Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Analysis of synaptic transmission in Caenorhabditis elegans using an aldicarb-sensitivity assay

Abstract

Caenorhabditis elegans has emerged as a powerful model system for studying the biology of the synapse. Here we describe a widely used assay for synaptic transmission at the C. elegans neuromuscular junction. This protocol monitors the sensitivity of C. elegans to the paralyzing affects of an acetylcholinesterase inhibitor, aldicarb. Briefly, adult worms are incubated in the presence of aldicarb and scored for the time-course of aldicarb-induced paralysis. Animals harboring mutations in genes that affect synaptic transmission generally exhibit a change in their sensitivity to aldicarb (either increased sensitivity for enhancements in synaptic transmission or decreased sensitivity for blockage in synaptic transmission). This technique provides a simple assay for the accurate comparative analysis of synaptic transmission in multiple C. elegans strains. The protocol described can be performed relatively quickly and is a practical alternative to other techniques used to study synaptic transmission. This protocol can also be modified to follow the paralytic effects with other pharmacological reagents. The assay can be performed in about 3-6 hours depending on the severity of synaptic transmission defects.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic diagram demonstrating the molecular mechanisms that underlie aldicarb-induced paralysis in the nematode C. elegans.
Figure 2: Results from aldicarb assays on aldicarb-resistant and aldicarb-hypersensitive mutants.

Similar content being viewed by others

References

  1. Sudhof, T.C. The synaptic vesicle cycle. Annu. Rev. Neurosci. 27, 509–547 (2004).

    PubMed  Google Scholar 

  2. White, J.G., Southgate, E., Thomson, J.N. & Brenner, S. The Structure of the Nervous System of the Nematode Caenorhabditis elegans. Philos. Trans. R. Soc. Lond. B Biol. Sci. 314, 1–340 (1986).

    Article  CAS  PubMed  Google Scholar 

  3. Bargmann, C.I. Genetic and cellular analysis of behavior in C. elegans. Annu. Rev. Neurosci. 16, 47–71 (1993).

    Article  CAS  PubMed  Google Scholar 

  4. Von Stetina, S.E., Treinin, M. & Miller, D.M. 3rd. The motor circuit. Int. Rev. Neurobiol. 69, 125–167 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Johnson, C.D. & Russell, R.L. Multiple molecular forms of acetylcholinesterase in the nematode Caenorhabditis elegans. J. Neurochem. 41, 30–46 (1983).

    Article  CAS  PubMed  Google Scholar 

  6. Lue, L.P., Lewis, C.C. & Melchor, V.E. The effect of aldicarb on nematode population and its persistence in carrots, soil and hydroponic solution. J. Environ. Sci. Health B 19, 343–354 (1984).

    Article  CAS  PubMed  Google Scholar 

  7. Nguyen, M., Alfonso, A., Johnson, C.D. & Rand, J.B. Caenorhabditis elegans mutants resistant to inhibitors of acetylcholinesterase. Genetics 140, 527–535 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Jorgensen, E.M. et al. Defective recycling of synaptic vesicles in synaptotagmin mutants of Caenorhabditis elegans. Nature 378, 196–199 (1995).

    Article  CAS  PubMed  Google Scholar 

  9. Miller, K.G. et al. A genetic selection for Caenorhabditis elegans synaptic transmission mutants. Proc. Natl. Acad. Sci. USA 93, 12593–12598 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Nurrish, S., Segalat, L. & Kaplan, J.M. Serotonin inhibition of synaptic transmission: Galpha(0) decreases the abundance of UNC-13 at release sites. Neuron 24, 231–242 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Iwasaki, K., Staunton, J., Saifee, O., Nonet, M. & Thomas, J.H. aex-3 encodes a novel regulator of presynaptic activity in C. elegans. Neuron 18, 613–622 (1997).

    Article  CAS  PubMed  Google Scholar 

  12. Zhen, M. & Jin, Y. The liprin protein SYD-2 regulates the differentiation of presynaptic termini in C. elegans. Nature 401, 371–375 (1999).

    CAS  PubMed  Google Scholar 

  13. Koushika, S.P. et al. A post-docking role for active zone protein Rim. Nat. Neurosci. 4, 997–1005 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sieburth, D. et al. Systematic analysis of genes required for synapse structure and function. Nature 436, 510–517 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Deken, S.L. et al. Redundant localization mechanisms of RIM and ELKS in Caenorhabditis elegans. J. Neurosci. 25, 5975–5983 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mahoney, T.R. et al. Regulation of synaptic transmission by RAB-3 and RAB-27 in Caenorhabditis elegans. Mol. Biol. Cell 17, 2617–2625 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lackner, M.R., Nurrish, S.J. & Kaplan, J.M. Facilitation of synaptic transmission by EGL-30 Gqalpha and EGL-8 PLCbeta: DAG binding to UNC-13 is required to stimulate acetylcholine release. Neuron 24, 335–346 (1999).

    Article  CAS  PubMed  Google Scholar 

  18. Nonet, M.L. et al. Caenorhabditis elegans rab-3 mutant synapses exhibit impaired function and are partially depleted of vesicles. J. Neurosci. 17, 8061–8073 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Charlie, N.K., Schade, M.A., Thomure, A.M. & Miller, K.G. Presynaptic UNC-31 (CAPS) is required to activate the G alpha(s) pathway of the Caenorhabditis elegans synaptic signaling network. Genetics 172, 943–961 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Miller, K.G., Emerson, M.D. & Rand, J.B. Goa and diacylglycerol kinase negatively regulate the Gqa pathway in C. elegans. Neuron 24, 323–333 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lewis, J.A., Wu, C.H., Levine, J.H. & Berg, H. Levamisole-resistant mutants of the nematode Caenorhabditis elegans appear to lack pharmacological acetylcholine receptors. Neuroscience 5, 967–989 (1980).

    Article  CAS  PubMed  Google Scholar 

  22. Lewis, J.A., Wu, C.H., Berg, H. & Levine, J.H. The genetics of levamisole resistance in the nematode Caenorhabditis elegans. Genetics 95, 905–928 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Nonet, M.L., Grundahl, K., Meyer, B.J. & Rand, J.B. Synaptic function is impaired but not eliminated in C. elegans mutants lacking synaptotagmin. Cell 73, 1291–1305 (1993).

    Article  CAS  PubMed  Google Scholar 

  24. Gottschalk, A. et al. Identification and characterization of novel nicotinic receptor-associated proteins in Caenorhabditis elegans. EMBO J. 24, 2566–2578 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Touroutine, D. et al. acr-16 encodes an essential subunit of the levamisole-resistant nicotinic receptor at the Caenorhabditis elegans neuromuscular junction. J. Biol. Chem. 280, 27013–27021 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Doi, M. & Iwasaki, K. Regulation of retrograde signaling at neuromuscular junctions by the novel C2 domain protein AEX-1. Neuron 33, 249–259 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Zhao, H. & Nonet, M.L. A retrograde signal is involved in activity-dependent remodeling at a C. elegans neuromuscular junction. Development 127, 1253–1266 (2000).

    CAS  PubMed  Google Scholar 

  28. Richmond, J.E., Davis, W.S. & Jorgensen, E.M. UNC-13 is required for synaptic vesicle fusion in C. elegans. Nat. Neurosci. 2, 959–964 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Weimer, R.M. et al. Defects in synaptic vesicle docking in unc-18 mutants. Nat. Neurosci. 6, 1023–1030 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Charlie, N.K., Thomure, A.M., Schade, M.A. & Miller, K.G. The Dunce cAMP phosphodiesterase PDE-4 negatively regulates G alpha(s)-dependent and G alpha(s)-independent cAMP pools in the Caenorhabditis elegans synaptic signaling network. Genetics 173, 111–130 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cai, T., Fukushige, T., Notkins, A.L. & Krause, M. Insulinoma-associated protein IA-2, a vesicle transmembrane protein, genetically interacts with UNC-31/CAPS and affects neurosecretion in Caenorhabditis elegans. J. Neurosci. 24, 3115–3124 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mathews, E.A. et al. Critical residues of the Caenorhabditis elegans unc-2 voltage-gated calcium channel that affect behavioral and physiological properties. J. Neurosci. 23, 6537–6545 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Salcini, A.E. et al. The Eps15 C. elegans homologue EHS-1 is implicated in synaptic vesicle recycling. Nat. Cell Biol. 3, 755–760 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Hawasli, A.H., Saifee, O., Liu, C., Nonet, M.L. & Crowder, C.M. Resistance to volatile anesthetics by mutations enhancing excitatory neurotransmitter release in Caenorhabditis elegans. Genetics 168, 831–843 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Davies, A.G. et al. A central role of the BK potassium channel in behavioral responses to ethanol in C. elegans. Cell 115, 655–666 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. Lewis, J.A. & Fleming, J.T. Basic culture methods. Methods Cell Biol. 48, 3–29 (1995).

    Article  CAS  PubMed  Google Scholar 

  37. Hope, I.A. C elegans : a practical approach. (Oxford University Press, New York, 1999).

    Google Scholar 

  38. Wood, W.B. The nematode Caenorhabditis elegans. (Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 1988).

    Google Scholar 

  39. Riddle, D.L. C. elegans II.. (Cold Spring Harbor Laboratory Press, Plainview, NY, 1997).

    Google Scholar 

  40. Wang, Z.W., Saifee, O., Nonet, M.L. & Salkoff, L. SLO-1 potassium channels control quantal content of neurotransmitter release at the C. elegans neuromuscular junction. Neuron 32, 867–881 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Brenner, S. The genetics of Caenorhabditis elegans. Genetics 77, 71–94 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Gracheva, E.O. et al. Tomosyn inhibits synaptic vesicle priming in Caenorhabditis elegans. PLoS. Biol. 4, e261 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Dybbs, M., Ngai, J. & Kaplan, J.M. Using microarrays to facilitate positional cloning: identification of tomosyn as an inhibitor of neurosecretion. PLoS. Genet. 1, 6–16 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. McEwen, J.M., Madison, J.M., Dybbs, M. & Kaplan, J.M. Antagonistic regulation of synaptic vesicle priming by tomosyn and UNC-13. Neuron 51, 303–315 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael L Nonet.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Video 1

Wild-type C. elegans on 1 mM Aldicarb. Video was captured (approximately 7 frames per second) using a Retiga Exi camera controlled by OpenLab Software on a Zeiss stereomicroscope with a trans-illuminated stage. Paralyzed worms were prodded with a platinum wire as described in the protocol. Speed of movie is about 1× (or 7 frames per second). Time = 0 min. A wild-type worm moving at normal velocity. (MOV 417 kb)

Supplementary Video 2

Wild-type C. elegans on 1 mM Aldicarb. Time = 30 min. A wild-type worm moving sluggishly. Note the weak coiling phenotype towards the end of the movie, commonly seen in synaptic transmission mutants. Also, note the rigidity of the movements and the awkward twists of the body. (MOV 750 kb)

Supplementary Video 3

Wild-type C. elegans on 1 mM Aldicarb. Time = 90 min. A wild-type worm that is partially paralyzed. Note the animal appears hyper-contracted and is partially paralyzed. However, the head is still moving/foraging for food. Also, note the first gentle touch near the head of the animal elicits movement in the tail. Based on the observation of movements of the head and the ability to stimulate movement by tapping gently with a platinum wire, this animal is not yet considered paralyzed. (MOV 1007 kb)

Supplementary Video 4

Wild-type C. elegans on 1mM Aldicarb. Time = 90 min. A wild-type worm that is partially paralyzed. (MOV 522 kb)

Supplementary Video 5

Wild-type C. elegans on 1 mM Aldicarb. Time = 120 min. A wild-type worm that is almost completely paralyzed. Note the animal is hyper-contracted and virtually paralyzed. It is essentially unresponsive to touch, however the pharynx is still pumping and the tip of the head is showing some foraging movements. It is not uncommon to see a worm become more paralyzed after prodding with a platinum wire or to see animals release eggs as they become paralyzed. This video illustrates the subjective nature of defining an endpoint. It is likely that some experimenters would score this animal as paralyzed. However, if there is concern over consistency in scoring paralysis or if the experimenter is testing severely paralyzed mutants we suggest waiting for an even more paralyzed animal, such as seen in Supplementary Video 6. (MOV 789 kb)

Supplementary Video 6

Wild-type C. elegans on 1mM Aldicarb. Time = 120 min. A wild-type worm that is completely paralyzed. This animal is similarly hyper-contracted to the animal in Supplementary Video 5. Unlike the example in Supplementary Video 5, this animal is completely paralyzed and completely unresponsive to touch. Throughout the entire video the pharynx pumps only twice. This animal is a good example of a completely paralyzed animal. (MOV 949 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mahoney, T., Luo, S. & Nonet, M. Analysis of synaptic transmission in Caenorhabditis elegans using an aldicarb-sensitivity assay. Nat Protoc 1, 1772–1777 (2006). https://doi.org/10.1038/nprot.2006.281

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2006.281

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing