United States. mBio 7, e01191-16 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Goren, M. G. et al. Transfer of carbapenem-resistant plasmid from Klebsiella pneumoniae ST258 to Escherichia coli in patient. Emerg. Infect. Dis. 16, 1014–1017 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Cremet, L. et al. Nosocomial outbreak of carbapenem-resistant Enterobacter cloacae highlighting the interspecies transferability of the blaOXA-48 gene in the gut flora. J. Antimicrob. Chemother. 67, 1041–1043 (2012).

    Article  CAS  PubMed  Google Scholar 

  96. Obrig, T. G. et al. Endothelial heterogeneity in Shiga toxin receptors and responses. J. Biol. Chem. 268, 15484–15488 (1993).

    CAS  PubMed  Google Scholar 

  97. Wong, C. S. et al. Risk factors for the hemolytic uremic syndrome in children infected with Escherichia coli O157:H7: a multivariable analysis. Clin. Infect. Dis. 55, 33–41 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Zhang, X. et al. Quinolone antibiotics induce Shiga toxin-encoding bacteriophages, toxin production, and death in mice. J. Infect. Dis. 181, 664–670 (2000).

    Article  CAS  PubMed  Google Scholar 

  99. Walterspiel, J. N., Ashkenazi, S., Morrow, A. L. & Cleary, T. G. Effect of subinhibitory concentrations of antibiotics on extracellular Shiga-like toxin I. Infection 20, 25–29 (1992).

    Article  CAS  PubMed  Google Scholar 

  100. Takeda, T., Yoshino, K., Adachi, E., Sato, Y. & Yamagata, K. In vitro assessment of a chemically synthesized Shiga toxin receptor analog attached to chromosorb P (Synsorb Pk) as a specific absorbing agent of Shiga toxin 1 and 2. Microbiol. Immunol. 43, 331–337 (1999).

    Article  CAS  PubMed  Google Scholar 

  101. Armstrong, G. D. et al. A phase I study of chemically synthesized verotoxin (Shiga-like toxin) Pk-trisaccharide receptors attached to chromosorb for preventing hemolytic-uremic syndrome. J. Infect. Dis. 171, 1042–1045 (1995).

    Article  CAS  PubMed  Google Scholar 

  102. Trachtman, H. et al. Effect of an oral Shiga toxin-binding agent on diarrhea-associated hemolytic uremic syndrome in children: a randomized controlled trial. JAMA 290, 1337–1344 (2003).

    Article  CAS  PubMed  Google Scholar 

  103. Yamagami, S. et al. Efficacy of postinfection treatment with anti-Shiga toxin (Stx) 2 humanized monoclonal antibody TMA-15 in mice lethally challenged with Stx-producing Escherichia coli. J. Infect. Dis. 184, 738–742 (2001).

    Article  CAS  PubMed  Google Scholar 

  104. Sauter, K. A. et al. Mouse model of hemolytic-uremic syndrome caused by endotoxin-free Shiga toxin 2 (Stx2) and protection from lethal outcome by anti-Stx2 antibody. Infect. Immun. 76, 4469–4478 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Lopez, E. L. et al. Safety and pharmacokinetics of urtoxazumab, a humanized monoclonal antibody, against Shiga-like toxin 2 in healthy adults and in pediatric patients infected with Shiga-like toxin-producing Escherichia coli. Antimicrob. Agents Chemother. 54, 239–243 (2010).

    Article  CAS  PubMed  Google Scholar 

  106. Bitzan, M. et al. Safety and pharmacokinetics of chimeric anti-Shiga toxin 1 and anti-Shiga toxin 2 monoclonal antibodies in healthy volunteers. Antimicrob. Agents Chemother. 53, 3081–3087 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Flores-Mireles, A. L., Walker, J. N., Caparon, M. & Hultgren, S. J. Urinary tract infections: epidemiology, mechanisms of infection and treatment options. Nat. Rev. Microbiol. 13, 269–284 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Al-Hasan, M. N., Eckel-Passow, J. E. & Baddour, L. M. Bacteremia complicating gram-negative urinary tract infections: a population-based study. J. Infect. 60, 278–285 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Han, Z. et al. Structure-based drug design and optimization of mannoside bacterial FimH antagonists. J. Med. Chem. 53, 4779–4792 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Jarvis, C. et al. Antivirulence isoquinolone mannosides: optimization of the biaryl aglycone for FimH lectin binding affinity and efficacy in the treatment of chronic UTI. ChemMedChem 11, 367–373 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Greene, S. E. et al. Pilicide ec240 disrupts virulence circuits in uropathogenic Escherichia coli. mBio 5, e02038 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Chorell, E. et al. Design and synthesis of C-2 substituted thiazolo and dihydrothiazolo ring-fused 2-pyridones: pilicides with increased antivirulence activity. J. Med. Chem. 53, 5690–5695 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Cusumano, C. K. et al. Treatment and prevention of urinary tract infection with orally active FimH inhibitors. Sci. Transl Med. 3, 109ra115 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Totsika, M. et al. A FimH inhibitor prevents acute bladder infection and treats chronic cystitis caused by multidrug-resistant uropathogenic Escherichia coli ST131. J. Infect. Dis. 208, 921–928 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Kisiela, D. I. et al. Inhibition and reversal of microbial attachment by an antibody with parasteric activity against the FimH adhesin of uropathogenic E. coli. PLoS Pathog. 11, e1004857 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Wang, Q. et al. Target-agnostic identification of functional monoclonal antibodies against Klebsiella pneumoniae multimeric MrkA fimbrial subunit. J. Infect. Dis. 213, 1800–1808 (2016). This report applied a phenotypic screen and phage display to identify mAbs and scFvs that target a surface-associated virulence factor.

    Article  CAS  PubMed  Google Scholar 

  117. Yu, V. L. et al. Virulence characteristics of Klebsiella and clinical manifestations of K. pneumoniae bloodstream infections. Emerg. Infect. Dis. 13, 986–993 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Lin, J. C. et al. High prevalence of phagocytic-resistant capsular serotypes of Klebsiella pneumoniae in liver abscess. Microbes Infect. 6, 1191–1198 (2004).

    Article  CAS  PubMed  Google Scholar 

  119. Sievert, D. M. et al. Antimicrobial-resistant pathogens associated with healthcare-associated infections: summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2009–2010. Infect. Control Hosp. Epidemiol. 34, 1–14 (2013).

    Article  PubMed  Google Scholar 

  120. Oikonomou, O. et al. Rapid dissemination of colistin and carbapenem resistant Acinetobacter baumannii in Central Greece: mechanisms of resistance, molecular identification and epidemiological data. BMC Infect. Dis. 15, 559 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Qureshi, Z. A. et al. Colistin-resistant Acinetobacter baumannii: beyond carbapenem resistance. Clin. Infect. Dis. 60, 1295–1303 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Mavroidi, A. et al. Molecular identification of tigecycline- and colistin-resistant carbapenemase-producing Acinetobacter baumannii from a Greek hospital from 2011 to 2013. J. Med. Microbiol. 64, 993–997 (2015).

    Article  CAS  PubMed  Google Scholar 

  123. European Antimicrobial Resistance Surveillance Network. Antimicrobial resistance surveillance in Europe. http://ecdc.europa.eu/en/publications/publications/antimicrobial-resistance-europe-2014.pdf (EARS-Net, 2014).

  124. Lin, L. et al. Inhibition of LpxC protects mice from resistant Acinetobacter baumannii by modulating inflammation and enhancing phagocytosis. mBio 3, e00312-12 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Moffatt, J. H. et al. Colistin resistance in Acinetobacter baumannii is mediated by complete loss of lipopolysaccharide production. Antimicrob. Agents Chemother. 54, 4971–4977 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Garcia-Quintanilla, M. et al. Inhibition of LpxC increases antibiotic susceptibility in Acinetobacter baumannii. Antimicrob. Agents Chemother. 60, 5076–5079 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Niu, C., Clemmer, K. M., Bonomo, R. A. & Rather, P. N. Isolation and characterization of an autoinducer synthase from Acinetobacter baumannii. J. Bacteriol. 190, 3386–3392 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Bhargava, N., Sharma, P. & Capalash, N. Quorum sensing in Acinetobacter: an emerging pathogen. Crit. Rev. Microbiol. 36, 349–360 (2010).

    Article  CAS  PubMed  Google Scholar 

  129. Stacy, D. M., Welsh, M. A., Rather, P. N. & Blackwell, H. E. Attenuation of quorum sensing in the pathogen Acinetobacter baumannii using non-native N-Acyl homoserine lactones. ACS Chem. Biol. 7, 1719–1728 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Hung, D. T., Shakhnovich, E. A., Pierson, E. & Mekalanos, J. J. Small-molecule inhibitor of Vibrio cholerae virulence and intestinal colonization. Science 310, 670–674 (2005).

    Article  CAS  PubMed  Google Scholar 

  131. Nait Chabane, Y. et al. Virstatin inhibits biofilm formation and motility of Acinetobacter baumannii. BMC Microbiol. 14, 62 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Oh, M. H. & Choi, C. H. Role of LuxIR homologue AnoIR in Acinetobacter nosocomialis and the effect of virstatin on the expression of anoR gene. J. Microbiol. Biotechnol. 25, 1390–1400 (2015).

    Article  CAS  PubMed  Google Scholar 

  133. Thompson, M. G., Corey, B. W., Si, Y., Craft, D. W. & Zurawski, D. V. Antibacterial activities of iron chelators against common nosocomial pathogens. Antimicrob. Agents Chemother. 56, 5419–5421 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. de Leseleuc, L., Harris, G., KuoLee, R. & Chen, W. In vitro and in vivo biological activities of iron chelators and gallium nitrate against Acinetobacter baumannii. Antimicrob. Agents Chemother. 56, 5397–5400 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Wang, N., Ozer, E. A., Mandel, M. J. & Hauser, A. R. Genome-wide identification of Acinetobacter baumannii genes necessary for persistence in the lung. mBio 5, e01163-14 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Subashchandrabose, S. et al. Acinetobacter baumannii genes required for bacterial survival during bloodstream infection. mSphere 1, e00013-15 (2016).

    Article  PubMed  Google Scholar 

  137. Weber, B. S., Harding, C. M. & Feldman, M. F. Pathogenic Acinetobacter: from the cell surface to infinity and beyond. J. Bacteriol. 198, 880–887 (2016).

    Article  CAS  PubMed Central  Google Scholar 

  138. Flores-Mireles, A. L. et al. Antibody-based therapy for Enterococcal catheter-associated urinary tract infections. mBio 7, e01653-16 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Van Tyne, D., Martin, M. J. & Gilmore, M. S. Structure, function, and biology of the Enterococcus faecalis cytolysin. Toxins (Basel) 5, 895–911 (2013).

    Article  CAS  Google Scholar 

  140. Huycke, M. M., Spiegel, C. A. & Gilmore, M. S. Bacteremia caused by hemolytic, high-level gentamicin-resistant Enterococcus faecalis. Antimicrob. Agents Chemother. 35, 1626–1634 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Desouky, S. E. et al. Cyclodepsipeptides produced by actinomycetes inhibit cyclic-peptide-mediated quorum sensing in Gram-positive bacteria. FEMS Microbiol. Lett. 362, fnv109 (2015).

    Article  CAS  PubMed  Google Scholar 

  142. Nakayama, J. et al. Development of a peptide antagonist against fsr quorum sensing of Enterococcus faecalis. ACS Chem. Biol. 8, 804–811 (2013).

    Article  CAS  PubMed  Google Scholar 

  143. Nakayama, J. et al. Siamycin attenuates fsr quorum sensing mediated by a gelatinase biosynthesis-activating pheromone in Enterococcus faecalis. J. Bacteriol. 189, 1358–1365 (2007).

    Article  CAS  PubMed  Google Scholar 

  144. Klipstein, F. A. & Engert, R. F. Partial purification and properties of Enterobacter cloacae heat-stable enterotoxin. Infect. Immun. 13, 1307–1314 (1976).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Barnes, A. I., Paraje, M. G., Battan, P. del C. & Albesa, I. Molecular properties and metabolic effect on blood cells produced by a new toxin of Enterobacter cloacae. Cell Biol. Toxicol. 17, 409–418 (2001)

    Article  CAS  PubMed  Google Scholar 

  146. Barnes, A. I., Ortiz, C., Paraje, M. G., Balanzino, L. E. & Albesa, I. Purification and characterization of a cytotoxin from Enterobacter cloacae. Can. J. Microbiol. 43, 729–733 (1997).

    Article  CAS  PubMed  Google Scholar 

  147. Paton, A. W. & Paton, J. C. Enterobacter cloacae producing a Shiga-like toxin II-related cytotoxin associated with a case of hemolytic-uremic syndrome. J. Clin. Microbiol. 34, 463–465 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Probert, W. S., McQuaid, C. & Schrader, K. Isolation and identification of an Enterobacter cloacae strain producing a novel subtype of Shiga toxin type 1. J. Clin. Microbiol. 52, 2346–2351 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Herold, S., Karch, H. & Schmidt, H. Shiga toxin-encoding bacteriophages — genomes in motion. Int. J. Med. Microbiol. 294, 115–121 (2004).

    Article  CAS  PubMed  Google Scholar 

  150. Khalil, R. K., Skinner, C., Patfield, S. & He, X. Phage-mediated Shiga toxin (Stx) horizontal gene transfer and expression in non-Shiga toxigenic Enterobacter and Escherichia coli strains. Pathog. Dis. 74, ftw037 (2016).

    Article  CAS  PubMed  Google Scholar 

  151. Van Tiel-Menkveld, G. J., Mentjox-Vervuurt, J. M., Oudega, B. & de Graaf, F. K. Siderophore production by Enterobacter cloacae and a common receptor protein for the uptake of aerobactin and cloacin DF13. J. Bacteriol. 150, 490–497 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Kim, S. M. et al. Involvement of curli fimbriae in the biofilm formation of Enterobacter cloacae. J. Microbiol. 50, 175–178 (2012).

    Article  CAS  PubMed  Google Scholar 

  153. Zogaj, X., Bokranz, W., Nimtz, M. & Romling, U. Production of cellulose and curli fimbriae by members of the family Enterobacteriaceae isolated from the human gastrointestinal tract. Infect. Immun. 71, 4151–4158 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Krzyminska, S., Mokracka, J., Koczura, R. & Kaznowski, A. Cytotoxic activity of Enterobacter cloacae human isolates. FEMS Immunol. Med. Microbiol. 56, 248–252 (2009).

    Article  CAS  PubMed  Google Scholar 

  155. Rezzonico, F., Smits, T. H. & Duffy, B. Detection of AI-2 receptors in genomes of Enterobacteriaceae suggests a role of type-2 quorum sensing in closed ecosystems. Sensors (Basel) 12, 6645–6665 (2012).

    Article  CAS  Google Scholar 

  156. Skinner, C., Patfield, S., Khalil, R., Kong, Q. & He, X. New monoclonal antibodies against a novel subtype of Shiga toxin 1 produced by Enterobacter cloacae and their use in analysis of human serum. mSphere 1, e00099-15 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. World Health Organization. Global Tuberculosis Report 2015. http://apps.who.int/iris/bitstream/10665/191102/1/9789241565059_eng.pdf?ua=1 (WHO, 2015).

  158. Kaufmann, S. H. et al. Progress in tuberculosis vaccine development and host-directed therapies — a state of the art review. Lancet Respir. Med. 2, 301–320 (2014).

    Article  CAS  PubMed  Google Scholar 

  159. Colditz, G. A. et al. Efficacy of BCG vaccine in the prevention of tuberculosis. Meta-analysis of the published literature. JAMA 271, 698–702 (1994).

    Article  CAS  PubMed  Google Scholar 

  160. Brown, R. M. et al. Lipoarabinomannan-reactive human secretory immunoglobulin A responses induced by mucosal bacille Calmette-Guerin vaccination. J. Infect. Dis. 187, 513–517 (2003).

    Article  CAS  PubMed  Google Scholar 

  161. Beyazova, U., Rota, S., Cevheroglu, C. & Karsligil, T. Humoral immune response in infants after BCG vaccination. Tuber. Lung Dis. 76, 248–253 (1995).

    Article  CAS  PubMed  Google Scholar 

  162. Steingart, K. R. et al. Performance of purified antigens for serodiagnosis of pulmonary tuberculosis: a meta-analysis. Clin. Vaccine Immunol. 16, 260–276 (2009).

    Article  CAS  PubMed  Google Scholar 

  163. Grosset, J. Mycobacterium tuberculosis in the extracellular compartment: an underestimated adversary. Antimicrob. Agents Chemother. 47, 833–836 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Kang, B. K. & Schlesinger, L. S. Characterization of mannose receptor-dependent phagocytosis mediated by Mycobacterium tuberculosis lipoarabinomannan. Infect. Immun. 66, 2769–2777 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Menozzi, F. D. et al. Identification of a heparin-binding hemagglutinin present in mycobacteria. J. Exp. Med. 184, 993–1001 (1996).

    Article  CAS  PubMed  Google Scholar 

  166. Yuan, Y., Crane, D. D. & Barry, C. E. III. Stationary phase-associated protein expression in Mycobacterium tuberculosis: function of the mycobacterial alpha-crystallin homolog. J. Bacteriol. 178, 4484–4492 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Hamasur, B. et al. A mycobacterial lipoarabinomannan specific monoclonal antibody and its F(ab') fragment prolong survival of mice infected with Mycobacterium tuberculosis. Clin. Exp. Immunol. 138, 30–38 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Balu, S. et al. A novel human IgA monoclonal antibody protects against tuberculosis. J. Immunol. 186, 3113–3119 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Pethe, K. et al. The heparin-binding haemagglutinin of M. tuberculosis is required for extrapulmonary dissemination. Nature 412, 190–194 (2001).

    Article  CAS  PubMed  Google Scholar 

  170. Sun, J. et al. The tuberculosis necrotizing toxin kills macrophages by hydrolyzing NAD. Nat. Struct. Mol. Biol. 22, 672–678 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Groschel, M. I., Sayes, F., Simeone, R., Majlessi, L. & Brosch, R. ESX secretion systems: mycobacterial evolution to counter host immunity. Nat. Rev. Microbiol. 14, 677–691 (2016).

    Article  CAS  PubMed  Google Scholar 

  172. Boucher, H. W. et al. Bad bugs, no drugs: no ESKAPE! An update from the Infectious Diseases Society of America. Clin. Infect. Dis. 48, 1–12 (2009).

    Article  PubMed  Google Scholar 

  173. Waters, C. M. & Bassler, B. L. Quorum sensing: cell-to-cell communication in bacteria. Annu. Rev. Cell Dev. Biol. 21, 319–346 (2005).

    Article  CAS  PubMed  Google Scholar 

  174. Papenfort, K. & Bassler, B. L. Quorum sensing signal-response systems in Gram-negative bacteria. Nat. Rev. Microbiol. 14, 576–588 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Rutherford, S. T. & Bassler, B. L. Bacterial quorum sensing: its role in virulence and possibilities for its control. Cold Spring Harb. Perspect. Med. 2, a012427 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Kong, K. F., Vuong, C. & Otto, M. Staphylococcus quorum sensing in biofilm formation and infection. Int. J. Med. Microbiol. 296, 133–139 (2006).

    Article  CAS  PubMed  Google Scholar 

  177. Fowler, V. G. Jr et al. Persistent bacteremia due to methicillin-resistant Staphylococcus aureus infection is associated with agr dysfunction and low-level in vitro resistance to thrombin-induced platelet microbicidal protein. J. Infect. Dis. 190, 1140–1149 (2004).

    Article  CAS  PubMed  Google Scholar 

  178. Garcia-Contreras, R., Maeda, T. & Wood, T. K. Can resistance against quorum-sensing interference be selected? ISME J. 10, 4–10 (2016).

    Article  CAS  PubMed  Google Scholar 

  179. Gerdt, J. P. & Blackwell, H. E. Competition studies confirm two major barriers that can preclude the spread of resistance to quorum-sensing inhibitors in bacteria. ACS Chem. Biol. 9, 2291–2299 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Mellbye, B. & Schuster, M. The sociomicrobiology of antivirulence drug resistance: a proof of concept. mBio 2, e00131-11 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Carnes, E. C. et al. Confinement-induced quorum sensing of individual Staphylococcus aureus bacteria. Nat. Chem. Biol. 6, 41–45 (2010).

    Article  CAS  PubMed  Google Scholar 

  182. Maeda, T. et al. Quorum quenching quandary: resistance to antivirulence compounds. ISME J. 6, 493–501 (2012).

    Article  CAS  PubMed  Google Scholar 

  183. Manefield, M. et al. Halogenated furanones inhibit quorum sensing through accelerated LuxR turnover. Microbiology 148, 1119–1127 (2002).

    Article  CAS  PubMed  Google Scholar 

  184. Babcock, G. J. et al. Human monoclonal antibodies directed against toxins A and B prevent Clostridium difficile-induced mortality in hamsters. Infect. Immun. 74, 6339–6347 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Kaufmann, G. F. et al. Antibody interference with N-acyl homoserine lactone-mediated bacterial quorum sensing. J. Am. Chem. Soc. 128, 2802–2803 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Baer, M. et al. An engineered human antibody fab fragment specific for Pseudomonas aeruginosa PcrV antigen has potent antibacterial activity. Infect. Immun. 77, 1083–1090 (2009).

    Article  CAS  PubMed  Google Scholar 

  187. Anantharajah, A. et al. Inhibition of the injectisome and flagellar type III secretion systems by INP1855 impairs Pseudomonas aeruginosa pathogenicity and inflammasome activation. J. Infect. Dis. 214, 1105–1116 (2016).

    Article  CAS  PubMed  Google Scholar 

  188. Williams, J. D. et al. Synthesis and structure-activity relationships of novel phenoxyacetamide inhibitors of the Pseudomonas aeruginosa type III secretion system (T3SS). Bioorg. Med. Chem. 23, 1027–1043 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Bowlin, N. O. et al. Mutations in the Pseudomonas aeruginosa needle protein gene pscF confer resistance to phenoxyacetamide inhibitors of the type III secretion system. Antimicrob. Agents Chemother. 58, 2211–2220 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Eibergen, N. R., Moore, J. D., Mattmann, M. E. & Blackwell, H. E. Potent and selective modulation of the RhlR quorum sensing receptor by using non-native ligands: an emerging target for virulence control in Pseudomonas aeruginosa. Chembiochem 16, 2348–2356 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. O'Loughlin, C. T. et al. A quorum-sensing inhibitor blocks Pseudomonas aeruginosa virulence and biofilm formation. Proc. Natl Acad. Sci. USA 110, 17981–17986 (2013).

    Article  PubMed  Google Scholar 

  192. Amara, N. et al. Covalent inhibition of bacterial quorum sensing. J. Am. Chem. Soc. 131, 10610–10619 (2009).

    Article  CAS  PubMed  Google Scholar 

  193. Hentzer, M. et al. Attenuation of Pseudomonas aeruginosa virulence by quorum sensing inhibitors. EMBO J. 22, 3803–3815 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Wu, H. et al. Synthetic furanones inhibit quorum-sensing and enhance bacterial clearance in Pseudomonas aeruginosa lung infection in mice. J. Antimicrob. Chemother. 53, 1054–1061 (2004).

    Article  CAS  PubMed  Google Scholar 

  195. Smith, K. M., Bu, Y. & Suga, H. Induction and inhibition of Pseudomonas aeruginosa quorum sensing by synthetic autoinducer analogs. Chem. Biol. 10, 81–89 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are supported by the Intramural Research Program of the US National Institute of Allergy and Infectious Diseases and the Postdoctoral Research Associate Program of the US National Institute of General Medical Sciences, US National Institutes of Health, Bethesda, Maryland, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Otto.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

PowerPoint slides

Glossary

Horizontal gene transfer

The exchange of genetic information between organisms in a manner other than by traditional reproduction. Horizontal gene transfer is a key mechanism for the evolution of antibiotic resistance in bacteria.

Virulence factors

A broad term used to define molecules produced by pathogens that promote disease or damage the host. They include, but are not limited to, adhesins, regulators, toxins and siderophores.

Microbiota

Collective term for all microflora that are found residing in a given environment. Many microorganisms are considered to be part of the beneficial microbiota on human skin and gut.

Bacterial toxins

A diverse variety of molecules that are produced by many pathogenic bacteria and cause injury to cells. Toxins may directly form pores in eukaryotic membranes or transfer enzymes that deregulate essential intracellular pathways or induce cell death. In addition, some toxins modulate immune cell function to thwart immune responses and facilitate immune evasion for the invading pathogens.

Empiric therapy

The use of broad-spectrum antimicrobial therapy before a definitive diagnosis of the disease-causing organism.

Adhesins

Cell-surface components or appendages of bacteria that facilitate adhesion to other cells or to surfaces: for example, fimbriae (pili). Adhesins contribute to host specificity and tissue tropism.

Siderophores

Low-molecular-weight, high-affinity metal chelating agents produced by microorganisms under low-nutrient conditions. Bacteria depend on siderophores to acquire iron in vertebrate hosts so they can replicate and cause disease.

Biofilm

A surface-attached agglomeration of microorganisms embedded in an extracellular matrix. Biofilm-associated infections are difficult to eradicate and are an important reservoir for disseminating and recurring serious infections.

Quorum sensing

A phenomenon describing the regulation of gene expression in response to cell population density and the production and secretion of signalling molecules (auto-inducers) by quorum-sensing bacteria. Effector functions of quorum sensing include the regulation of genes involved in virulence and biofilm formation.

Fab and F(ab′)2

The antigen-binding fragment of an immunoglobulin G antibody after proteolytic digestion. Fab and F(ab′)2 are monovalent and divalent, respectively, and are produced under differing digestion conditions.

Monoclonal antibodies

(mAbs). Antibodies produced by a single B cell clone that are specific to one epitope of an antigen.

Polyclonal antibodies

A pool of antibodies from different B cells that recognize multiple epitopes on the same antigen.

Response regulator

One part of a two-component system — comprising a membrane-embedded sensor and the cytoplasmic response regulator — that activates transcription of a specific set of genes in response to certain stimuli.

Type III secretion system

(T3SS). A needle-like apparatus found in Gram-negative bacteria that delivers substrates across the inner and outer bacterial membranes and the eukaryotic membranes to the host membrane or cytosol.

Single-chain variable fragment

(scFv). An antibody derivative in which the variable domains from the heavy and light chains have been fused with a linker. An scFv retains the capability to bind the target antigen.

Pan-drug-resistant

Resistant to all approved antimicrobial agents with activity against a specific bacterial species.

Type VII secretion system

A specialized secretion system found in Gram-positive bacteria, the most studied of which are in Mycobacterium tuberculosis. Protein substrates are first exported across the inner membrane by an ATP-dependent multimeric protein complex. Secreted substrates can localize to the culture supernatant or remain embedded in the highly hydrophobic mycobacterial cell envelope. Homologous systems are found in other bacteria from the phyla Actinobacteria and Firmicutes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dickey, S., Cheung, G. & Otto, M. Different drugs for bad bugs: antivirulence strategies in the age of antibiotic resistance. Nat Rev Drug Discov 16, 457–471 (2017). https://doi.org/10.1038/nrd.2017.23

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd.2017.23

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research