Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Tissue plasminogen activator in the amygdala is critical for stress-induced anxiety-like behavior

Abstract

Although neuronal stress circuits have been identified, little is known about the mechanisms that underlie the stress-induced neuronal plasticity leading to fear and anxiety. Here we found that the serine protease tissue-plasminogen activator (tPA) was upregulated in the central and medial amygdala by acute restraint stress, where it promoted stress-related neuronal remodeling and was subsequently inhibited by plasminogen activator inhibitor-1 (PAI-1). These events preceded stress-induced increases in anxiety-like behavior of mice. Mice in which the tPA gene has been disrupted did not show anxiety after up to three weeks of daily restraint and showed attenuated neuronal remodeling as well as a maladaptive hormonal response. These studies support the idea that tPA is critical for the development of anxiety-like behavior after stress.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The expression of tissue plasminogen activator (tPA) in the amygdala.
Figure 2: The regulation of extracellular tissue plasminogen activator (tPA) activity by restraint stress in the hippocampus and amygdala.
Figure 3: Stress increases total tPA activity in the amygdala.
Figure 4: tPA mediates synaptic plasticity in the amygdala.
Figure 5: Lack of stress-induced anxiety in the absence of tPA but not in the absence of plasminogen.
Figure 6: Acute stress does not affect tPA, uPA or GAP-43 levels in the hippocampus.
Figure 7: The effect of acute and chronic stress on plasma corticosterone (CORT) levels (ng/ml) in tPA+/+ and tPA−/− mice.

Similar content being viewed by others

References

  1. Selye, H. A syndrome produced by diverse nocuous agents. Nature 138, 32 (1936).

    Article  Google Scholar 

  2. Holsboer, F. The rationale for corticotropin-releasing hormone receptor (CRH-R) antagonists to treat depression and anxiety. J. Psychiatr. Res. 33, 181–214 (1999).

    Article  CAS  PubMed  Google Scholar 

  3. Allen, J.P. & Allen, C.F. Role of the amygdaloid complexes in the stress-induced release of ACTH in the rat. Neuroendocrinology 15, 220–230 (1974).

    Article  CAS  PubMed  Google Scholar 

  4. Rogan, M.T. & LeDoux, J.E. Emotion: systems, cells, synaptic plasticity. Cell 85, 469–475 (1996).

    Article  CAS  PubMed  Google Scholar 

  5. McEwen, B.S. Corticosteroids and hippocampal plasticity. Ann. NY Acad. Sci. 746, 134–142 (1994).

    Article  CAS  PubMed  Google Scholar 

  6. Lisman, J.E. Relating hippocampal circuitry to function: recall of memory sequences by reciprocal dentate-CA3 interactions. Neuron 22, 233–242 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Magarinos, A.M., Verdugo, J.M. & McEwen, B.S. Chronic stress alters synaptic terminal structure in hippocampus. Proc. Natl. Acad. Sci. USA 94, 14002–14008 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Vyas, A., Mitra, R., Shankaranarayana Rao, B.S. & Chattarji, S. Chronic stress induces contrasting patterns of dendritic remodeling in hippocampal and amygdaloid neurons. J. Neurosci. 22, 6810–6818 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chen, Z.L. & Strickland, S. Neuronal death in the hippocampus is promoted by plasmin-catalyzed degradation of laminin. Cell 91, 917–925 (1997).

    Article  CAS  PubMed  Google Scholar 

  10. Baranes, D. et al. Tissue plasminogen activator contributes to the late phase of LTP and to synaptic growth in the hippocampal mossy fiber pathway. Neuron 21, 813–825 (1998).

    Article  CAS  PubMed  Google Scholar 

  11. Nicole, O. et al. The proteolytic activity of tissue-plasminogen activator enhances NMDA receptor-mediated signaling. Nat. Med. 7, 59–64 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Mars, W.M., Zarnegar, R. & Michalopoulos, G.K. Activation of hepatocyte growth factor by the plasminogen activators uPA and tPA. Am. J. Pathol. 143, 949–958 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Sappino, A.P. et al. Extracellular proteolysis in the adult murine brain. J. Clin. Invest. 92, 679–685 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Qian, Z., Gilbert, M.E., Colicos, M.A., Kandel, E.R. & Kuhl, D. Tissue-plasminogen activator is induced as an immediate-early gene during seizure, kindling and long-term potentiation. Nature 361, 453–457 (1993).

    Article  CAS  PubMed  Google Scholar 

  15. Tsirka, S.E., Rogove, A.D. & Strickland, S. Neuronal cell death and tPA. Nature 384, 123–124 (1996).

    Article  CAS  PubMed  Google Scholar 

  16. Tsirka, S.E., Gualandris, A., Amaral, D.G. & Strickland, S. Excitotoxin-induced neuronal degeneration and seizure are mediated by tissue plasminogen activator. Nature 377, 340–344 (1995).

    Article  CAS  PubMed  Google Scholar 

  17. Madani, R. et al. Enhanced hippocampal long-term potentiation and learning by increased neuronal expression of tissue-type plasminogen activator in transgenic mice. EMBO J. 18, 3007–3012 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Salles, F.J. & Strickland, S. Localization and regulation of the tissue plasminogen activator-plasmin system in the hippocampus. J. Neurosci. 22, 2125–2134 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gray, T.S., Carney, M.E. & Magnuson, D.J. Direct projections from the central amygdaloid nucleus to the hypothalamic paraventricular nucleus: possible role in stress-induced adrenocorticotropin release. Neuroendocrinology 50, 433–446 (1989).

    Article  CAS  PubMed  Google Scholar 

  20. Herman, J.P., Prewitt, C.M. & Cullinan, W.E. Neuronal circuit regulation of the hypothalamo-pituitary-adrenocortical stress axis. Crit. Rev. Neurobiol. 10, 371–394 (1996).

    Article  CAS  PubMed  Google Scholar 

  21. Hastings, G.A. et al. Neuroserpin, a brain-associated inhibitor of tissue plasminogen activator is localized primarily in neurons. Implications for the regulation of motor learning and neuronal survival. J. Biol. Chem. 272, 33062–33067 (1997).

    Article  CAS  PubMed  Google Scholar 

  22. Yamamoto, K. et al. Plasminogen activator inhibitor-1 is a major stress-regulated gene: implications for stress-induced thrombosis in aged individuals. Proc. Natl. Acad. Sci. USA 99, 890–895 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Adams, J.P. & Sweatt, J.D. Molecular psychology: roles for the ERK MAP kinase cascade in memory. Annu. Rev. Pharmacol. Toxicol. 42, 135–163 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Impey, S., Obrietan, K. & Storm, D.R. Making new connections: role of ERK/MAP kinase signaling in neuronal plasticity. Neuron 23, 11–14 (1999).

    Article  CAS  PubMed  Google Scholar 

  25. Davis, S., Vanhoutte, P., Pages, C., Caboche, J. & Laroche, S. The MAPK/ERK cascade targets both Elk-1 and cAMP response element- binding protein to control long-term potentiation-dependent gene expression in the dentate gyrus in vivo. J. Neurosci. 20, 4563–4572 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Benowitz, L.I. & Routtenberg, A. GAP-43: an intrinsic determinant of neuronal development and plasticity. Trends Neurosci. 20, 84–91 (1997).

    Article  CAS  PubMed  Google Scholar 

  27. Thorsell, A., Carlsson, K., Ekman, R. & Heilig, M. Behavioral and endocrine adaptation, and up-regulation of NPY expression in rat amygdala following repeated restraint stress. Neuroreport 10, 3003–3007 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. Luiten, P.G., Koolhaas, J.M., de Boer, S. & Koopmans, S.J. The cortico-medial amygdala in the central nervous system organization of agonistic behavior. Brain Res. 332, 283–297 (1985).

    Article  CAS  PubMed  Google Scholar 

  29. McEwen, B.S. Stress and hippocampal plasticity. Annu. Rev. Neurosci. 22, 105–122 (1999).

    Article  CAS  PubMed  Google Scholar 

  30. McEwen, B.S. & Sapolsky, R.M. Stress and cognitive function. Curr. Opin. Neurobiol. 5, 205–216 (1995).

    Article  CAS  PubMed  Google Scholar 

  31. McEwen, B.S. The neurobiology and neuroendocrinology of stress implications for post-traumatic stress disorder from a basic science perspective. Psychiatr. Clin. North Am. 25, 469–494 (2002).

    Article  PubMed  Google Scholar 

  32. Fanselow, M.S. & LeDoux, J.E. Why we think plasticity underlying Pavlovian fear conditioning occurs in the basolateral amygdala. Neuron 23, 229–232 (1999).

    Article  CAS  PubMed  Google Scholar 

  33. Rogan, M.T., Staubli, U.V. & LeDoux, J.E. Fear conditioning induces associative long-term potentiation in the amygdala. Nature 390, 604–607 (1997).

    Article  CAS  PubMed  Google Scholar 

  34. Gualandris, A., Jones, T.E., Strickland, S. & Tsirka, S.E. Membrane depolarization induces calcium-dependent secretion of tissue plasminogen activator. J. Neurosci. 16, 2220–2225 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Parmer, R.J. et al. Tissue plasminogen activator (t-PA) is targeted to the regulated secretory pathway. Catecholamine storage vesicles as a reservoir for the rapid release of t-PA. J. Biol. Chem. 272, 1976–1982 (1997).

    Article  CAS  PubMed  Google Scholar 

  36. Neuhoff, H., Roeper, J. & Schweizer, M. Activity-dependent formation of perforated synapses in cultured hippocampal neurons. Eur. J. Neurosci. 11, 4241–4250 (1999).

    Article  CAS  PubMed  Google Scholar 

  37. Nakagami, Y., Abe, K., Nishiyama, N. & Matsuki, N. Laminin degradation by plasmin regulates long-term potentiation. J. Neurosci. 20, 2003–2010 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yepes, M. et al. Regulation of seizure spreading by neuroserpin and tissue-type plasminogen activator is plasminogen-independent. J. Clin. Invest. 109, 1571–1578 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Huang, Y.Y. et al. Mice lacking the gene encoding tissue-type plasminogen activator show a selective interference with late-phase long-term potentiation in both Schaffer collateral and mossy fiber pathways. Proc. Natl. Acad. Sci. USA 93, 8699–8704 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Frey, U., Muller, M. & Kuhl, D. A different form of long-lasting potentiation revealed in tissue plasminogen activator mutant mice. J. Neurosci. 16, 2057–2063 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chapman, P.F. & Chattarji, S. Synaptic plasticity in the amygdala. in The Amygdala (ed. Aggleton, J.P.) 117–153 (Oxford Univ. Press, 2000)

    Google Scholar 

  42. Kim, Y.H., Park, J.H., Hong, S.H. & Koh, J.Y. Nonproteolytic neuroprotection by human recombinant tissue plasminogen activator. Science 284, 647–650 (1999).

    Article  CAS  PubMed  Google Scholar 

  43. Zhuo, M. et al. Role of tissue plasminogen activator receptor LRP in hippocampal long- term potentiation. J. Neurosci. 20, 542–549 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chen, Z.L. et al. Expression and activity-dependent changes of a novel limbic-serine protease gene in the hippocampus. J. Neurosci. 15, 5088–5097 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Schafe, G.E. et al. Activation of ERK/MAP kinase in the amygdala is required for memory consolidation of pavlovian fear conditioning. J. Neurosci. 20, 8177–8187 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Glowinski, J. & Iversen, L. Regional studies of catecholamines in the rat brain. 3. Subcellullar distribution of endogenous and exogenous catecholamines in various brain regions. Biochem. Pharmacol. 15, 977–987 (1966).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by National Institutes of Health grants NS-35704 and NS-38472. We thank Z-L. Chen for sharing his expertise in immunohisto-chemistry, P. Mercado and Y. Keptsi for technical assistance, and the members of Strickland Lab for discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sidney Strickland.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pawlak, R., Magarinos, A., Melchor, J. et al. Tissue plasminogen activator in the amygdala is critical for stress-induced anxiety-like behavior. Nat Neurosci 6, 168–174 (2003). https://doi.org/10.1038/nn998

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn998

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing