Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

TRIM proteins and cancer

Key Points

  • The family of tripartite motif (TRIM)-containing proteins is defined as a subfamily of the RING type E3 ubiquitin ligase family and contains more than 70 members in humans and mice. TRIM family proteins are involved in a broad range of biological processes, including transcriptional regulation, cell growth, apoptosis, development and tumorigenesis.

  • Several TRIM proteins are involved in the regulation of nuclear receptors. The promyelocytic leukaemia (PML) gene encodes TRIM19 and is involved in the t(15;17) translocation that is specific for acute promyelocytic leukaemia (APL). TRIM19 is localized in PML-nuclear bodies (PML-NBs) in the nucleus and regulates the response to various cellular stresses, DNA repair and viral infection.

  • TRIM24 (also known as TIF1α) regulates several nuclear receptors, including, retinoic acid receptor-α (RARα), the thyroid receptor and the oestrogen receptors (ERs). TRIM24 is a potent liver-specific tumour suppressor in mice and attenuates RARα-mediated transcription. TRIM28 (also known as TIF1β and KAP1) is highly expressed in many cancers and contributes to p53 inactivation.

  • TRIM proteins, including TRIM24 and TRIM22, are also involved in p53 regulation. TRIM13 overexpression causes increased expression of p53, resulting in the induction of apoptosis. TRIM29 (also known as ATDC) regulates p53 through its interaction with TIP60. TRIM29 expression correlates with a poor prognosis in gastric cancer.

  • Other TRIMs, such as TRIM32, TRIM8 and TRIM40, have been associated with specific tumorigenic pathways.

  • Further work using biochemical approaches as well as genetic knock-in and knockout experiments in mice are needed to understand the full contribution of specific TRIM proteins to tumour development and progression.

Abstract

Emerging clinical evidence shows that the deregulation of ubiquitin-mediated degradation of oncogene products or tumour suppressors is likely to be involved in the aetiology of carcinomas and leukaemias. Recent studies have indicated that some members of the tripartite motif (TRIM) proteins (one of the subfamilies of the RING type E3 ubiquitin ligases) function as important regulators for carcinogenesis. This Review focuses on TRIM proteins that are involved in tumour development and progression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Diversity of the TRIM protein family.
Figure 2: Chromosome mapping of human TRIM family genes.
Figure 3: Roles of PML in carcinogenesis.
Figure 4: Roles of TIF1 family in carcinogenesis.
Figure 5: Role of TRIM proteins in regulation of p53.
Figure 6: Oncogenic activity of TRIM32.

Similar content being viewed by others

References

  1. Weissman, A. M. Regulating protein degradation by ubiquitination. Immunol. Today 18, 189–198 (1997).

    Article  CAS  PubMed  Google Scholar 

  2. Koepp, D. M. et al. Phosphorylation-dependent ubiquitination of cyclin E by the SCFFbw7 ubiquitin ligase. Science 294, 173–177 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Onoyama, I. et al. Conditional inactivation of Fbxw7 impairs cell-cycle exit during T cell differentiation and results in lymphomatogenesis. J. Exp. Med. 204, 2875–2888 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Tsunematsu, R. et al. Mouse Fbw7/Sel-10/Cdc4 is required for notch degradation during vascular development. J. Biol. Chem. 279, 9417–9423 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Hideshima, T. et al. The proteasome inhibitor PS-341 inhibits growth, induces apoptosis, and overcomes drug resistance in human multiple myeloma cells. Cancer Res. 61, 3071–3076 (2001). This study showed that the proteasome inhibitor PS-341 directly inhibits proliferation and induces apoptosis of human multiple myeloma cell lines and multiple myeloma cells from isolated patients, indicating the possibility of the use of PS-341 as a drug for targeting multiple myeloma.

    CAS  PubMed  Google Scholar 

  6. Reymond, A. et al. The tripartite motif family identifies cell compartments. EMBO J. 20, 2140–2151 (2001). Based on a comprehensive genomic approach, a family of proteins containing a TRIM, including 37 previously described TRIM genes and 21 newly identified TRIM genes, was characterized.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Short, K. M. & Cox, T. C. Subclassification of the RBCC/TRIM superfamily reveals a novel motif necessary for microtubule binding. J. Biol. Chem. 281, 8970–8980 (2006). This study revealed a novel motif called the cos-box, which is found in the MURF subfamily of the TRIM family and is related to microtubule binding. It showed subclassification of the human TRIM family into nine subfamilies based on structural characteristics in their C-terminal domain.

    Article  CAS  PubMed  Google Scholar 

  8. Ozato, K., Shin, D. M., Chang, T. H. & Morse, H. C. TRIM family proteins and their emerging roles in innate immunity. Nature Rev. Immunol. 8, 849–860 (2008).

    Article  CAS  Google Scholar 

  9. McNab, F. W., Rajsbaum, R., Stoye, J. P. & O'Garra, A. Tripartite-motif proteins and innate immune regulation. Curr. Opin. Immunol. 23, 46–56 (2011).

    Article  CAS  PubMed  Google Scholar 

  10. Meroni, G. & Diez-Roux, G. TRIM/RBCC, a novel class of 'single protein RING finger' E3 ubiquitin ligases. Bioessays 27, 1147–1157 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. de The, H. et al. The PML-RAR α fusion mRNA generated by the t(15;17) translocation in acute promyelocytic leukemia encodes a functionally altered RAR. Cell 66, 675–684 (1991).

    Article  CAS  PubMed  Google Scholar 

  12. Kakizuka, A. et al. Chromosomal translocation t(15;17) in human acute promyelocytic leukemia fuses RAR α with a novel putative transcription factor, PML. Cell 66, 663–674 (1991).

    Article  CAS  PubMed  Google Scholar 

  13. Goddard, A. D., Borrow, J., Freemont, P. S. & Solomon, E. Characterization of a zinc finger gene disrupted by the t(15;17) in acute promyelocytic leukemia. Science 254, 1371–1374 (1991).

    Article  CAS  PubMed  Google Scholar 

  14. Belloni, E. et al. 8p11 myeloproliferative syndrome with a novel t(7;8) translocation leading to fusion of the FGFR1 and TIF1 genes. Genes Chromosomes Cancer 42, 320–325 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Le Douarin, B. et al. The N-terminal part of TIF1, a putative mediator of the ligand-dependent activation function (AF-2) of nuclear receptors, is fused to B-raf in the oncogenic protein T18. EMBO J. 14, 2020–2033 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Klugbauer, S. & Rabes, H. M. The transcription coactivator HTIF1 and a related protein are fused to the RET receptor tyrosine kinase in childhood papillary thyroid carcinomas. Oncogene 18, 4388–4393 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. Hershko, A. & Ciechanover, A. The ubiquitin system. Annu. Rev. Biochem. 67, 425–479 (1998).

    Article  CAS  PubMed  Google Scholar 

  18. Scheffner, M., Nuber, U. & Huibregtse, J. M. Protein ubiquitination involving an E1-E2-E3 enzyme ubiquitin thioester cascade. Nature 373, 81–83 (1995).

    Article  CAS  PubMed  Google Scholar 

  19. Huibregtse, J. M., Scheffner, M., Beaudenon, S. & Howley, P. M. A family of proteins structurally and functionally related to the E6-AP ubiquitin-protein ligase. Proc. Natl Acad. Sci. USA 92, 2563–2567 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Herquel, B. et al. Transcription cofactors TRIM24, TRIM28, and TRIM33 associate to form regulatory complexes that suppress murine hepatocellular carcinoma. Proc. Natl Acad. Sci. USA 108, 8212–8217 (2011). The paper showed that hepatocellular carcinoma induced by TRIM24 inactivation is enhanced by further loss of TRIM33, suggesting that TRIM33 functions as a tumour suppressor in collaboration with TRIM24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Napolitano, L. M., Jaffray, E. G., Hay, R. T. & Meroni, G. Functional interactions between ubiquitin E2 enzymes and TRIM proteins. Biochem. J. 434, 309–319 (2011).

    Article  CAS  PubMed  Google Scholar 

  22. Weissman, A. M., Shabek, N. & Ciechanover, A. The predator becomes the prey: regulating the ubiquitin system by ubiquitylation and degradation. Nature Rev. Mol. Cell Biol. 12, 605–620 (2011).

    Article  CAS  Google Scholar 

  23. Chu, Y. & Yang, X. SUMO E3 ligase activity of TRIM proteins. Oncogene 30, 1108–1116 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Brown, N. J. et al. PML nuclear bodies in the pathogenesis of acute promyelocytic leukemia: active players or innocent bystanders? Front. Biosci. 14, 1684–1707 (2009).

    Article  CAS  Google Scholar 

  25. Wang, Z. Y. & Chen, Z. Acute promyelocytic leukemia: from highly fatal to highly curable. Blood 111, 2505–2515 (2008).

    Article  CAS  PubMed  Google Scholar 

  26. Martens, J. H. et al. PML-RARα/RXR alters the epigenetic landscape in acute promyelocytic leukemia. Cancer Cell 17, 173–185 (2010).

    Article  CAS  PubMed  Google Scholar 

  27. Ascoli, C. A. & Maul, G. G. Identification of a novel nuclear domain. J. Cell Biol. 112, 785–795 (1991).

    Article  CAS  PubMed  Google Scholar 

  28. Szostecki, C., Guldner, H. H., Netter, H. J. & Will, H. Isolation and characterization of cDNA encoding a human nuclear antigen predominantly recognized by autoantibodies from patients with primary biliary cirrhosis. J. Immunol. 145, 4338–4347 (1990).

    CAS  PubMed  Google Scholar 

  29. Ishov, A. M. et al. PML is critical for ND10 formation and recruits the PML-interacting protein daxx to this nuclear structure when modified by SUMO-1. J. Cell Biol. 147, 221–234 (1999). This study demonstrated that as NBs are dispersed in PML−/− cells, PML is responsible for the proper localization of all other NB-associated proteins and that a dynamic mechanism for protein recruitment to NBs is controlled by the SUMO1 modification state of PML.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jensen, K., Shiels, C. & Freemont, P. S. PML protein isoforms and the RBCC/TRIM motif. Oncogene 20, 7223–7233 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Bernardi, R. et al. PML regulates p53 stability by sequestering Mdm2 to the nucleolus. Nature Cell Biol. 6, 665–672 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Van Damme, E., Laukens, K., Dang, T. H. & Van Ostade, X. A manually curated network of the PML nuclear body interactome reveals an important role for PML-NBs in SUMOylation dynamics. Int. J. Biol. Sci. 6, 51–67 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Matunis, M. J., Coutavas, E. & Blobel, G. A novel ubiquitin-like modification modulates the partitioning of the Ran-GTPase-activating protein RanGAP1 between the cytosol and the nuclear pore complex. J. Cell Biol. 135, 1457–1470 (1996).

    Article  CAS  PubMed  Google Scholar 

  34. Boddy, M. N., Howe, K., Etkin, L. D., Solomon, E. & Freemont, P. S. PIC 1, a novel ubiquitin-like protein which interacts with the PML component of a multiprotein complex that is disrupted in acute promyelocytic leukaemia. Oncogene 13, 971–982 (1996).

    CAS  PubMed  Google Scholar 

  35. Duprez, E. et al. SUMO-1 modification of the acute promyelocytic leukaemia protein PML: implications for nuclear localisation. J. Cell Sci. 112, 381–393 (1999).

    CAS  PubMed  Google Scholar 

  36. Nacerddine, K. et al. The SUMO pathway is essential for nuclear integrity and chromosome segregation in mice. Dev. Cell 9, 769–779 (2005). The authors showed by using mice deficient in the SUMO E2-conjugating enzyme UBC9 that the SUMO conjugation system is required for formation of PML-NBs.

    Article  CAS  PubMed  Google Scholar 

  37. Cho, Y., Lee, I., Maul, G. G. & Yu, E. A novel nuclear substructure, ND10: distribution in normal and neoplastic human tissues. Int. J. Mol. Med. 1, 717–724 (1998).

    CAS  PubMed  Google Scholar 

  38. Zhong, S. et al. A role for PML and the nuclear body in genomic stability. Oncogene 18, 7941–7947 (1999).

    Article  CAS  PubMed  Google Scholar 

  39. Zhong, S. et al. A RA-dependent, tumour-growth suppressive transcription complex is the target of the PML-RARα and T18 oncoproteins. Nature Genet. 23, 287–295 (1999).

    Article  CAS  PubMed  Google Scholar 

  40. Ferbeyre, G. et al. PML is induced by oncogenic ras and promotes premature senescence. Genes Dev. 14, 2015–2027 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Ito, K. et al. PML targeting eradicates quiescent leukaemia-initiating cells. Nature 453, 1072–1078 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Regad, T., Bellodi, C., Nicotera, P. & Salomoni, P. The tumor suppressor Pml regulates cell fate in the developing neocortex. Nature Neurosci. 12, 132–140 (2009).

    Article  CAS  PubMed  Google Scholar 

  43. Li, W. et al. PML depletion disrupts normal mammary gland development and skews the composition of the mammary luminal cell progenitor pool. Proc. Natl Acad. Sci. USA 106, 4725–4730 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Boe, S. O. et al. Promyelocytic leukemia nuclear bodies are predetermined processing sites for damaged DNA. J. Cell Sci. 119, 3284–3295 (2006).

    Article  PubMed  CAS  Google Scholar 

  45. Carbone, R., Pearson, M., Minucci, S. & Pelicci, P. G. PML NBs associate with the hMre11 complex and p53 at sites of irradiation induced DNA damage. Oncogene 21, 1633–1640 (2002).

    Article  CAS  PubMed  Google Scholar 

  46. Yang, S., Kuo, C., Bisi, J. E. & Kim, M. K. PML-dependent apoptosis after DNA damage is regulated by the checkpoint kinase hCds1/Chk2. Nature Cell Biol. 4, 865–870 (2002).

    Article  CAS  PubMed  Google Scholar 

  47. Stadler, M. et al. Transcriptional induction of the PML growth suppressor gene by interferons is mediated through an ISRE and a GAS element. Oncogene 11, 2565–2573 (1995).

    CAS  PubMed  Google Scholar 

  48. Nisole, S., Stoye, J. P. & Saib, A. TRIM family proteins: retroviral restriction and antiviral defence. Nature Rev. Microbiol. 3, 799–808 (2005).

    Article  CAS  Google Scholar 

  49. de Stanchina, E. et al. PML is a direct p53 target that modulates p53 effector functions. Mol. Cell 13, 523–535 (2004).

    Article  CAS  PubMed  Google Scholar 

  50. Dror, N. et al. Interferon regulatory factor-8 is indispensable for the expression of promyelocytic leukemia and the formation of nuclear bodies in myeloid cells. J. Biol. Chem. 282, 5633–5640 (2007).

    Article  CAS  PubMed  Google Scholar 

  51. Gurrieri, C. et al. Loss of the tumor suppressor PML in human cancers of multiple histologic origins. J. Natl. Cancer Inst. 96, 269–279 (2004).

    Article  CAS  PubMed  Google Scholar 

  52. Gurrieri, C. et al. Mutations of the PML tumor suppressor gene in acute promyelocytic leukemia. Blood 103, 2358–2362 (2004).

    Article  CAS  PubMed  Google Scholar 

  53. Zhang, X. W. et al. Arsenic trioxide controls the fate of the PML-RARα oncoprotein by directly binding PML. Science 328, 240–243 (2010).

    Article  CAS  PubMed  Google Scholar 

  54. Borden, K. L. RING domains: master builders of molecular scaffolds? J. Mol. Biol. 295, 1103–1112 (2000).

    Article  CAS  PubMed  Google Scholar 

  55. Peng, H., Feldman, I. & Rauscher, F. J. Hetero-oligomerization among the TIF family of RBCC/TRIM domain-containing nuclear cofactors: a potential mechanism for regulating the switch between coactivation and corepression. J. Mol. Biol. 320, 629–644 (2002).

    Article  CAS  PubMed  Google Scholar 

  56. Le Douarin, B. et al. A possible involvement of TIF1 α and TIF1 β in the epigenetic control of transcription by nuclear receptors. EMBO J. 15, 6701–6715 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Aasland, R., Gibson, T. J. & Stewart, A. F. The PHD finger: implications for chromatin-mediated transcriptional regulation. Trends. Biochem. Sci. 20, 56–59 (1995).

    Article  CAS  PubMed  Google Scholar 

  58. Jeanmougin, F., Wurtz, J. M., Le Douarin, B., Chambon, P. & Losson, R. The bromodomain revisited. Trends. Biochem. Sci. 22, 151–153 (1997).

    Article  CAS  PubMed  Google Scholar 

  59. Dyson, M. H., Rose, S. & Mahadevan, L. C. Acetyllysine-binding and function of bromodomain-containing proteins in chromatin. Front. Biosci. 6, D853–D865 (2001).

    Article  CAS  PubMed  Google Scholar 

  60. Teyssier, C., Ou, C. Y., Khetchoumian, K., Losson, R. & Stallcup, M. R. Transcriptional intermediary factor 1α mediates physical interaction and functional synergy between the coactivator-associated arginine methyltransferase 1 and glucocorticoid receptor-interacting protein 1 nuclear receptor coactivators. Mol. Endocrinol. 20, 1276–1286 (2006).

    Article  CAS  PubMed  Google Scholar 

  61. Remboutsika, E. et al. The putative nuclear receptor mediator TIF1α is tightly associated with euchromatin. J. Cell Sci. 112, 1671–1683 (1999).

    CAS  PubMed  Google Scholar 

  62. Remboutsika, E., Yamamoto, K., Harbers, M. & Schmutz, M. The bromodomain mediates transcriptional intermediary factor 1α -nucleosome interactions. J. Biol. Chem. 277, 50318–50325 (2002).

    Article  CAS  PubMed  Google Scholar 

  63. vom Baur, E. et al. Differential ligand-dependent interactions between the AF-2 activating domain of nuclear receptors and the putative transcriptional intermediary factors mSUG1 and TIF1. EMBO J. 15, 110–124 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Bernstein, R., Philip, P. & Ueshima, Y. Fourth International Workshop on Chromosomes in Leukemia 1982: abnormalities of chromosome 7 resulting in monosomy 7 or in deletion of the long arm (7q-): review of translocations, breakpoints, and associated abnormalities. Cancer Genet. Cytogenet. 11, 300–303 (1984).

    Article  CAS  PubMed  Google Scholar 

  65. Gandini, D. et al. Preferential expression of the transcription coactivator HTIF1α gene in acute myeloid leukemia and MDS-related AML. Leukemia 16, 886–893 (2002).

    Article  CAS  PubMed  Google Scholar 

  66. Khetchoumian, K. et al. Loss of Trim24 (Tif1α) gene function confers oncogenic activity to retinoic acid receptor α. Nature Genet. 39, 1500–1506 (2007). The authors demonstrated that TRIM24 acts as a potent liver-specific tumour suppressor by attenuating RARα-mediated transcription and that Trim24−/− mice show a high incidence of hepatic tumours.

    Article  CAS  PubMed  Google Scholar 

  67. Parada, L. A. et al. Frequent rearrangements of chromosomes 1, 7, and 8 in primary liver cancer. Genes Chromosomes Cancer 23, 26–35 (1998).

    Article  CAS  PubMed  Google Scholar 

  68. Wong, N. et al. Assessment of genetic changes in hepatocellular carcinoma by comparative genomic hybridization analysis: relationship to disease stage, tumor size, and cirrhosis. Am. J. Pathol. 154, 37–43 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Wong, N. et al. A comprehensive karyotypic study on human hepatocellular carcinoma by spectral karyotyping. Hepatology 32, 1060–1068 (2000).

    Article  CAS  PubMed  Google Scholar 

  70. Tsai, W. W. et al. TRIM24 links a non-canonical histone signature to breast cancer. Nature 468, 927–932 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Chambon, M. et al. Prognostic significance of TRIM24/TIF-1α gene expression in breast cancer. Am. J. Pathol. 178, 1461–1469 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kikuchi, M. et al. TRIM24 mediates ligand-dependent activation of androgen receptor and is repressed by a bromodomain-containing protein, BRD7, in prostate cancer cells. Biochim. Biophys. Acta 1793, 1828–1836 (2009).

    Article  CAS  PubMed  Google Scholar 

  73. Zhou, J. et al. BRD7, a novel bromodomain gene, inhibits G1-S progression by transcriptionally regulating some important molecules involved in ras/MEK/ERK and Rb/E2F pathways. J. Cell Physiol. 200, 89–98 (2004).

    Article  CAS  PubMed  Google Scholar 

  74. Miyajima, N. et al. TRIM68 regulates ligand-dependent transcription of androgen receptor in prostate cancer cells. Cancer Res. 68, 3486–3494 (2008).

    Article  CAS  PubMed  Google Scholar 

  75. Nielsen, A. L. et al. Interaction with members of the heterochromatin protein 1 (HP1) family and histone deacetylation are differentially involved in transcriptional silencing by members of the TIF1 family. EMBO J. 18, 6385–6395 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Venturini, L. et al. TIF1γ, a novel member of the transcriptional intermediary factor 1 family. Oncogene 18, 1209–1217 (1999).

    Article  CAS  PubMed  Google Scholar 

  77. Khetchoumian, K. et al. TIF1delta, a novel HP1-interacting member of the transcriptional intermediary factor 1 (TIF1) family expressed by elongating spermatids. J. Biol. Chem. 279, 48329–48341 (2004).

    Article  CAS  PubMed  Google Scholar 

  78. Eissenberg, J. C. & Elgin, S. C. The HP1 protein family: getting a grip on chromatin. Curr. Opin. Genet. Dev. 10, 204–210 (2000).

    Article  CAS  PubMed  Google Scholar 

  79. Li, Y., Kirschmann, D. A. & Wallrath, L. L. Does heterochromatin protein 1 always follow code? Proc. Natl Acad. Sci. USA 99, 16462–16469 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Bartova, E., Pachernik, J., Kozubik, A. & Kozubek, S. Differentiation-specific association of HP1α and HP1β with chromocentres is correlated with clustering of TIF1β at these sites. Histochem. Cell Biol. 127, 375–388 (2007).

    Article  CAS  PubMed  Google Scholar 

  81. Cammas, F. et al. Cell differentiation induces TIF1β association with centromeric heterochromatin via an HP1 interaction. J. Cell Sci. 115, 3439–3448 (2002).

    CAS  PubMed  Google Scholar 

  82. Yokoe, T. et al. KAP1 is associated with peritoneal carcinomatosis in gastric cancer. Ann. Surg. Oncol. 17, 821–828 (2010).

    Article  PubMed  Google Scholar 

  83. Lee, Y. K., Thomas, S. N., Yang, A. J. & Ann., D. K. Doxorubicin down-regulates Kruppel-associated box domain-associated protein 1 sumoylation that relieves its transcription repression on p21WAF1/CIP1 in breast cancer MCF-7 cells. J. Biol. Chem. 282, 1595–1606 (2007).

    Article  CAS  PubMed  Google Scholar 

  84. Mascle, X. H., Germain-Desprez, D., Huynh, P., Estephan, P. & Aubry, M. Sumoylation of the transcriptional intermediary factor 1β (TIF1β), the Co-repressor of the KRAB Multifinger proteins, is required for its transcriptional activity and is modulated by the KRAB domain. J. Biol. Chem. 282, 10190–10202 (2007).

    Article  CAS  PubMed  Google Scholar 

  85. Ivanov, A. V. et al. PHD domain-mediated E3 ligase activity directs intramolecular sumoylation of an adjacent bromodomain required for gene silencing. Mol. Cell 28, 823–837 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Zeng, L. et al. Structural insights into human KAP1 PHD finger-bromodomain and its role in gene silencing. Nature Struct. Mol. Biol. 15, 626–633 (2008).

    Article  CAS  Google Scholar 

  87. Agricola, E., Randall, R. A., Gaarenstroom, T., Dupont, S. & Hill, C. S. Recruitment of TIF1γ to chromatin via its PHD finger-bromodomain activates its ubiquitin ligase and transcriptional repressor activities. Mol. Cell 43, 85–96 (2011).

    Article  CAS  PubMed  Google Scholar 

  88. Cao, T., Duprez, E., Borden, K. L., Freemont, P. S. & Etkin, L. D. Ret finger protein is a normal component of PML nuclear bodies and interacts directly with PML. J. Cell Sci. 111, 1319–1329 (1998).

    CAS  PubMed  Google Scholar 

  89. Cao, T., Shannon, M., Handel, M. A. & Etkin, L. D. Mouse ret finger protein (rfp) proto-oncogene is expressed at specific stages of mouse spermatogenesis. Dev. Genet. 19, 309–320 (1996).

    Article  CAS  PubMed  Google Scholar 

  90. Krutzfeldt, M. et al. Selective ablation of retinoblastoma protein function by the RET finger protein. Mol. Cell 18, 213–224 (2005).

    Article  PubMed  CAS  Google Scholar 

  91. Miyake, S. et al. Cells degrade a novel inhibitor of differentiation with E1A-like properties upon exiting the cell cycle. Mol. Cell. Biol. 20, 8889–8902 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Tezel, G. G., Uner, A., Yildiz, I., Guler, G. & Takahashi, M. RET finger protein expression in invasive breast carcinoma: relationship between RFP and ErbB2 expression. Pathol. Res. Pract. 205, 403–408 (2009).

    Article  CAS  PubMed  Google Scholar 

  93. Takahashi, M., Ritz, J. & Cooper, G. M. Activation of a novel human transforming gene, ret, by DNA rearrangement. Cell 42, 581–588 (1985).

    Article  CAS  PubMed  Google Scholar 

  94. Kato, M. et al. Molecular mechanism of activation and superactivation of Ret tyrosine kinases by ultraviolet light irradiation. Antioxid. Redox Signal. 2, 841–849 (2000).

    Article  CAS  PubMed  Google Scholar 

  95. Dho, S. H. & Kwon, K. S. The Ret finger protein induces apoptosis via its RING finger-B box-coiled-coil motif. J. Biol. Chem. 278, 31902–31908 (2003).

    Article  CAS  PubMed  Google Scholar 

  96. Slack, F. J. & Ruvkun, G. A novel repeat domain that is often associated with RING finger and B-box motifs. Trends Biochem. Sci. 23, 474–475 (1998).

    Article  CAS  PubMed  Google Scholar 

  97. Frosk, P. et al. Limb-girdle muscular dystrophy type 2H associated with mutation in TRIM32, a putative E3-ubiquitin-ligase gene. Am. J. Hum. Genet. 70, 663–672 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Chiang, A. P. et al. Homozygosity mapping with SNP arrays identifies TRIM32, an E3 ubiquitin ligase, as a Bardet-Biedl syndrome gene (BBS11). Proc. Natl Acad. Sci. USA 103, 6287–6292 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Kudryashova, E., Wu, J., Havton, L. A. & Spencer, M. J. Deficiency of the E3 ubiquitin ligase TRIM32 in mice leads to a myopathy with a neurogenic component. Hum. Mol. Genet. 18, 1353–1367 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Schwamborn, J. C., Berezikov, E. & Knoblich, J. A. The TRIM-NHL protein TRIM32 activates microRNAs and prevents self-renewal in mouse neural progenitors. Cell 136, 913–925 (2009). This paper suggested that TRIM32 regulates MYC degradation and miRNA activity to control the balance of two daughter cell types in neural progenitor cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Sato, T. et al. TRIM32 promotes neural differentiation via retinoic acid receptor-mediated transcription. J. Cell Sci. (in the press).

  102. Neumuller, R. A. et al. Mei-P26 regulates microRNAs and cell growth in the Drosophila ovarian stem cell lineage. Nature 454, 241–245 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Ryu, Y. S. et al. TRIM32 protein sensitizes cells to tumor necrosis factor (TNFα)-induced apoptosis via its RING domain-dependent E3 ligase activity against X-linked inhibitor of apoptosis (XIAP). J. Biol. Chem. 286, 25729–25738 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Horn, E. J. et al. RING protein Trim32 associated with skin carcinogenesis has anti-apoptotic and E3-ubiquitin ligase properties. Carcinogenesis 25, 157–167 (2004).

    Article  CAS  PubMed  Google Scholar 

  105. Kano, S., Miyajima, N., Fukuda, S. & Hatakeyama, S. Tripartite motif protein 32 facilitates cell growth and migration via degradation of Abl-interactor 2. Cancer Res. 68, 5572–5580 (2008).

    Article  CAS  PubMed  Google Scholar 

  106. Inoue, S. et al. Molecular cloning of rat efp: expression and regulation in primary osteoblasts. Biochem. Biophys. Res. Commun. 261, 412–418 (1999).

    Article  CAS  PubMed  Google Scholar 

  107. Horie, K., Urano, T., Ikeda, K. & Inoue, S. Estrogen-responsive RING finger protein controls breast cancer growth. J. Steroid Biochem. Mol. Biol. 85, 101–104 (2003).

    Article  CAS  PubMed  Google Scholar 

  108. Suzuki, T. et al. Estrogen-responsive finger protein as a new potential biomarker for breast cancer. Clin. Cancer Res. 11, 6148–6154 (2005).

    Article  CAS  PubMed  Google Scholar 

  109. Sakuma, M. et al. Expression of estrogen-responsive finger protein (Efp) is associated with advanced disease in human epithelial ovarian cancer. Gynecol. Oncol. 99, 664–670 (2005).

    Article  CAS  PubMed  Google Scholar 

  110. Urano, T. et al. Efp targets 14-3-3 sigma for proteolysis and promotes breast tumour growth. Nature 417, 871–875 (2002). The authors showed that TRIM25-overexpressing MCF-7 cells injected into ovariectomized, athymic mice generated tumours. Inhibition of TRIM25 reduced the growth of breast cancer cells, suggesting that TRIM25 has an oncogenic activity through inhibition of 14-3-3σ.

    Article  CAS  PubMed  Google Scholar 

  111. Orimo, A. et al. Underdeveloped uterus and reduced estrogen responsiveness in mice with disruption of the estrogen-responsive finger protein gene, which is a direct target of estrogen receptor α. Proc. Natl Acad. Sci. USA 96, 12027–12032 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Nakajima, A. et al. Ligand-dependent transcription of estrogen receptor α is mediated by the ubiquitin ligase EFP. Biochem. Biophys. Res. Commun. 357, 245–251 (2007).

    Article  CAS  PubMed  Google Scholar 

  113. Hock, A. & Vousden, K. H. Regulation of the p53 pathway by ubiquitin and related proteins. Int. J. Biochem. Cell Biol. 42, 1618–1621 (2010).

    Article  CAS  PubMed  Google Scholar 

  114. Allton, K. et al. Trim24 targets endogenous p53 for degradation. Proc. Natl Acad. Sci. USA 106, 11612–11616 (2009). Mass spectrometric analysis of a p53 complex showed that TRIM24 interacts with p53 and mediates ubiquitylation of p53, followed by negative regulation of p53 level.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Wang, C. et al. MDM2 interaction with nuclear corepressor KAP1 contributes to p53 inactivation. EMBO J. 24, 3279–3290 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Yang, B. et al. MAGE-A, mMage-b, and MAGE-C proteins form complexes with KAP1 and suppress p53-dependent apoptosis in MAGE-positive cell lines. Cancer Res. 67, 9954–9962 (2007).

    Article  CAS  PubMed  Google Scholar 

  117. Joo, H. M. et al. Ret finger protein 2 enhances ionizing radiation-induced apoptosis via degradation of AKT and MDM2. Eur. J. Cell Biol. 90, 420–431 (2011).

    Article  CAS  PubMed  Google Scholar 

  118. Kalachikov, S. et al. Cloning and gene mapping of the chromosome 13q14 region deleted in chronic lymphocytic leukemia. Genomics 42, 369–377 (1997).

    Article  CAS  PubMed  Google Scholar 

  119. Migliazza, A. et al. Molecular pathogenesis of B-cell chronic lymphocytic leukemia: analysis of 13q14 chromosomal deletions. Curr. Top. Microbiol. Immunol. 252, 275–284 (2000).

    CAS  PubMed  Google Scholar 

  120. Migliazza, A. et al. Nucleotide sequence, transcription map, and mutation analysis of the 13q14 chromosomal region deleted in B-cell chronic lymphocytic leukemia. Blood 97, 2098–2104 (2001).

    Article  CAS  PubMed  Google Scholar 

  121. Corcoran, M. M. et al. DLEU2 encodes an antisense RNA for the putative bicistronic RFP2/LEU5 gene in humans and mouse. Genes Chromosomes Cancer 40, 285–297 (2004). This paper showed that DLEU2 encodes a putative non-classical antisense RNA with one exon directly overlapping the first exon of TRIM13 in the opposite orientation, suggesting that antisense RNA from DLEU2 regulates the expression level of TRIM13.

    Article  CAS  PubMed  Google Scholar 

  122. Brzoska, P. M. et al. The product of the ataxia-telangiectasia group D complementing gene, ATDC, interacts with a protein kinase C substrate and inhibitor. Proc. Natl Acad. Sci. USA 92, 7824–7828 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Kapp, L. N. & Painter, R. B. Stable radioresistance in ataxia-telangiectasia cells containing DNA from normal human cells. Int. J. Radiat. Biol. 56, 667–675 (1989).

    Article  CAS  PubMed  Google Scholar 

  124. Kapp, L. N. et al. Cloning of a candidate gene for ataxia-telangiectasia group D. Am. J. Hum. Genet. 51, 45–54 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Richard, C. W. et al. A radiation hybrid map of human chromosome 11q22-q23 containing the ataxia-telangiectasia disease locus. Genomics 17, 1–5 (1993).

    Article  CAS  PubMed  Google Scholar 

  126. Yuan, Z. et al. The ATDC (TRIM29) protein binds p53 and antagonizes p53-mediated functions. Mol. Cell. Biol. 30, 3004–3015 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Yuan, Z., Peng, L., Radhakrishnan, R. & Seto, E. Histone deacetylase 9 (HDAC9) regulates the functions of the ATDC (TRIM29) protein. J. Biol. Chem. 285, 39329–39338 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Sho, T. et al. TRIM29 negatively regulates p53 via inhibition of Tip60. Biochim. Biophys. Acta 1813, 1245–1253 (2011).

    Article  CAS  PubMed  Google Scholar 

  129. Hawthorn, L., Stein, L., Panzarella, J., Loewen, G. M. & Baumann, H. Characterization of cell-type specific profiles in tissues and isolated cells from squamous cell carcinomas of the lung. Lung Cancer 53, 129–142 (2006).

    Article  PubMed  Google Scholar 

  130. Dyrskjot, L. et al. Gene expression in the urinary bladder: a common carcinoma in situ gene expression signature exists disregarding histopathological classification. Cancer Res. 64, 4040–4048 (2004).

    Article  CAS  PubMed  Google Scholar 

  131. Glebov, O. K. et al. Gene expression patterns distinguish colonoscopically isolated human aberrant crypt foci from normal colonic mucosa. Cancer Epidemiol. Biomarkers Prev. 15, 2253–2262 (2006).

    Article  CAS  PubMed  Google Scholar 

  132. Santin, A. D. et al. Gene expression profiles in primary ovarian serous papillary tumors and normal ovarian epithelium: identification of candidate molecular markers for ovarian cancer diagnosis and therapy. Int. J. Cancer 112, 14–25 (2004).

    Article  CAS  PubMed  Google Scholar 

  133. Mutter, G. L. et al. Global expression changes of constitutive and hormonally regulated genes during endometrial neoplastic transformation. Gynecol. Oncol. 83, 177–185 (2001).

    Article  CAS  PubMed  Google Scholar 

  134. Zhan, F. et al. Global gene expression profiling of multiple myeloma, monoclonal gammopathy of undetermined significance, and normal bone marrow plasma cells. Blood 99, 1745–1757 (2002).

    Article  CAS  PubMed  Google Scholar 

  135. Wang, L. et al. Oncogenic function of ATDC in pancreatic cancer through Wnt pathway activation and β-catenin stabilization. Cancer Cell 15, 207–219 (2009). This paper demonstrated that TRIM29 expression is correlated with high expression level of β-catenin in pancreatic cancers and it causes this through stabilization of disheveled 2, promoting cancer cell proliferation and metastasis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Kosaka, Y. et al. Tripartite motif-containing 29 (TRIM29) is a novel marker for lymph node metastasis in gastric cancer. Ann. Surg. Oncol. 14, 2543–2549 (2007).

    Article  PubMed  Google Scholar 

  137. Gongora, C., Tissot, C., Cerdan, C. & Mechti, N. The interferon-inducible Staf50 gene is downregulated during T cell costimulation by CD2 and CD28. J. Interferon Cytokine Res. 20, 955–961 (2000).

    Article  CAS  PubMed  Google Scholar 

  138. Obad, S. et al. Staf50 is a novel p53 target gene conferring reduced clonogenic growth of leukemic U-937 cells. Oncogene 23, 4050–4059 (2004).

    Article  CAS  PubMed  Google Scholar 

  139. Dokmanovic, M., Chang, B. D., Fang, J. & Roninson, I. B. Retinoid-induced growth arrest of breast carcinoma cells involves co-activation of multiple growth-inhibitory genes. Cancer Biol. Ther. 1, 24–27 (2002).

    Article  CAS  PubMed  Google Scholar 

  140. Sugiura, T. & Miyamoto, K. Characterization of TRIM31, upregulated in gastric adenocarcinoma, as a novel RBCC protein. J. Cell Biochem. 105, 1081–1091 (2008).

    Article  CAS  PubMed  Google Scholar 

  141. Sugiura, T. The cellular level of TRIM31, an RBCC protein overexpressed in gastric cancer, is regulated by multiple mechanisms including the ubiquitin-proteasome system. Cell Biol. Int. 35, 657–661 (2011).

    Article  CAS  PubMed  Google Scholar 

  142. Watanabe, M., Tsukiyama, T. & Hatakeyama, S. TRIM31 interacts with p52(Shc) and inhibits Src-induced anchorage-independent growth. Biochem. Biophys. Res. Commun. 388, 422–427 (2009).

    Article  CAS  PubMed  Google Scholar 

  143. Noguchi, K. et al. TRM40 promotes neddylation of IKK γ and is downregulated in gastrointestinal cancers. Carcinogenesis 32, 955–1004 (2011).

    Article  CAS  Google Scholar 

  144. Mantovani, A. & Pierotti, M. A. Cancer and inflammation: a complex relationship. Cancer Lett. 267, 180–181 (2008).

    Article  CAS  PubMed  Google Scholar 

  145. Vincent, S. R., Kwasnicka, D. A. & Fretier, P. A novel RING finger-B box-coiled-coil protein, GERP. Biochem. Biophys. Res. Commun. 279, 482–486 (2000).

    Article  CAS  PubMed  Google Scholar 

  146. Toniato, E. et al. TRIM8/GERP RING finger protein interacts with SOCS-1. J. Biol. Chem. 277, 37315–37322 (2002).

    Article  CAS  PubMed  Google Scholar 

  147. Okumura, F., Matsunaga, Y., Katayama, Y., Nakayama, K. I. & Hatakeyama, S. TRIM8 modulates STAT3 activity through negative regulation of PIAS3. J. Cell Sci. 123, 2238–2245 (2010).

    Article  CAS  PubMed  Google Scholar 

  148. Okumura, F. et al. TRIM8 regulates Nanog via Hsp90β-mediated nuclear translocation of STAT3 in embryonic stem cells. Biochim. Biophys. Acta 1813, 1784–1792 (2011).

    Article  CAS  PubMed  Google Scholar 

  149. Carinci, F. et al. Molecular classification of nodal metastasis in primary larynx squamous cell carcinoma. Transl. Res. 150, 233–245 (2007).

    Article  CAS  PubMed  Google Scholar 

  150. Richardson, P. G. et al. Frequency, characteristics, and reversibility of peripheral neuropathy during treatment of advanced multiple myeloma with bortezomib. J. Clin. Oncol. 24, 3113–3120 (2006).

    Article  CAS  PubMed  Google Scholar 

  151. Kupperman, E. et al. Evaluation of the proteasome inhibitor MLN9708 in preclinical models of human cancer. Cancer Res. 70, 1970–1980 (2010).

    Article  CAS  PubMed  Google Scholar 

  152. Vassilev, L. T. et al. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 303, 844–848 (2004).

    Article  CAS  PubMed  Google Scholar 

  153. Weissman, A. M. et al. Inhibiting Hdm2 and ubiquitin-activating enzyme: targeting the ubiquitin conjugating system in cancer. Ernst Schering Found. Symp. Proc. 2008, 171–190 (2008). This study suggested that inhibitors or activators of E3 ubiquitin ligases are more effective targets for several types of tumours and that drugs targeting individual E3 ubiquitin ligases should provide high levels of sensitivity.

    Article  CAS  Google Scholar 

  154. Clement, J. A. et al. Discovery of new pyridoacridine alkaloids from Lissoclinum cf. badium that inhibit the ubiquitin ligase activity of Hdm2 and stabilize p53. Bioorg. Med. Chem. 16, 10022–10028 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Sasiela, C. A. et al. Identification of inhibitors for MDM2 ubiquitin ligase activity from natural product extracts by a novel high-throughput electrochemiluminescent screen. J. Biomol. Screen. 13, 229–237 (2008).

    Article  CAS  PubMed  Google Scholar 

  156. Kapanadze, B. et al. A cosmid and cDNA fine physical map of a human chromosome 13q14 region frequently lost in B-cell chronic lymphocytic leukemia and identification of a new putative tumor suppressor gene, Leu5. FEBS Lett. 426, 266–270 (1998).

    Article  CAS  PubMed  Google Scholar 

  157. Baranova, A. et al. Distinct organization of the candidate tumor suppressor gene RFP2 in human and mouse: multiple mRNA isoforms in both species- and human-specific antisense transcript RFP2OS. Gene 321, 103–112 (2003).

    Article  CAS  PubMed  Google Scholar 

  158. Tyybakinoja, A., Vilpo, J. & Knuutila, S. High-resolution oligonucleotide array-CGH pinpoints genes involved in cryptic losses in chronic lymphocytic leukemia. Cytogenet. Genome Res. 118, 8–12 (2007).

    Article  CAS  PubMed  Google Scholar 

  159. Miki, T. et al. Development of a highly efficient expression cDNA cloning system: application to oncogene isolation. Proc. Natl Acad. Sci. USA 88, 5167–5171 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Dai, H., Zhao, S., Xu, L., Chen, A. & Dai, S. Expression of Efp, VEGF and bFGF in normal, hyperplastic and malignant endometrial tissue. Oncol. Rep. 23, 795–799 (2010).

    CAS  PubMed  Google Scholar 

  161. Nakayama, H., Sano, T., Motegi, A., Oyama, T. & Nakajima, T. Increasing 14-3-3 sigma expression with declining estrogen receptor α and estrogen-responsive finger protein expression defines malignant progression of endometrial carcinoma. Pathol. Int. 55, 707–715 (2005).

    Article  CAS  PubMed  Google Scholar 

  162. Aucagne, R. et al. Transcription intermediary factor 1γ is a tumor suppressor in mouse and human chronic myelomonocytic leukemia. J. Clin. Invest. 121, 2361–2370 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The author wishes to thank all members of his laboratory for their comments and Y. Soida for help in preparing the manuscript. This work was in part supported by grants for science research from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigetsugu Hatakeyama.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

DATABASES

TRIMBASE

FURTHER INFORMATION

Shigetsugu Hatakeyama's homepage

Supplementary information

Supplementary information S1 (table)

List of TRIM proteins: classifications, functions and related diseases. (PDF 841 kb)

Glossary

Ubiquitin

A small protein, highly conserved among eukaryotic species, that consists of 76 amino acids.

Proteasome

Protein degradative machinery that is found in the nucleus and cytoplasm. It is present in all eukaryotic organisms and also in archaebacteria.

Ubiquitin ligases

Enzymes that cause the attachment of ubiquitin to a lysine on a target protein via an isopeptide bond in combination with an E2 ubiquitin-conjugating enzyme.

RING-finger domain

A protein structural domain of zinc finger type that contains a Cys3HisCys4 amino acid motif that binds two zinc cations. Many proteins containing a RING finger have a key role in the ubiquitylation pathway.

Ubiquitin-activating enzyme

Enzyme responsible for the first step in ubiquitin–protein isopeptide bond formation. E1 activates ubiquitin by first adenylating with ATP the carboxyl group of ubiquitin and linking a C-terminal glycine of ubiquitin to the sulphydryl side chain moiety of a cysteine of E1.

Ubiquitin-conjugating enzyme

Enzyme that possesses a core catalytic domain required for ubiquitin conjugation by transfer from E1 and forms a thioester bond with ubiquitin.

Nucleolar caps

Unique structures surrounding a central body in the nucleus. The dark nucleolar caps appear to be pressed onto the surface of the nucleolar body, and the light nucleolar caps have a convex appearance without a clear margin between them and the nucleolar body.

TRIM motif

Protein structure comprising a RING-finger domain, a B-box type 1 and/or a B-box type 2 domain, and a coiled-coil region.

Limb-girdle muscular dystrophy type 2H

A myopathy with a predominant involvement of the pelvic or shoulder girdle musculature.

Bardet–Biedl syndrome

A syndrome characterized by retinal degeneration, genito-urinary tract malformations, cognitive impairment, obesity and polydactyly.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hatakeyama, S. TRIM proteins and cancer. Nat Rev Cancer 11, 792–804 (2011). https://doi.org/10.1038/nrc3139

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc3139

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer