Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

High-throughput, detailed, cell-specific neuroanatomy of dendritic spines using microinjection and confocal microscopy

Abstract

Morphological features such as size, shape and density of dendritic spines have been shown to reflect important synaptic functional attributes and potential for plasticity. Here we describe in detail a protocol for obtaining detailed morphometric analysis of spines using microinjection of fluorescent dyes, high-resolution confocal microscopy, deconvolution and image analysis with NeuronStudio. Recent technical advancements include better preservation of tissue, resulting in prolonged ability to microinject, and algorithmic improvements that compensate for the residual z-smear inherent in all optical imaging. Confocal imaging parameters were probed systematically to identify both optimal resolution and the highest efficiency. When combined, our methods yield size and density measurements comparable to serial section transmission electron microscopy in a fraction of the time. An experiment containing three experimental groups with eight subjects each can take as little as 1 month if optimized for speed, or approximately 4–5 months if the highest resolution and morphometric detail is sought.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The final high-resolution image obtained by our methods results from a two-step improvement of the PSF by deconvolution, followed by z-smear correction.
Figure 2: Microinjections can be performed immediately after or months to years following perfusion if tissue is stored in 0.
Figure 3: Empirical evaluation of the effect of spherical aberrations on 2D and 3D resolution.
Figure 4: Systematic analysis of the effect of imaging parameter choice on resolution and shot noise.
Figure 5: Bleaching rate as a function of laser power.
Figure 6: Multiple fluorophores can be used within an experiment, but the pinhole size should be kept at the same absolute diameter.
Figure 7: Detailed spine morphometric analysis.
Figure 8: Rat CA1 dendritic spine morphometry using this protocol is comparable to measurements obtained by ssTEM.

Similar content being viewed by others

References

  1. Bhatt, D.H., Zhang, S. & Gan, W.B. Dendritic spine dynamics. Annu. Rev. Physiol. 71, 261–282 (2009).

    Article  CAS  Google Scholar 

  2. Kasai, H., Fukuda, M., Watanabe, S., Hayashi-Takagi, A. & Noguchi, J. Structural dynamics of dendritic spines in memory and cognition. Trends Neurosci. 33, 121–129 (2010).

    Article  CAS  Google Scholar 

  3. Alvarez, V.A. & Sabatini, B.L. Anatomical and physiological plasticity of dendritic spines. Annu. Rev. Neurosci. 30, 79–97 (2007).

    Article  CAS  Google Scholar 

  4. Bourne, J. & Harris, K.M. Do thin spines learn to be mushroom spines that remember? Curr. Opin. Neurobiol. 17, 381–386 (2007).

    Article  CAS  Google Scholar 

  5. Sorra, K.E. & Harris, K.M. Overview on the structure, composition, function, development, and plasticity of hippocampal dendritic spines. Hippocampus 10, 501–511 (2000).

    Article  CAS  Google Scholar 

  6. Nimchinsky, E.A., Sabatini, B.L. & Svoboda, K. Structure and function of dendritic spines. Annu. Rev. Physiol. 64, 313–353 (2002).

    Article  CAS  Google Scholar 

  7. Yuste, R. & Bonhoeffer, T. Genesis of dendritic spines: insights from ultrastructural and imaging studies. Nat. Rev. Neurosci. 5, 24–34 (2004).

    Article  CAS  Google Scholar 

  8. Garcia-Lopez, P., Garcia-Marin, V. & Freire, M. The discovery of dendritic spines by Cajal in 1888 and its relevance in the present neuroscience. Prog. Neurobiol. 83, 110–130 (2007).

    Article  CAS  Google Scholar 

  9. de Lima, A.D., Voigt, T. & Morrison, J.H. Morphology of the cells within the inferior temporal gyrus that project to the prefrontal cortex in the macaque monkey. J. Comp. Neurol. 296, 159–172 (1990).

    Article  CAS  Google Scholar 

  10. Nimchinsky, E.A., Hof, P.R., Young, W.G. & Morrison, J.H. Neurochemical, morphologic, and laminar characterization of cortical projection neurons in the cingulate motor areas of the macaque monkey. J. Comp. Neurol. 374, 136–160 (1996).

    Article  CAS  Google Scholar 

  11. Duan, H., Wearne, S.L., Morrison, J.H. & Hof, P.R. Quantitative analysis of the dendritic morphology of corticocortical projection neurons in the macaque monkey association cortex. Neuroscience 114, 349–359 (2002).

    Article  CAS  Google Scholar 

  12. Duan, H. et al. Age-related dendritic and spine changes in corticocortically projecting neurons in macaque monkeys. Cereb. Cortex 13, 950–961 (2003).

    Article  Google Scholar 

  13. Radley, J.J. et al. Repeated stress induces dendritic spine loss in the rat medial prefrontal cortex. Cereb. Cortex 16, 313–320 (2006).

    Article  Google Scholar 

  14. Hao, J. et al. Estrogen alters spine number and morphology in prefrontal cortex of aged female rhesus monkeys. J. Neurosci. 26, 2571–2578 (2006).

    Article  CAS  Google Scholar 

  15. Hao, J. et al. Interactive effects of age and estrogen on cognition and pyramidal neurons in monkey prefrontal cortex. Proc. Natl. Acad. Sci. USA 104, 11465–11470 (2007).

    Article  CAS  Google Scholar 

  16. Radley, J.J. et al. Repeated stress alters dendritic spine morphology in the rat medial prefrontal cortex. J. Comp. Neurol. 507, 1141–1150 (2008).

    Article  PubMed Central  Google Scholar 

  17. Dumitriu, D. et al. Selective changes in thin spine density and morphology in monkey prefrontal cortex correlate with aging-related cognitive impairment. J. Neurosci. 30, 7507–7515 (2010).

    Article  CAS  PubMed Central  Google Scholar 

  18. Yang, G., Pan, F. & Gan, W.B. Stably maintained dendritic spines are associated with lifelong memories. Nature 462, 920–924 (2009).

    Article  CAS  PubMed Central  Google Scholar 

  19. Russo, S.J. et al. The addicted synapse: mechanisms of synaptic and structural plasticity in nucleus accumbens. Trends Neurosci. 33, 267–276 (2010).

    Article  CAS  PubMed Central  Google Scholar 

  20. LaPlant, Q. et al. Dnmt3a regulates emotional behavior and spine plasticity in the nucleus accumbens. Nat. Neurosci. 13, 1137–1143 (2010).

    Article  CAS  PubMed Central  Google Scholar 

  21. Christoffel, D. et al. IkappaB kinase regulates social defeat stress induced synaptic and behavioral plasticity. J. Neurosci. 31, 314–321 (2011).

    Article  CAS  PubMed Central  Google Scholar 

  22. Vecellio, M., Schwaller, B., Meyer, M., Hunziker, W. & Celio, M.R. Alterations in Purkinje cell spines of calbindin D-28 k and parvalbumin knock-out mice. Eur. J. Neurosci. 12, 945–954 (2000).

    Article  CAS  Google Scholar 

  23. Wallace, W. & Bear, M.F. A morphological correlate of synaptic scaling in visual cortex. J. Neurosci. 24, 6928–6938 (2004).

    Article  CAS  Google Scholar 

  24. Knafo, S. et al. Widespread changes in dendritic spines in a model of Alzheimer's disease. Cereb. Cortex 19, 586–592 (2009).

    Article  CAS  Google Scholar 

  25. Knafo, S. et al. Morphological alterations to neurons of the amygdala and impaired fear conditioning in a transgenic mouse model of Alzheimer's disease. J. Pathol. 219, 41–51 (2009).

    Article  Google Scholar 

  26. Merino-Serrais, P., Knafo, S., Alonso-Nanclares, L., Fernaud-Espinosa, I. & Defelipe, J. Layer-specific alterations to CA1 dendritic spines in a mouse model of Alzheimer's disease. Hippocampus published online, doi:10.1002/hipo.20861 (16 September 2010).

  27. Rodriguez, A., Ehlenberger, D.B., Hof, P.R. & Wearne, S.L. Rayburst sampling, an algorithm for automated three-dimensional shape analysis from laser scanning microscopy images. Nat. Protoc. 1, 2152–2161 (2006).

    Article  CAS  Google Scholar 

  28. Rodriguez, A., Ehlenberger, D.B., Dickstein, D.L., Hof, P.R. & Wearne, S.L. Automated three-dimensional detection and shape classification of dendritic spines from fluorescence microscopy images. PLoS One 3, e1997 (2008).

    Article  PubMed Central  Google Scholar 

  29. Russo, S.J. et al. Nuclear factor kappa B signaling regulates neuronal morphology and cocaine reward. J. Neurosci. 29, 3529–3537 (2009).

    Article  CAS  PubMed Central  Google Scholar 

  30. Shen, H., Sesack, S.R., Toda, S. & Kalivas, P.W. Automated quantification of dendritic spine density and spine head diameter in medium spiny neurons of the nucleus accumbens. Brain Struct. Funct. 213, 149–157 (2008).

    Article  Google Scholar 

  31. Zhang, Y. et al. A neurocomputational method for fully automated 3D dendritic spine detection and segmentation of medium-sized spiny neurons. Neuroimage 50, 1472–1484 (2010).

    Article  PubMed Central  Google Scholar 

  32. Kim, Y. et al. Phosphorylation of WAVE1 regulates actin polymerization and dendritic spine morphology. Nature 442, 814–817 (2006).

    Article  CAS  Google Scholar 

  33. Shansky, R.M., Hamo, C., Hof, P.R., McEwen, B.S. & Morrison, J.H. Stress-induced dendritic remodeling in the prefrontal cortex is circuit specific. Cereb. Cortex 19, 2479–2484 (2009).

    Article  PubMed Central  Google Scholar 

  34. Huang, B., Babcock, H. & Zhuang, X. Breaking the diffraction barrier: super-resolution imaging of cells. Cell 143, 1047–1058 (2010).

    Article  CAS  PubMed Central  Google Scholar 

  35. Blom, H. et al. Spatial distribution of Na+-K+-ATPase in dendritic spines dissected by nanoscale superresolution STED microscopy. BMC Neurosci. 12, 16 (2011).

    Article  CAS  PubMed Central  Google Scholar 

  36. Donohue, D.E. & Ascoli, G.A. Automated reconstruction of neuronal morphology: an overview. Brain Res. Rev. 67, 94–102 (2010).

    Article  PubMed Central  Google Scholar 

  37. Chklovskii, D.B., Vitaladevuni, S. & Scheffer, L.K. Semi-automated reconstruction of neural circuits using electron microscopy. Curr. Opin. Neurobiol. 20, 667–675 (2010).

    Article  CAS  Google Scholar 

  38. Arellano, J.I., Espinosa, A., Fairen, A., Yuste, R. & DeFelipe, J. Non-synaptic dendritic spines in neocortex. Neuroscience 145, 464–469 (2007).

    Article  CAS  Google Scholar 

  39. Nusser, Z. AMPA and NMDA receptors: similarities and differences in their synaptic distribution. Curr. Opin. Neurobiol. 10, 337–341 (2000).

    Article  CAS  Google Scholar 

  40. Matsuzaki, M. et al. Dendritic spine geometry is critical for AMPA receptor expression in hippocampal CA1 pyramidal neurons. Nat. Neurosci. 4, 1086–1092 (2001).

    Article  CAS  PubMed Central  Google Scholar 

  41. Kopec, C. & Malinow, R. Neuroscience. Matters of size. Science 314, 1554–1555 (2006).

    Article  CAS  Google Scholar 

  42. Ostroff, L.E., Cain, C.K., Bedont, J., Monfils, M.H. & Ledoux, J.E. Fear and safety learning differentially affect synapse size and dendritic translation in the lateral amygdala. Proc. Natl. Acad. Sci. USA 107, 9418–9423 (2010).

    Article  CAS  Google Scholar 

  43. Harris, K.M. & Stevens, J.K. Dendritic spines of CA 1 pyramidal cells in the rat hippocampus: serial electron microscopy with reference to their biophysical characteristics. J. Neurosci. 9, 2982–2997 (1989).

    Article  CAS  Google Scholar 

  44. Harris, K.M., Jensen, F.E. & Tsao, B. Three-dimensional structure of dendritic spines and synapses in rat hippocampus (CA1) at postnatal day 15 and adult ages: implications for the maturation of synaptic physiology and long-term potentiation. J. Neurosci. 12, 2685–2705 (1992).

    Article  CAS  Google Scholar 

  45. Mishchenko, Y. et al. Ultrastructural analysis of hippocampal neuropil from the connectomics perspective. Neuron 67, 1009–1020 (2010).

    Article  CAS  PubMed Central  Google Scholar 

  46. Katz, Y. et al. Synapse distribution suggests a two-stage model of dendritic integration in CA1 pyramidal neurons. Neuron 63, 171–177 (2009).

    Article  CAS  PubMed Central  Google Scholar 

  47. Megias, M., Emri, Z., Freund, T.F. & Gulyas, A.I. Total number and distribution of inhibitory and excitatory synapses on hippocampal CA1 pyramidal cells. Neuroscience 102, 527–540 (2001).

    Article  CAS  Google Scholar 

  48. Schikorski, T. & Stevens, C.F. Quantitative ultrastructural analysis of hippocampal excitatory synapses. J. Neurosci. 17, 5858–5867 (1997).

    Article  CAS  Google Scholar 

  49. Pawley, J.B. ed. Handbook of Biological Confocal Microscopy 3rd edn (Springer Science+Business Media, 2006).

  50. Harris, K.M. & Kater, S.B. Dendritic spines: cellular specializations imparting both stability and flexibility to synaptic function. Annu. Rev. Neurosci. 17, 341–371 (1994).

    Article  CAS  Google Scholar 

  51. Murray, J.M. Practical aspects of quantitative confocal microscopy. Methods Cell Biol. 81, 467–478 (2007).

    Article  Google Scholar 

  52. Diaz-Zamboni, J.E. et al. 3D automatic quantification applied to optically sectioned images to improve microscopy analysis. Eur. J. Histochem. 52, 115–126 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by NIA grants AG006647 (J.H.M.) and AG010606 to (J.H.M.) and NRSA training grant 1F30MH083402 (D.D.). We also acknowledge the late S. Wearne and P.R. Hof for the development of NeuronStudio, funded by US National Institutes of Health grants AG035071 and MH071818. We thank B. Janssen, Y. Grossman, R. Gonzaga and N. Dumitriu for technical assistance. We thank B. Janssen, E. Bloss and Q. Laplant for helpful suggestions on the manuscript. We are also deeply grateful to T. Hu and D. Chklovskii for their computational assistance with exponential decay curve fitting.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the preparation of the manuscript. D.D. conducted all experiments, made the figures and wrote the initial draft of the manuscript. A.R. programmed the z-smear correction factor into NeuronStudio. J.H.M. provided guidance throughout the experimental phase and improved the manuscript.

Corresponding author

Correspondence to Dani Dumitriu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Z-projections of the 23 dendrites used in the morphometric analysis of dendritic spines in the stratum radiatum of the male rat CA1. The 4-6 segments from each of the 5 animals included in the analysis are each boxed in a separate color. Note the diversity in spine density, spine size and dendritic diameter. Segments A2i and A2ii are the same as the examples shown in Figure 7A. Scale bar = 5µm. (TIFF 4122 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dumitriu, D., Rodriguez, A. & Morrison, J. High-throughput, detailed, cell-specific neuroanatomy of dendritic spines using microinjection and confocal microscopy. Nat Protoc 6, 1391–1411 (2011). https://doi.org/10.1038/nprot.2011.389

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2011.389

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing