Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Small integrin-binding ligand N-linked glycoproteins (SIBLINGs): multifunctional proteins in cancer

Key Points

  • Small integrin-binding ligand N-linked glycoproteins (SIBLINGs) are a family of glycophosphoproteins comprising osteopontin (OPN), bone sialoprotein (BSP), dentin matrix protein 1 (DMP1), dentin sialophosphoprotein (DSPP) and matrix extracellular phosphoglycoprotein (MEPE).

  • The genes encoding the SIBLINGs are located within a cluster on chromosome 4 and encode soluble, hydrophilic proteins sharing common functional motifs and domains, including an Arg–Gly–Asp (RGD) motif that binds αvβ3 integrin.

  • SIBLINGs were initially described as mineralized tissue-associated glycophosphoproteins and were thought to be functionally restricted to these tissues. Recent results show that they are more widely distributed and are expressed in non-mineralized normal tissue, such as metabolically active ductal epithelial cells.

  • Some SIBLINGs activate specific metalloproteinases (MMPs; BSP activates MMP2, OPN, MMP3 and DMP1, MMP9). These three SIBLINGs also bind complement factor H and prevent complement attack.

  • SIBLINGs are overexpressed in many cancers. OPN and, less so, BSP are by far the more widely studied to date and their levels of expression are correlated with tumour aggressiveness. SIBLINGs can be detected in the blood and their level of expression is associated with prognosis.

  • Among SIBLINGs, OPN is involved in almost all steps of tumour progression, including invasion, metastasis and angiogenesis.

  • In vitro and in vivo experimental models demonstrated that interference with SIBLINGs, such as small interfering RNA selective knockdown, has potential anticancer therapeutic value.

  • Identifying the specific roles of SIBLINGs in cancer–stroma interactions and signalling cascades involving growth factor–growth factor receptor and cell–matrix interactions could result in the development of additional and refined strategies for the prevention and treatment of metastases.

Abstract

Numerous components and pathways are involved in the complex interplay between cancer cells and their environment. The family of glycophosphoproteins comprising osteopontin, bone sialoprotein, dentin matrix protein 1, dentin sialophosphoprotein and matrix extracellular phosphoglycoprotein — small integrin-binding ligand N-linked glycoproteins (SIBLINGs) — are emerging as important players in many stages of cancer progression. From their detection in various human cancers to the demonstration of their key functional roles during malignant transformation, invasion and metastasis, the SIBLINGs are proteins with potential as diagnostic and prognostic tools, as well as new therapeutic targets.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Chromosomal localization and exon–intron similarities of human SIBLING genes.
Figure 2: SIBLINGs mediate cell–matrix interactions and cellular signalling.
Figure 3: The role of SIBLING proteins at different steps of the metastatic cascade.
Figure 4: SIBLINGs and their cell receptors are potential therapeutic targets for cancer therapy.

Similar content being viewed by others

References

  1. Fisher, L. W., Torchia, D. A., Fohr, B., Young, M. F. & Fedarko, N. S. Flexible structures of SIBLING proteins, bone sialoprotein, and osteopontin. Biochem. Biophys. Res. Commun. 280, 460–465 (2001). Like many other proteins that have multiple binding partners, BSP and OPN are shown by NMR to be unstructured and flexible in solution. The SIBLING family is first defined here based on common exon and intron elements.

    CAS  PubMed  Google Scholar 

  2. Chaplet, M. et al. Expression of dentin sialophospho-protein in human prostate cancer and its correlation with tumor aggressiveness. Int. J. Cancer 118, 850–856 (2006).

    CAS  PubMed  Google Scholar 

  3. Chen, J. et al. Bone sialoprotein promotes tumor cell migration in both in vitro and in vivo models. Connect. Tissue Res. 44 (Suppl. 1), 279–284 (2003).

    CAS  PubMed  Google Scholar 

  4. El-Tanani, M. K. et al. The regulation and role of osteopontin in malignant transformation and cancer. Cytokine Growth Factor Rev. 17, 463–474 (2006). This is a detailed overview of OPN-mediated cell signalling in relation to cancer progression.

    CAS  PubMed  Google Scholar 

  5. Furger, K. A., Menon, R. K., Tuck, A. B., Bramwell, V. H. & Chambers, A. F. The functional and clinical roles of osteopontin in cancer and metastasis. Curr. Mol. Med. 1, 621–632 (2001).

    CAS  PubMed  Google Scholar 

  6. Sung, V., Stubbs, J. T. 3rd, Fisher, L., Aaron, A. D. & Thompson, E. W. Bone sialoprotein supports breast cancer cell adhesion proliferation and migration through differential usage of the αvβ3 and αvβ5 integrins. J. Cell Physiol. 176, 482–494 (1998).

    CAS  PubMed  Google Scholar 

  7. Tatusova, T. A. & Madden, T. L. BLAST 2 Sequences, a new tool for comparing protein and nucleotide sequences. FEMS Microbiol Lett. 174, 247–250 (1999).

    CAS  PubMed  Google Scholar 

  8. Fisher, L. W., Whitson, S. W., Avioli, L. V. & Termine, J. D. Matrix sialoprotein of developing bone. J. Biol. Chem. 258, 12723–12727 (1983).

    CAS  PubMed  Google Scholar 

  9. George, A., Sabsay, B., Simonian, P. A. & Veis, A. Characterization of a novel dentin matrix acidic phosphoprotein. Implications for induction of biomineralization. J. Biol. Chem. 268, 12624–12630 (1993).

    CAS  PubMed  Google Scholar 

  10. Feng, J. Q. et al. Genomic organization, chromosomal mapping, and promoter analysis of the mouse dentin sialophosphoprotein (Dspp) gene, which codes for both dentin sialoprotein and dentin phosphoprotein. J. Biol. Chem. 273, 9457–9464 (1998).

    CAS  PubMed  Google Scholar 

  11. Oldberg, A., Franzen, A. & Heinegard, D. Cloning and sequence analysis of rat bone sialoprotein (osteopontin) cDNA reveals an Arg–Gly–Asp cell-binding sequence. Proc. Natl Acad. Sci. USA 83, 8819–8823 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Hunter, G. K., Hauschka, P. V., Poole, A. R., Rosenberg, L. C. & Goldberg, H. A. Nucleation and inhibition of hydroxyapatite formation by mineralized tissue proteins. Biochem. J. 317, 59–64 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Bellahcene, A. & Castronovo, V. Expression of bone matrix proteins in human breast cancer: potential roles in microcalcification formation and in the genesis of bone metastases. Bull. Cancer 84, 17–24 (1997).

    CAS  PubMed  Google Scholar 

  14. Ogbureke, K. U. & Fisher, L. W. Expression of SIBLINGs and their partner MMPs in salivary glands. J. Dent Res. 83, 664–670 (2004).

    CAS  PubMed  Google Scholar 

  15. Ogbureke, K. U. & Fisher, L. W. Renal expression of SIBLING proteins and their partner matrix metallo-proteinases (MMPs). Kidney Int. 68, 155–166 (2005).

    CAS  PubMed  Google Scholar 

  16. Ogbureke, K. U. & Fisher, L. W. SIBLING expression patterns in duct epithelia reflect the degree of metabolic activity. J. Histochem. Cytochem. 55, 403–409 (2007).

    CAS  PubMed  Google Scholar 

  17. Furger, K. A. et al. β3 integrin expression increases breast carcinoma cell responsiveness to the malignancy-enhancing effects of osteopontin. Mol. Cancer Res. 1, 810–819 (2003).

    CAS  PubMed  Google Scholar 

  18. Rangaswami, H., Bulbule, A. & Kundu, G. C. Osteopontin: role in cell signaling and cancer progression. Trends Cell Biol. 16, 79–87 (2006).

    CAS  PubMed  Google Scholar 

  19. Teramoto, H. et al. Autocrine activation of an osteopontin-CD44–Rac pathway enhances invasion and transformation by H-RasV12. Oncogene 24, 489–501 (2005).

    CAS  PubMed  Google Scholar 

  20. Agnihotri, R. et al. Osteopontin, a novel substrate for matrix metalloproteinase-3 (stromelysin-1) and matrix metalloproteinase-7 (matrilysin). J. Biol. Chem. 276, 28261–28267 (2001).

    CAS  PubMed  Google Scholar 

  21. Prince, C. W., Dickie, D. & Krumdieck, C. L. Osteopontin, a substrate for transglutaminase and factor XIII activity. Biochem. Biophys. Res. Commun. 177, 1205–1210 (1991).

    CAS  PubMed  Google Scholar 

  22. Higashikawa, F., Eboshida, A. & Yokosaki, Y. Enhanced biological activity of polymeric osteopontin. FEBS Lett. 581, 2697–2701 (2007).

    CAS  PubMed  Google Scholar 

  23. Valverde, P., Tu, Q. & Chen, J. BSP and RANKL induce osteoclastogenesis and bone resorption synergistically. J. Bone Miner. Res. 20, 1669–1679 (2005).

    CAS  PubMed  Google Scholar 

  24. Hur, E. M. et al. Osteopontin-induced relapse and progression of autoimmune brain disease through enhanced survival of activated T cells. Nat. Immunol. 8, 74–83 (2007).

    CAS  PubMed  Google Scholar 

  25. Iczkiewicz, J., Jackson, M. J., Smith, L. A., Rose, S. & Jenner, P. Osteopontin expression in substantia nigra in MPTP-treated primates and in Parkinson's disease. Brain Res. 1118, 239–250 (2006).

    CAS  PubMed  Google Scholar 

  26. Rice, J., Courter, D. L., Giachelli, C. M. & Scatena, M. Molecular mediators of αvβ3-induced endothelial cell survival. J. Vasc Res. 43, 422–436 (2006).

    CAS  PubMed  Google Scholar 

  27. Kawamura, K. et al. Differentiation, maturation, and survival of dendritic cells by osteopontin regulation. Clin. Diagn. Lab. Immunol. 12, 206–212 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Lee, J. L. et al. Osteopontin promotes integrin activation through outside-in and inside-out mechanisms: OPN–CD44V interaction enhances survival in gastrointestinal cancer cells. Cancer Res. 67, 2089–2097 (2007).

    CAS  PubMed  Google Scholar 

  29. Brakebusch, C., Hirsch, E., Potocnik, A. & Fassler, R. Genetic analysis of β1 integrin function: confirmed, new and revised roles for a crucial family of cell adhesion molecules. J. Cell Sci. 110, 2895–2904 (1997).

    CAS  PubMed  Google Scholar 

  30. Katagiri, Y. U. et al. CD44 variants but not CD44s cooperate with β1-containing integrins to permit cells to bind to osteopontin independently of arginine–glycine–aspartic acid, thereby stimulating cell motility and chemotaxis. Cancer Res. 59, 219–226 (1999).

    CAS  PubMed  Google Scholar 

  31. Christensen, B. et al. Cell type-specific post-translational modifications of mouse osteopontin are associated with different adhesive properties. J. Biol. Chem. 282, 19463–19472 (2007).

    CAS  PubMed  Google Scholar 

  32. Pecheur, I. et al. Integrin αvβ3 expression confers on tumor cells a greater propensity to metastasize to bone. FASEB J. 16, 1266–1268 (2002).

    CAS  PubMed  Google Scholar 

  33. van der Pluijm, G. et al. Bone sialoprotein peptides are potent inhibitors of breast cancer cell adhesion to bone. Cancer Res. 56, 1948–1955 (1996).

    CAS  PubMed  Google Scholar 

  34. Standal, T. et al. Osteopontin is an adhesive factor for myeloma cells and is found in increased levels in plasma from patients with multiple myeloma. Haematologica 89, 174–182 (2004).

    CAS  PubMed  Google Scholar 

  35. Kulkarni, G. V., Chen, B., Malone, J. P., Narayanan, A. S. & George, A. Promotion of selective cell attachment by the RGD sequence in dentine matrix protein 1. Arch. Oral Biol. 45, 475–484 (2000).

    CAS  PubMed  Google Scholar 

  36. Sharp, J. A., Waltham, M., Williams, E. D., Henderson, M. A. & Thompson, E. W. Transfection of MDA-MB-231 human breast carcinoma cells with bone sialoprotein (BSP) stimulates migration and invasion in vitro and growth of primary and secondary tumors in nude mice. Clin. Exp. Metastasis 21, 19–29 (2004).

    CAS  PubMed  Google Scholar 

  37. Khodavirdi, A. C. et al. Increased expression of osteopontin contributes to the progression of prostate cancer. Cancer Res. 66, 883–888 (2006).

    CAS  PubMed  Google Scholar 

  38. Angelucci, A. et al. Osteopontin enhances the cell proliferation induced by the epidermal growth factor in human prostate cancer cells. Prostate 59, 157–166 (2004).

    CAS  PubMed  Google Scholar 

  39. Lecrone, V., Li, W., Devoll, R. E., Logothetis, C. & Farach-Carson, M. C. Calcium signals in prostate cancer cells: specific activation by bone-matrix proteins. Cell Calcium 27, 35–42 (2000).

    CAS  PubMed  Google Scholar 

  40. Bell, W. R. The fibrinolytic system in neoplasia. Semin. Thromb. Hemost 22, 459–478 (1996).

    CAS  PubMed  Google Scholar 

  41. Price, J. T. & Thompson, E. W. Mechanisms of tumour invasion and metastasis: emerging targets for therapy. Expert Opin. Ther. Targets. 6, 217–233 (2002).

    CAS  PubMed  Google Scholar 

  42. Hayashi, C. et al. Serum osteopontin, an enhancer of tumor metastasis to bone, promotes B16 melanoma cell migration. J. Cell Biochem. 101, 979–986 (2007).

    CAS  PubMed  Google Scholar 

  43. Khan, S. A. et al. Enhanced cell surface CD44 variant (v6, v9) expression by osteopontin in breast cancer epithelial cells facilitates tumor cell migration: novel post-transcriptional, post-translational regulation. Clin. Exp. Metastasis 22, 663–673 (2005).

    CAS  PubMed  Google Scholar 

  44. Caers, J. et al. The involvement of osteopontin and its receptors in multiple myeloma cell survival, migration and invasion in the murine 5T33MM model. Br. J. Haematol. 132, 469–477 (2006). This paper describes possible roles of OPN interactions with integrins and CD44 variants in survival, increasing cell proliferation, inhibiting apoptosis and promoting cell migration, as well as metalloproteinase activity in multiple myeloma cells. It used blocking antibodies (against CD44 and/or αvβ3) to block migration.

    CAS  PubMed  Google Scholar 

  45. Kolb, A. et al. Osteopontin influences the invasiveness of pancreatic cancer cells and is increased in neoplastic and inflammatory conditions. Cancer Biol. Ther. 4, 740–746 (2005).

    CAS  PubMed  Google Scholar 

  46. Hu, Z. et al. Overexpression of osteopontin is associated with more aggressive phenotypes in human non-small cell lung cancer. Clin. Cancer Res. 11, 4646–4652 (2005).

    CAS  PubMed  Google Scholar 

  47. Tuck, A. B. et al. Osteopontin induces increased invasiveness and plasminogen activator expression of human mammary epithelial cells. Oncogene 18, 4237–4246 (1999).

    CAS  PubMed  Google Scholar 

  48. Mi, Z., Guo, H., Wai, P. Y., Gao, C. & Kuo, P. C. Integrin-linked kinase regulates osteopontin-dependent MMP-2 and uPA expression to convey metastatic function in murine mammary epithelial cancer cells. Carcinogenesis 27, 1134–1145 (2006).

    CAS  PubMed  Google Scholar 

  49. Das, R., Mahabeleshwar, G. H. & Kundu, G. C. Osteopontin induces AP-1-mediated secretion of urokinase-type plasminogen activator through c-Src-dependent epidermal growth factor receptor transactivation in breast cancer cells. J. Biol. Chem. 279, 11051–11064 (2004).

    CAS  PubMed  Google Scholar 

  50. Teti, A. et al. Activation of MMP-2 by human GCT23 giant cell tumour cells induced by osteopontin, bone sialoprotein and GRGDSP peptides is RGD and cell shape change dependent. Int. J. Cancer 77, 82–93 (1998).

    CAS  PubMed  Google Scholar 

  51. Rangaswami, H., Bulbule, A. & Kundu, G. C. Nuclear factor inducing kinase: a key regulator in osteopontin- induced MAPK/IκB kinase dependent NF-κB-mediated promatrix metalloproteinase-9 activation. Glycoconj. J. 23, 221–232 (2006).

    CAS  PubMed  Google Scholar 

  52. Rangaswami, H. & Kundu, G. C. Osteopontin stimulates melanoma growth and lung metastasis through NIK/MEKK1-dependent MMP-9 activation pathways. Oncol. Rep. 18, 909–915 (2007).

    CAS  PubMed  Google Scholar 

  53. Fedarko, N. S., Jain, A., Karadag, A. & Fisher, L. W. Three small integrin binding ligand N-linked glycoproteins (SIBLINGs) bind and activate specific matrix metalloproteinases. FASEB J. 18, 734–736 (2004). This paper shows that specific SIBLINGs bind MMPs as well as release them from inhibition by TIMPs and low-molecular-weight inhibitors. CFH blocks formation of the SIBLING–MMP complexes and can inactivate previously formed complexes and therefore potentially acts as a negative regulator of many SIBLING functions.

    CAS  PubMed  Google Scholar 

  54. Fisher, L. W., Jain, A., Tayback, M. & Fedarko, N. S. Small integrin binding ligand N-linked glycoprotein gene family expression in different cancers. Clin. Cancer Res. 10, 8501–8511 (2004). This paper explores SIBLINGs expression in various cancer types on cancer patient microarray. The degree of correlation between a SIBLING and its partner MMP expression within a given cancer type was also addressed.

    CAS  PubMed  Google Scholar 

  55. Karadag, A., Ogbureke, K. U., Fedarko, N. S. & Fisher, L. W. Bone sialoprotein, matrix metallo-proteinase 2, and αvβ3 integrin in osteotropic cancer cell invasion. J. Natl Cancer Inst. 96, 956–965 (2004).

    CAS  PubMed  Google Scholar 

  56. Karadag, A., Fedarko, N. S. & Fisher, L. W. Dentin matrix protein 1 enhances invasion potential of colon cancer cells by bridging matrix metalloproteinase-9 to integrins and CD44. Cancer Res. 65, 11545–11552 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Takafuji, V., Forgues, M., Unsworth, E., Goldsmith, P. & Wang, X. W. An osteopontin fragment is essential for tumor cell invasion in hepatocellular carcinoma. Oncogene 26, 6361–6371 (2007).

    CAS  PubMed  Google Scholar 

  58. Mangala, L. S., Arun, B., Sahin, A. A. & Mehta, K. Tissue transglutaminase-induced alterations in extracellular matrix inhibit tumor invasion. Mol. Cancer 4, 33 (2005).

    PubMed  PubMed Central  Google Scholar 

  59. Fidler, I. J. The pathogenesis of cancer metastasis: the 'seed and soil' hypothesis revisited. Nature Rev. Cancer 3, 453–458 (2003).

    CAS  Google Scholar 

  60. Oates, A. J., Barraclough, R. & Rudland, P. S. The identification of osteopontin as a metastasis-related gene product in a rodent mammary tumour model. Oncogene 13, 97–104 (1996).

    CAS  PubMed  Google Scholar 

  61. Wai, P. Y. & Kuo, P. C. The role of Osteopontin in tumor metastasis. J. Surg. Res. 121, 228–241 (2004).

    CAS  PubMed  Google Scholar 

  62. Adwan, H., Bauerle, T. J. & Berger, M. R. Downregulation of osteopontin and bone sialoprotein II is related to reduced colony formation and metastasis formation of MDA-MB-231 human breast cancer cells. Cancer Gene Ther. 11, 109–120 (2004). This was the first paper to demonstrate that downregulating the expression of OPN or BSP in cancer cells inhibits the formation of bone metastases in vivo.

    CAS  PubMed  Google Scholar 

  63. Nemoto, H. et al. Osteopontin deficiency reduces experimental tumor cell metastasis to bone and soft tissues. J. Bone Miner. Res. 16, 652–659 (2001).

    CAS  PubMed  Google Scholar 

  64. Bellahcene, A., Merville, M. P. & Castronovo, V. Expression of bone sialoprotein, a bone matrix protein, in human breast cancer. Cancer Res. 54, 2823–2826 (1994). The first immunohistochemical demonstration of ectopic BSP expression in human breast cancer tumours.

    CAS  PubMed  Google Scholar 

  65. Waltregny, D. et al. Prognostic value of bone sialoprotein expression in clinically localized human prostate cancer. J. Natl Cancer Inst. 90, 1000–1008 (1998).

    CAS  PubMed  Google Scholar 

  66. Bellahcene, A. et al. Expression of bone sialoprotein in human lung cancer. Calcif. Tissue Int. 61, 183–188 (1997).

    CAS  PubMed  Google Scholar 

  67. Bellahcene, A. et al. Bone sialoprotein mRNA and protein expression in human multiple myeloma cell lines and patients. Br. J. Haematol. 111, 1118–1121 (2000).

    CAS  PubMed  Google Scholar 

  68. Kang, Y. et al. A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 3, 537–549 (2003).

    CAS  PubMed  Google Scholar 

  69. Zhang, J. H. et al. Over-expression of bone sialoprotein enhances bone metastasis of human breast cancer cells in a mouse model. Int. J. Oncol. 23, 1043–1048 (2003).

    CAS  PubMed  Google Scholar 

  70. Zhang, J. H. et al. Bone sialoprotein promotes bone metastasis of a non-bone-seeking clone of human breast cancer cells. Anticancer Res. 24, 1361–1368 (2004).

    CAS  PubMed  Google Scholar 

  71. Koeneman, K. S., Yeung, F. & Chung, L. W. Osteomimetic properties of prostate cancer cells: a hypothesis supporting the predilection of prostate cancer metastasis and growth in the bone environment. Prostate 39, 246–261 (1999). A detailed study of the 'osteomimicry hypothesis' to explain the propensity of prostate cancer cells to grow and establish in the bone microenvironment.

    CAS  PubMed  Google Scholar 

  72. Zayzafoon, M., Abdulkadir, S. A. & McDonald, J. M. Notch signaling and ERK activation are important for the osteomimetic properties of prostate cancer bone metastatic cell lines. J. Biol. Chem. 279, 3662–3670 (2004).

    CAS  PubMed  Google Scholar 

  73. Bellahcene, A. et al. Transcriptome analysis reveals an osteoblast-like phenotype for human osteotropic breast cancer cells. Breast Cancer Res. Treat 101, 135–148 (2007).

    CAS  PubMed  Google Scholar 

  74. Aggarwal, B. B., Shishodia, S., Sandur, S. K., Pandey, M. K. & Sethi, G. Inflammation and cancer: how hot is the link? Biochem. Pharmacol. 72, 1605–1621 (2006).

    CAS  PubMed  Google Scholar 

  75. McKee, M. D. & Nanci, A. Secretion of Osteopontin by macrophages and its accumulation at tissue surfaces during wound healing in mineralized tissues: a potential requirement for macrophage adhesion and phagocytosis. Anat. Rec. 245, 394–409 (1996).

    CAS  PubMed  Google Scholar 

  76. O'Regan, A. W. et al. Osteopontin is associated with T cells in sarcoid granulomas and has T cell adhesive and cytokine-like properties in vitro. J. Immunol. 162, 1024–1031 (1999).

    CAS  PubMed  Google Scholar 

  77. Weber, G. F. & Cantor, H. The immunology of η-1/osteopontin. Cytokine Growth Factor Rev. 7, 241–248 (1996).

    CAS  PubMed  Google Scholar 

  78. Giachelli, C. M., Lombardi, D., Johnson, R. J., Murry, C. E. & Almeida, M. Evidence for a role of osteopontin in macrophage infiltration in response to pathological stimuli in vivo. Am. J. Pathol. 152, 353–358 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Koh, A. et al. Role of osteopontin in neutrophil function. Immunology 122, 466–475 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Wai, P. Y. et al. Osteopontin inhibits macrophage nitric oxide synthesis to enhance tumor proliferation. Surgery 140, 132–140 (2006).

    PubMed  Google Scholar 

  81. Shiba, H. et al. Macrophage inflammatory protein-3α and β-defensin-2 stimulate dentin sialophosphoprotein gene expression in human pulp cells. Biochem. Biophys. Res. Commun. 306, 867–871 (2003).

    CAS  PubMed  Google Scholar 

  82. Coussens, L. M. & Werb, Z. Inflammation and cancer. Nature 420, 860–867 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Volanakis, J. E. in The Human Complement System in Health and Disease (eds Volankis, J. E. & Frank, M. M.) 9–32 (Marcel Dekker, New York, 1998).

    Google Scholar 

  84. Fedarko, N. S., Fohr, B., Robey, P. G., Young, M. F. & Fisher, L. W. Factor H binding to bone sialoprotein and osteopontin enables tumor cell evasion of complement-mediated attack. J. Biol. Chem. 275, 16666–16672 (2000).

    CAS  PubMed  Google Scholar 

  85. Jain, A., Karadag, A., Fohr, B., Fisher, L. W. & Fedarko, N. S. Three SIBLINGs (small integrin-binding ligand, N-linked glycoproteins) enhance factor H's cofactor activity enabling MCP-like cellular evasion of complement-mediated attack. J. Biol. Chem. 277, 13700–13708 (2002).

    CAS  PubMed  Google Scholar 

  86. Nam, J. S. et al. Bone sialoprotein mediates the tumor cell-targeted prometastatic activity of transforming growth factor β in a mouse model of breast cancer. Cancer Res. 66, 6327–6335 (2006). This paper reports a direct association between TGFβ pro-metastatic activity and BSP expression in breast cancer cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Brooks, P. C., Clark, R. A. & Cheresh, D. A. Requirement of vascular integrin αvβ3 for angiogenesis. Science 264, 569–571 (1994).

    CAS  PubMed  Google Scholar 

  88. Cui, R. et al. Abrogation of the interaction between osteopontin and αvβ3 integrin reduces tumor growth of human lung cancer cells in mice. Lung Cancer 57, 302–310 (2007). A demonstration in a mouse model that disruption of the interaction of osteopontin with the αvβ3 integrin has therapeutic potential to diminish tumour progression.

    PubMed  Google Scholar 

  89. Tang, H. et al. Inhibition of osteopontin would suppress angiogenesis in gastric cancer. Biochem. Cell Biol. 85, 103–110 (2007).

    CAS  PubMed  Google Scholar 

  90. Bellahcene, A. et al. Bone sialoprotein mediates human endothelial cell attachment and migration and promotes angiogenesis. Circ. Res. 86, 885–891 (2000). The first study to show BSP has angiogenesis-promoting activity using in vitro and in vivo assays.

    CAS  PubMed  Google Scholar 

  91. Chakraborty, G., Jain, S. & Kundu, G. C. Osteopontin promotes vascular endothelial growth factor-dependent breast tumor growth and angiogenesis via autocrine and paracrine mechanisms. Cancer Res. 68, 152–161 (2008).

    CAS  PubMed  Google Scholar 

  92. Robey, P. G. Vertebrate mineralized matrix proteins: structure and function. Connect. Tissue Res. 35, 131–136 (1996).

    CAS  PubMed  Google Scholar 

  93. Giachelli, C. M. Inducers and inhibitors of biomineralization: lessons from pathological calcification. Orthod. Craniofac. Res. 8, 229–231 (2005).

    CAS  PubMed  Google Scholar 

  94. Carlinfante, G. et al. Differential expression of osteopontin and bone sialoprotein in bone metastasis of breast and prostate carcinoma. Clin. Exp. Metastasis 20, 437–444 (2003).

    CAS  PubMed  Google Scholar 

  95. Tunio, G. M., Hirota, S., Nomura, S. & Kitamura, Y. Possible relation of osteopontin to development of psammoma bodies in human papillary thyroid cancer. Arch. Pathol. Lab. Med. 122, 1087–1090 (1998).

    CAS  PubMed  Google Scholar 

  96. Steitz, S. A. et al. Osteopontin inhibits mineral deposition and promotes regression of ectopic calcification. Am. J. Pathol. 161, 2035–2046 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Komori, T. Regulation of osteoblast differentiation by transcription factors. J. Cell Biochem. 99, 1233–1239 (2006).

    CAS  PubMed  Google Scholar 

  98. Sato, M. et al. Transcriptional regulation of osteopontin gene in vivo by PEBP2αA/CBFA1 and ETS1 in the skeletal tissues. Oncogene 17, 1517–1525 (1998).

    CAS  PubMed  Google Scholar 

  99. Javed, A. et al. runt homology domain transcription factors (RUNX, CBFA, and AML) mediate repression of the bone sialoprotein promoter: evidence for promoter context-dependent activity of Cbfa proteins. Mol. Cell Biol. 21, 2891–2905 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Fen, J. Q. et al. Dentin matrix protein 1, a target molecule for CBFA1 in bone, is a unique bone marker gene. J. Bone Miner. Res. 17, 1822–1831 (2002).

    PubMed  Google Scholar 

  101. Chen, S. et al. Differential regulation of dentin sialophosphoprotein expression by RUNX2 during odontoblast cytodifferentiation. J. Biol. Chem. 280, 29717–29727 (2005).

    CAS  PubMed  Google Scholar 

  102. Blyth, K., Cameron, E. R. & Neil, J. C. The RUNX genes: gain or loss of function in cancer. Nature Rev. Cancer 5, 376–387 (2005).

    CAS  Google Scholar 

  103. Pratap, J. et al. Regulatory roles of RUNX2 in metastatic tumor and cancer cell interactions with bone. Cancer Metastasis Rev. 25, 589–600 (2006).

    CAS  PubMed  Google Scholar 

  104. Inman, C. K. & Shore, P. The osteoblast transcription factor RUNX2 is expressed in mammary epithelial cells and mediates osteopontin expression. J. Biol. Chem. 278, 48684–48689 (2003).

    CAS  PubMed  Google Scholar 

  105. Barnes, G. L. et al. Osteoblast-related transcription factors RUNX2 (CBFA1/AML3) and MSX2 mediate the expression of bone sialoprotein in human metastatic breast cancer cells. Cancer Res. 63, 2631–2637 (2003).

    CAS  PubMed  Google Scholar 

  106. Colla, S. et al. Human myeloma cells express the bone regulating gene RUNX2/CBFA1 and produce osteopontin that is involved in angiogenesis in multiple myeloma patients. Leukemia 19, 2166–2176 (2005).

    CAS  PubMed  Google Scholar 

  107. Agrawal, D. et al. Osteopontin identified as lead marker of colon cancer progression, using pooled sample expression profiling. J. Natl Cancer Inst. 94, 513–521 (2002).

    CAS  PubMed  Google Scholar 

  108. Wai, P. Y. et al. ETS-1 and RUNX2 regulate transcription of a metastatic gene, osteopontin, in murine colorectal cancer cells. J. Biol. Chem. 281, 18973–18982 (2006).

    CAS  PubMed  Google Scholar 

  109. El-Tanani, M. K. et al. BRCA1 suppresses osteopontin-mediated breast cancer. J. Biol. Chem. 281, 26587–26601 (2006).

    CAS  PubMed  Google Scholar 

  110. Packer, L. et al. Osteopontin is a downstream effector of the PI3-kinase pathway in melanomas that is inversely correlated with functional PTEN. Carcinogenesis 27, 1778–1786 (2006).

    CAS  PubMed  Google Scholar 

  111. Kim, M. S. et al. Hyaluronic acid induces osteopontin via the phosphatidylinositol 3-kinase/Akt pathway to enhance the motility of human glioma cells. Cancer Res. 65, 686–691 (2005).

    CAS  PubMed  Google Scholar 

  112. Samant, R. S. et al. Breast cancer metastasis suppressor 1 (BRMS1) inhibits osteopontin transcription by abrogating NFκB activation. Mol. Cancer 6, 6 (2007).

    PubMed  PubMed Central  Google Scholar 

  113. Senger, D., Asch, B., Smith, B., Perruzzi, C. & Dvorak, H. A secreted phosphoprotein marker for neoplastic transformation of both epithelial and fibroblastic cells. Nature 302, 714–715 (1983).

    CAS  PubMed  Google Scholar 

  114. Senger, D. R., Wirth, D. F. & Hynes, R. O. Transformed mammalian cells secrete specific proteins and phosphoproteins. Cell 16, 885–893 (1979).

    CAS  PubMed  Google Scholar 

  115. Bellahcene, A. et al. Ectopic expression of bone sialoprotein in human thyroid cancer. Thyroid 8, 637–641 (1998).

    CAS  PubMed  Google Scholar 

  116. Detry, C. et al. Detection of bone sialoprotein in human (pre)neoplastic lesions of the uterine cervix. Calcif. Tissue Int. 73, 9–14 (2003).

    CAS  PubMed  Google Scholar 

  117. Kayed, H. et al. Effects of bone sialoprotein on pancreatic cancer cell growth, invasion and metastasis. Cancer Lett. 245, 171–183 (2007).

    CAS  PubMed  Google Scholar 

  118. Riminucci, M. et al. Coexpression of bone sialoprotein (BSP) and the pivotal transcriptional regulator of osteogenesis, CBFA1/RUNX2, in malignant melanoma. Calcif. Tissue Int. 73, 281–289 (2003).

    CAS  PubMed  Google Scholar 

  119. Ogbureke, K. U. et al. Up-regulation of SIBLING proteins and correlation with cognate MMP expression in oral cancer. Oral Oncol. 43, 920–932 (2007).

    CAS  PubMed  Google Scholar 

  120. Chaplet, M. et al. Dentin matrix protein 1 is expressed in human lung cancer. J. Bone Miner. Res. 18, 1506–1512 (2003).

    CAS  PubMed  Google Scholar 

  121. Bucciarelli, E. et al. Low dentin matrix protein 1 expression correlates with skeletal metastases development in breast cancer patients and enhances cell migratory capacity in vitro. Breast Cancer Res. Treat. 105, 95–104 (2007).

    CAS  PubMed  Google Scholar 

  122. Rowe, P. S. et al. MEPE, a new gene expressed in bone marrow and tumors causing osteomalacia. Genomics 67, 54–68 (2000).

    CAS  PubMed  Google Scholar 

  123. Agrawal, D. et al. Osteopontin identified as colon cancer tumor progression marker. C. R. Biol. 326, 1041–1043 (2003).

    CAS  PubMed  Google Scholar 

  124. Rohde, F. et al. Expression of osteopontin, a target gene of de-regulated Wnt signaling, predicts survival in colon cancer. Int. J. Cancer (2007).

  125. Bao, L. H., Sakaguchi, H., Fujimoto, J. & Tamaya, T. Osteopontin in metastatic lesions as a prognostic marker in ovarian cancers. J. Biomed. Sci. 14, 373–381 (2007).

    CAS  PubMed  Google Scholar 

  126. Matusan, K., Dordevic, G., Stipic, D., Mozetic, V. & Lucin, K. Osteopontin expression correlates with prognostic variables and survival in clear cell renal cell carcinoma. J. Surg. Oncol. 94, 325–331 (2006).

    CAS  PubMed  Google Scholar 

  127. Sakaguchi, H., Fujimoto, J., Hong, B. L. & Tamaya, T. Clinical implications of osteopontin in metastatic lesions of uterine cervical cancers. Cancer Lett. 247, 98–102 (2007).

    CAS  PubMed  Google Scholar 

  128. Rudland, P. S. et al. Prognostic significance of the metastasis-associated protein osteopontin in human breast cancer. Cancer Res. 62, 3417–3427 (2002). This paper demonstrates on a large collection of breast cancer specimens that OPN expression levels are an independent prognostic indicator that correlates with reduced patient survival.

    CAS  PubMed  Google Scholar 

  129. Forootan, S. S. et al. Prognostic significance of osteopontin expression in human prostate cancer. Int. J. Cancer 118, 2255–2261 (2006).

    CAS  PubMed  Google Scholar 

  130. Bache, M. et al. Immunohistochemical detection of osteopontin in advanced head-and-neck cancer: prognostic role and correlation with oxygen electrode measurements, hypoxia-inducible-factor-1α-related markers, and hemoglobin levels. Int. J. Radiat. Oncol. Biol. Phys. 66, 1481–1487 (2006).

    CAS  PubMed  Google Scholar 

  131. Celetti, A. et al. Overexpression of the cytokine osteopontin identifies aggressive laryngeal squamous cell carcinomas and enhances carcinoma cell proliferation and invasiveness. Clin. Cancer Res. 11, 8019–8027 (2005).

    CAS  PubMed  Google Scholar 

  132. Guarino, V. et al. Osteopontin is overexpressed in human papillary thyroid carcinomas and enhances thyroid carcinoma cell invasiveness. J. Clin. Endocrinol. Metab. 90, 5270–5278 (2005).

    CAS  PubMed  Google Scholar 

  133. Donati, V. et al. Osteopontin expression and prognostic significance in non-small cell lung cancer. Clin. Cancer Res. 11, 6459–6465 (2005).

    CAS  PubMed  Google Scholar 

  134. Pan, H. W. et al. Overexpression of osteopontin is associated with intrahepatic metastasis, early recurrence, and poorer prognosis of surgically resected hepatocellular carcinoma. Cancer 98, 119–127 (2003).

    CAS  PubMed  Google Scholar 

  135. Bellahcene, A., Menard, S., Bufalino, R., Moreau, L. & Castronovo, V. Expression of bone sialoprotein in primary human breast cancer is associated with poor survival. Int. J. Cancer 69, 350–353 (1996).

    CAS  PubMed  Google Scholar 

  136. Papotti, M. et al. Bone sialoprotein is predictive of bone metastases in resectable non-small-cell lung cancer: a retrospective case-control study. J. Clin. Oncol. 24, 4818–4824 (2006). This study identifies BSP expression as a predictive factor of bone metastasis development in patients with resectable NSCLC.

    CAS  PubMed  Google Scholar 

  137. Fedarko, N. S., Jain, A., Karadag, A., Van Eman, M. R. & Fisher, L. W. Elevated serum bone sialoprotein and osteopontin in colon, breast, prostate, and lung cancer. Clin. Cancer Res. 7, 4060–4066 (2001).

    CAS  PubMed  Google Scholar 

  138. Scatena, M., Liaw, L. & Giachelli, C. M. Osteopontin: a multifunctional molecule regulating chronic inflammation and vascular disease. Arterioscler Thromb. Vasc Biol. 27, 2302–2309 (2007).

    CAS  PubMed  Google Scholar 

  139. Bramwell, V. H. et al. Serial plasma osteopontin levels have prognostic value in metastatic breast cancer. Clin. Cancer Res. 12, 3337–3343 (2006).

    CAS  PubMed  Google Scholar 

  140. Ramankulov, A., Lein, M., Kristiansen, G., Loening, S. A. & Jung, K. Plasma osteopontin in comparison with bone markers as indicator of bone metastasis and survival outcome in patients with prostate cancer. Prostate 67, 330–340 (2007).

    PubMed  Google Scholar 

  141. Ramankulov, A. et al. Elevated plasma osteopontin as marker for distant metastases and poor survival in patients with renal cell carcinoma. J. Cancer Res. Clin. Oncol. 133, 643–652 (2007).

    CAS  PubMed  Google Scholar 

  142. Chang, Y. S. et al. Elevated circulating level of osteopontin is associated with advanced disease state of non-small cell lung cancer. Lung Cancer 57, 373–380 (2007).

    PubMed  Google Scholar 

  143. Wu, C. Y. et al. Elevated plasma osteopontin associated with gastric cancer development, invasion and survival. Gut 56, 782–789 (2007).

    CAS  PubMed  Google Scholar 

  144. Petrik, D. et al. Plasma osteopontin is an independent prognostic marker for head and neck cancers. J. Clin. Oncol. 24, 5291–5297 (2006).

    CAS  PubMed  Google Scholar 

  145. Zhang, H. et al. The prognostic significance of preoperative plasma levels of osteopontin in patients with hepatocellular carcinoma. J. Cancer Res. Clin. Oncol. 132, 709–717 (2006).

    CAS  PubMed  Google Scholar 

  146. Koopmann, J. et al. Evaluation of osteopontin as biomarker for pancreatic adenocarcinoma. Cancer Epidemiol. Biomarkers Prev. 13, 487–491 (2004).

    CAS  PubMed  Google Scholar 

  147. Diel, I. J. et al. Serum bone sialoprotein in patients with primary breast cancer is a prognostic marker for subsequent bone metastasis. Clin. Cancer Res. 5, 3914–3919 (1999).

    CAS  PubMed  Google Scholar 

  148. Woitge, H. W. et al. Serum bone sialoprotein as a marker of tumour burden and neoplastic bone involvement and as a prognostic factor in multiple myeloma. Br. J. Cancer 84, 344–351 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Jung, K. et al. Comparison of 10 serum bone turnover markers in prostate carcinoma patients with bone metastatic spread: diagnostic and prognostic implications. Int. J. Cancer 111, 783–791 (2004).

    CAS  PubMed  Google Scholar 

  150. Ito, T. et al. An inducible short-hairpin RNA vector against osteopontin reduces metastatic potential of human esophageal squamous cell carcinoma in vitro and in vivo. Clin. Cancer Res. 12, 1308–1316 (2006).

    CAS  PubMed  Google Scholar 

  151. Wai, P. Y. et al. Osteopontin silencing by small interfering RNA suppresses in vitro and in vivo CT26 murine colon adenocarcinoma metastasis. Carcinogenesis 26, 741–751 (2005).

    CAS  PubMed  Google Scholar 

  152. de Fougerolles, A., Vornlocher, H. P., Maraganore, J. & Lieberman, J. Interfering with disease: a progress report on siRNA-based therapeutics. Nature Rev. Drug Discov. 6, 443–453 (2007).

    CAS  Google Scholar 

  153. Lien, S. & Lowman, H. B. Therapeutic anti-VEGF antibodies. Handb. Exp. Pharmacol. 181, 131–150 (2008).

    CAS  Google Scholar 

  154. Ye, Q. H. et al. Predicting hepatitis B virus-positive metastatic hepatocellular carcinomas using gene expression profiling and supervised machine learning. Nature Med. 9, 416–423 (2003). This paper combines the demonstration that OPN is a diagnostic and prognostic marker for hepatocellular carcinoma and works as an effective target in antibody-based treatment.

    CAS  PubMed  Google Scholar 

  155. Bauerle, T. et al. Characterization of a rat model with site-specific bone metastasis induced by MDA-MB-231 breast cancer cells and its application to the effects of an antibody against bone sialoprotein. Int. J. Cancer 115, 177–186 (2005).

    PubMed  Google Scholar 

  156. Weber, G. F. The metastasis gene osteopontin: a candidate target for cancer therapy. Biochim. Biophys. Acta 1552, 61–85 (2001).

    CAS  PubMed  Google Scholar 

  157. Brooks, P. C. et al. Integrin αvβ3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels. Cell 79, 1157–1164 (1994).

    CAS  PubMed  Google Scholar 

  158. Melquist, J. J. et al. Conditionally replicating adenovirus-mediated gene therapy in bladder cancer: an orthotopic in vivo model. Urol. Oncol. 24, 362–371 (2006).

    CAS  PubMed  Google Scholar 

  159. Qin, C., Baba, O. & Butler, W. T. Post-translational modifications of sibling proteins and their roles in osteogenesis and dentinogenesis. Crit. Rev. Oral Biol. Med. 15, 126–136 (2004).

    CAS  PubMed  Google Scholar 

  160. Sreenath, T. et al. Dentin sialophosphoprotein knockout mouse teeth display widened predentin zone and develop defective dentin mineralization similar to human dentinogenesis imperfecta type III. J. Biol. Chem. 278, 24874–24880 (2003).

    CAS  PubMed  Google Scholar 

  161. Senger, D. R., Perruzzi, C. A., Papadopoulos, A. & Tenen, D. G. Purification of a human milk protein closely similar to tumor-secreted phosphoproteins and osteopontin. Biochim. Biophys. Acta 996, 43–48 (1989).

    CAS  PubMed  Google Scholar 

  162. Patarca, R., Wei, F. Y., Singh, P., Morasso, M. I. & Cantor, H. Dysregulated expression of the T cell cytokine Eta-1 in CD48 lymphocytes during the development of murine autoimmune disease. J. Exp. Med. 172, 1177–1183 (1990). An early report on the role of OPN Eta-1 in immune dysregulation. Increased OPN expression was associated with a chronic immune response and autoimmune disease.

    CAS  PubMed  Google Scholar 

  163. Shiraga, H. et al. Inhibition of calcium oxalate crystal growth in vitro by uropontin: another member of the aspartic acid-rich protein superfamily. Proc. Natl Acad. Sci. USA 89, 426–430 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Brown, L. F. et al. Expression and distribution of osteopontin in human tissues: widespread association with luminal epithelial surfaces. Mol. Biol. Cell 3, 1169–1180 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Terasawa, M. et al. Expression of dentin matrix protein 1 (DMP1) in nonmineralized tissues. J. Bone Miner. Metab. 22, 430–438 (2004).

    CAS  PubMed  Google Scholar 

  166. Shen, Q. & Christakos, S. The vitamin D receptor, RUNX2, and the Notch signaling pathway cooperate in the transcriptional regulation of osteopontin. J. Biol. Chem. 280, 40589–40598 (2005).

    CAS  PubMed  Google Scholar 

  167. Kim, H. J. et al. Okadaic acid stimulates osteopontin expression through de novo induction of AP-1. J. Cell Biochem. 87, 93–102 (2002).

    CAS  PubMed  Google Scholar 

  168. Roca, H., Phimphilai, M., Gopalakrishnan, R., Xiao, G. & Franceschi, R. T. Cooperative interactions between RUNX2 and homeodomain protein-binding sites are critical for the osteoblast-specific expression of the bone sialoprotein gene. J. Biol. Chem. 280, 30845–30855 (2005).

    CAS  PubMed  Google Scholar 

  169. Hassan, M. Q. et al. HOXA10 controls osteoblastogenesis by directly activating bone regulatory and phenotypic genes. Mol. Cell Biol. 27, 3337–3352 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Nakayama, Y. et al. Insulin-like growth factor-I increases bone sialoprotein (BSP) expression through fibroblast growth factor-2 response element and homeodomain protein-binding site in the proximal promoter of the BSP gene. J. Cell Physiol. 208, 326–335 (2006).

    CAS  PubMed  Google Scholar 

  171. Pang, J. et al. Upregulation of dentin matrix protein 1 promoter activities by core binding factor α1 in human dental pulp stem cells. Biochem. Biophys. Res. Commun. 357, 505–510 (2007).

    CAS  PubMed  Google Scholar 

  172. Narayanan, K., Ramachandran, A., Hao, J. & George, A. Transcriptional regulation of dentin matrix protein 1 (DMP1) by AP-1 (c-fos/c-jun) factors. Connect. Tissue Res. 43, 365–371 (2002).

    CAS  PubMed  Google Scholar 

  173. Chen, S. et al. Regulation of the cell type-specific dentin sialophosphoprotein gene expression in mouse odontoblasts by a novel transcription repressor and an activator CCAAT-binding factor. J. Biol. Chem. 279, 42182–42191 (2004).

    CAS  PubMed  Google Scholar 

  174. Oyama, Y., Akuzawa, N., Nagai, R. & Kurabayashi, M. PPARγ ligand inhibits osteopontin gene expression through interference with binding of nuclear factors to A/T-rich sequence in THP-1 cells. Circ. Res. 90, 348–355 (2002).

    CAS  PubMed  Google Scholar 

  175. Lamour, V. et al. Runx2- and histone deacetylase 3-mediated repression is relieved in differentiating human osteoblast cells to allow high bone sialoprotein expression. J. Biol. Chem. 282, 36240–36249 (2007).

    CAS  PubMed  Google Scholar 

  176. Galler, K. M. et al. A novel role for Twist-1 in pulp homeostasis. J. Dent Res. 86, 951–955 (2007).

    CAS  PubMed  Google Scholar 

  177. Chen, B., Piel, W. H., Gui, L., Bruford, E. & Monteiro, A. The HSP90 family of genes in the human genome: insights into their divergence and evolution. Genomics 86, 627–637 (2005).

    CAS  PubMed  Google Scholar 

  178. Guo, W. & Giancotti, F. G. Integrin signalling during tumour progression. Nature Rev. Mol. Cell Biol. 5, 816–826 (2004).

    CAS  Google Scholar 

  179. Coppola, D. et al. Correlation of osteopontin protein expression and pathological stage across a wide variety of tumor histologies. Clin. Cancer Res. 10, 184–190 (2004).

    CAS  PubMed  Google Scholar 

  180. Ang, C., Chambers, A. F., Tuck, A. B., Winquist, E. & Izawa, J. I. Plasma osteopontin levels are predictive of disease stage in patients with transitional cell carcinoma of the bladder. BJU Int. 96, 803–805 (2005).

    CAS  PubMed  Google Scholar 

  181. Sulzbacher, I., Birner, P., Trieb, K., Lang, S. & Chott, A. Expression of osteopontin and vascular endothelial growth factor in benign and malignant bone tumors. Virchows Arch. 441, 345–349 (2002).

    CAS  PubMed  Google Scholar 

  182. Cogan, G. et al. Analysis of human bone sialoprotein in normal and pathological tissues using a monoclonal antibody (BSP 1.2 mab). Connect. Tissue Res. 45, 60–71 (2004).

    CAS  PubMed  Google Scholar 

  183. Valabrega, G. et al. ErbB2 and bone sialoprotein as markers for metastatic osteosarcoma cells. Br. J. Cancer 88, 396–400 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Feng, J. Q. et al. Loss of DMP1 causes rickets and osteomalacia and identifies a role for osteocytes in mineral metabolism. Nature Genet. 38, 1310–1315 (2006).

    CAS  PubMed  Google Scholar 

  185. MacDougall, M., Dong, J. & Acevedo, A. C. Molecular basis of human dentin diseases. Am. J. Med. Genet. A 140, 2536–2546 (2006).

    PubMed  Google Scholar 

  186. Saitoh, Y., Kuratsu, J., Takeshima, H., Yamamoto, S. & Ushio, Y. Expression of osteopontin in human glioma. Its correlation with the malignancy. Lab. Invest. 72, 55–63 (1995).

    CAS  PubMed  Google Scholar 

  187. Bellahcene, A. & Castronovo, V. Increased expression of osteonectin and osteopontin, two bone matrix proteins, in human breast cancer. Am. J. Pathol. 146, 95–100 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  188. Rodrigues, L. R., Teixeira, J. A., Schmitt, F. L., Paulsson, M. & Lindmark-Mansson, H. The role of osteopontin in tumor progression and metastasis in breast cancer. Cancer Epidemiol. Biomarkers Prev. 16, 1087–1097 (2007).

    CAS  PubMed  Google Scholar 

  189. Wong, Y. F. et al. Genome-wide gene expression profiling of cervical cancer in Hong Kong women by oligonucleotide microarray. Int. J. Cancer 118, 2461–2469 (2006).

    CAS  PubMed  Google Scholar 

  190. Eschrich, S. et al. Molecular staging for survival prediction of colorectal cancer patients. J. Clin. Oncol. 23, 3526–3535 (2005).

    CAS  PubMed  Google Scholar 

  191. Gaumann, A. et al. Osteopontin expression in primary sarcomas of the pulmonary artery. Virchows Arch. 439, 668–674 (2001).

    CAS  PubMed  Google Scholar 

  192. Ue, T. et al. Co-expression of osteopontin and CD44v9 in gastric cancer. Int. J. Cancer 79, 127–132 (1998).

    CAS  PubMed  Google Scholar 

  193. Matusan, K., Dordevic, G., Mozetic, V. & Lucin, K. Expression of osteopontin and CD44 molecule in papillary renal cell tumors. Pathol. Oncol. Res. 11, 108–113 (2005).

    CAS  PubMed  Google Scholar 

  194. Somerman, M. J., Berry, J. E., Khalkhali-Ellis, Z., Osdoby, P. & Simpson, R. U. Enhanced expression of αv integrin subunit and osteopontin during differentiation of HL-60 cells along the monocytic pathway. Exp. Cell Res. 216, 335–341 (1995).

    CAS  PubMed  Google Scholar 

  195. Flamant, S. et al. Osteopontin is upregulated by BCR-ABL. Biochem. Biophys. Res. Commun. 333, 1378–1384 (2005).

    CAS  PubMed  Google Scholar 

  196. Chambers, A. F. et al. Osteopontin expression in lung cancer. Lung Cancer 15, 311–323 (1996).

    CAS  PubMed  Google Scholar 

  197. Nagai, S. et al. Comprehensive gene expression profile of human activated TH1- and TH2-polarized cells. Int. Immunol. 13, 367–376 (2001).

    CAS  PubMed  Google Scholar 

  198. Saeki, Y. et al. Enhanced production of osteopontin in multiple myeloma: clinical and pathogenic implications. Br. J. Haematol. 123, 263–270 (2003).

    CAS  PubMed  Google Scholar 

  199. Geissinger, E., Weisser, C., Fischer, P., Schartl, M. & Wellbrock, C. Autocrine stimulation by osteopontin contributes to antiapoptotic signalling of melanocytes in dermal collagen. Cancer Res. 62, 4820–4828 (2002).

    CAS  PubMed  Google Scholar 

  200. Zhou, Y. et al. Osteopontin expression correlates with melanoma invasion. J. Invest. Dermatol. 124, 1044–1052 (2005).

    CAS  PubMed  Google Scholar 

  201. Tiniakos, D. G., Yu, H. & Liapis, H. Osteopontin expression in ovarian carcinomas and tumors of low malignant potential (LMP). Hum. Pathol. 29, 1250–1254 (1998).

    CAS  PubMed  Google Scholar 

  202. Tozawa, K. et al. Osteopontin expression in prostate cancer and benign prostatic hyperplasia. Urol. Int. 62, 155–158 (1999).

    CAS  PubMed  Google Scholar 

  203. Hotte, S. J., Winquist, E. W., Stitt, L., Wilson, S. M. & Chambers, A. F. Plasma osteopontin: associations with survival and metastasis to bone in men with hormone-refractory prostate carcinoma. Cancer 95, 506–512 (2002).

    CAS  PubMed  Google Scholar 

  204. Debucquoy, A. et al. Molecular responses of rectal cancer to preoperative chemoradiation. Radiother Oncol. 80, 172–177 (2006).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work of A.B. and V.C. is supported by grants from the National Fund for Scientific Research (Belgium), the Centre Anti-Cancéreux of the University of Liège and the European Commission through METABRE Contract CEE LSHC-CT-2004-503049. The work of K.O. is supported by National Institute of Dental and Craniofacial Research/National Institutes of Health (NIH) Grant K23 017791-01A1, Medical College of Georgia Research Institute Grant STP 00105W005, and the Wendy Will Case Cancer Fund. The research of L.W.F. is supported by the Intramural Research Program of the NIH, Department of Health and Human Services. The work of N.S.F. is supported by grants from the National Cancer Institute (R21CA87311 and R01 CA113865) and from the Department of Defense Congressionally Directed Medical Research Program (W81XWH-04-1-0844 and BC010478).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Larry W. Fisher.

Related links

Related links

DATABASES

National Cancer Institute

bladder cancer

breast cancer

cervical carcinoma

colorectal cancer

gastric cancer

glioma

head and neck cancer

leukaemia

lung cancer

melanoma

multiple myeloma

non-small cell lung carcinoma

oral cancer

pancreatic cancer

prostate cancer

renal cell cancer

skin cancer

thyroid carcinomas

FURTHER INFORMATION

Larry W. Fisher's homepage

Glossary

Integrin

Integrins are a large family of heterodimeric cell surface adhesion receptors that bind extracellular matrix and cell surface ligands. They promote stable interactions between cells and their environment and mediate intracellular signalling.

Dentin

The main, calcareous part of a tooth, beneath the enamel and surrounding the pulp chamber and root canals.

RGD motif

A tripeptide, Arg–Gly–Asp (RGD), found in numerous proteins that support cell adhesion. A subset of the integrins recognize the RGD motif within their ligands, the binding of which mediates both cell–substratum and cell–cell interactions.

Hydroxyapatite crystals

The principal inorganic constituent of bone matrix and teeth, imparting rigidity to these structures, and consisting of hydrated calcium phosphate, Ca5(PO4)3 OH.

Metabolically active normal duct

Epithelia, such as that of the kidney nephrons, that alter the tonicity of the fluid they process in the course of normal physiology. The kidney nephrons process isotonic urine into the voided hypotonic urine.

Type 0 introns

Introns that disrupt an open reading frame between codon junctions and therefore permit any splicing combination to other type 0 exons without causing frameshifts.

Metabolically passive normal duct

Epithelia, such as that of the lacrimal gland ducts, that do not alter the tonicity of the fluid they process in the course of normal physiology. Tears from the lacrimal acini are isotonic and are secreted unchanged through the duct system.

CD44

A family of cell surface signal-transducing glycoproteins involved in cell–cell interactions, cell adhesion and migration. CD44s bind hyaluronan, a high-molecular-mass polysaccharide found in the extracellular matrix, and a variety of extracellular as well as cell surface ligands. CD44 exists in multiple spliced forms and shows a high variability in glycosylation.

Transglutaminases

A family of enzymes that catalyse the crosslinking of proteins at a glutamine in one chain with lysine in another chain. Although the family members have different structures, they share an active site (Tyr–Gly–Gln–Cys–Trp) and strict Ca2+ dependence.

Osteoclast

A cell that breaks down mineralized bone and is responsible for bone resorption.

Dental pulp cells

Cells that comprise the soft tissue forming the inner structure of a tooth and containing nerves and blood vessels as well as possibly dentin stem cells.

Osteotropic

Describes tumours that metastasize preferentially to the skeleton.

Bone lesions

Lytic lesions are areas of the bone marked by destruction, whereas sclerotic lesions are areas of the bone marked by thickening or hardening. A mixed lytic and sclerotic lesion exhibits facets of both resorption (destruction) and thickening (formation).

Opsonization

The process whereby opsonins (antibodies or complement proteins) make an invading cell or microorganism more susceptible to phagocytosis by binding to its surface.

Chicken chorioallantoic membrane assay

A biological assay using the well-vascularized chorioallantoic membrane of the chicken egg to evaluate the biological activity of pro- and anti-angiogenic factors.

Renal osteodystrophy

A bone disease characterized by softening and fibrous degeneration of bone and the formation of cysts in bone tissue, caused by chronic renal failure.

Eccrine sweat ducts

These ducts transport sweat to the surface of the skin and are involved in evaporative cooling.

Oncogenic hypophosphataemic osteomalacia

Osteomalacia (softening of the bones) resulting from renal phosphate wasting and low serum 1, 25-dihydroxy vitamin D secondary to the presence of a tumour of which complete resection results in rapid resolution of the symptoms and signs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bellahcène, A., Castronovo, V., Ogbureke, K. et al. Small integrin-binding ligand N-linked glycoproteins (SIBLINGs): multifunctional proteins in cancer. Nat Rev Cancer 8, 212–226 (2008). https://doi.org/10.1038/nrc2345

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc2345

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing