Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The caudal ganglionic eminence is a source of distinct cortical and subcortical cell populations

Abstract

During development, the mammalian ventral telencephalon is comprised of three major proliferative zones: the medial (MGE), lateral (LGE) and caudal (CGE) ganglionic eminences. Through gene expression studies, in vitro migration assays, genetic mutant analysis and in vivo fate mapping in mice, we found that the CGE is a progenitor region that is distinct from both the MGE and LGE. Notably, CGE cells showed a unique in vivo pattern of migration, and the CGE contributed cells to nuclei distinct from those populated by the MGE and LGE. Moreover, we report that the migratory fate of cells from the CGE is intrinsically determined by embryonic day 13.5 (E13.5). Together, these results provide the first insights into the development and fate of the CGE.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Molecular characterization of the CGE at E13.5.
Figure 2: The CGE is unaffected in the absence of Gsh2 or Titf1.
Figure 3: Dlx2-tau-LacZ knock-in mouse allows visualization of Dlx2 expression and significant migration of Dlx2 positive cells from the CGE at E14.5 and E15.5.
Figure 4: In vivo assays show that CGE cells are highly migratory at E13.5.
Figure 5: Distribution and morphology of CGE-derived cells at P21.
Figure 6: Comparison of the differential contribution of CGE, MGE and LGE-derived cells to the cortex and limbic system.
Figure 7: MGE cells do not adopt CGE characteristics when transplanted to the more posterior CGE.
Figure 8: Immunohistochemical characterization of CGE-derived cells.

Similar content being viewed by others

References

  1. Fentress, J.C., Stanfield, B.B. & Cowan, W.M. Observation on the development of the striatum in mice and rats. Anat. Embryol. (Berl.) 163, 275–298 (1981).

    Article  CAS  Google Scholar 

  2. Smart, I.H.M. and Sturrock, R.R. in The Neostriatum (eds. Divac, I. & Oberg, R.G.E.) 127–147 (Pergamon, Oxford, 1979).

    Book  Google Scholar 

  3. Puelles, L. et al. Pallial and subpallial derivatives in the embryonic chick and mouse telencephalon, traced by the expression of the genes Dlx-2, Emx-1, Nkx-2.1, Pax-6, and Tbr-1. J. Comp. Neurol. 424, 409–438 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Anderson, S.A., Eisenstat, D.D., Shi, L. & Rubenstein, J.L. Interneuron migration from basal forebrain to neocortex: dependence on Dlx genes [see comments]. Science 278, 474–476 (1997).

    Article  CAS  PubMed  Google Scholar 

  5. Anderson, S.A., Marin, O., Horn, C., Jennings, K. & Rubenstein, J.L. Distinct cortical migrations from the medial and lateral ganglionic eminences. Development 128, 353–363 (2001).

    CAS  PubMed  Google Scholar 

  6. de Carlos, J.A., Lopez-Mascaraque, L. & Valverde, F. Dynamics of cell migration from the lateral ganglionic eminence in the rat. J. Neurosci. 16, 6146–6156 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lavdas, A.A., Grigoriou, M., Pachnis, V. & Parnavelas, J.G. The medial ganglionic eminence gives rise to a population of early neurons in the developing cerebral cortex. J. Neurosci. 19, 7881–7888 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Pleasure, S.J. et al. Cell migration from the ganglionic eminences is required for the development of hippocampal GABAergic interneurons. Neuron 28, 727–740 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Tamamaki, N., Fujimori, K.E. & Takauji, R. Origin and route of tangentially migrating neurons in the developing neocortical intermediate zone. J. Neurosci. 17, 8313–8323 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Anderson, S.A. et al. Mutations of the homeobox genes Dlx-1 and Dlx-2 disrupt the striatal subventricular zone and differentiation of late born striatal neurons. Neuron 19, 27–37 (1997).

    Article  CAS  PubMed  Google Scholar 

  11. Casarosa, S., Fode, C. & Guillemot, F. Mash1 regulates neurogenesis in the ventral telencephalon. Development 126, 525–534 (1999).

    CAS  PubMed  Google Scholar 

  12. Corbin, J.G., Gaiano, N., Machold, R.P., Langston, A. & Fishell, G. The Gsh2 homeodomain gene controls multiple aspects of telencephalic development. Development 127, 5007–5020 (2000).

    CAS  PubMed  Google Scholar 

  13. Marin, O., Anderson, S.A. & Rubenstein, J.L. Origin and molecular specification of striatal interneurons. J. Neurosci. 20, 6063–6076 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sussel, L., Marin, O., Kimura, S. & Rubenstein, J.L. Loss of Wkx2.1 homeobox gene function results in a ventral to dorsal molecular respecification within the basal telencephalon: evidence for a transformation of the pallidum into the striatum. Development 126, 3359–3370 (1999).

    CAS  PubMed  Google Scholar 

  15. Toresson, H., Potter, S.S. & Campbell, K. Genetic control of dorsal-ventral identity in the telencephalon: opposing roles for Pax6 and Gsh2. Development 127, 4361–4371 (2000).

    CAS  PubMed  Google Scholar 

  16. Yun, K., Potter, S. & Rubenstein, J.L. Gsh2 and Pax6 play complementary roles in dorsoventral patterning of the mammalian telencephalon. Development 128, 193–205 (2001).

    CAS  PubMed  Google Scholar 

  17. Corbin, J.G., Nery, S. & Fishell, G. Telencephalic cells take a tangent: non-radial migration in the mammalian forebrain. Nat. Neurosci. 4, (Suppl.), 1177–1182 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Parnavelas, J.G. The origin and migration of cortical neurones: new vistas. Trends Neurosci. 23, 126–131 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. He, W., Ingraham, C., Rising, L., Goderie, S. & Temple, S. Multipotent stem cells from the mouse basal forebrain contribute GABAergic neurons and oligodendrocytes to the cerebral cortex during embryogenesis. J. Neurosci. 21, 8854–8862 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Nery, S., Wichterle, H. & Fishell, G. Sonic hedgehog contributes to oligodendrocyte specification in the mammalian forebrain. Development 128, 527–540 (2001).

    CAS  PubMed  Google Scholar 

  21. Olivier, C. et al. Monofocal origin of telencephalic oligodendrocytes in the anterior entopeduncular area of the chick embryo. Development 128, 1757–1769 (2001).

    CAS  PubMed  Google Scholar 

  22. Perez Villegas, E.M. et al. Early specification of oligodendrocytes in the chick embryonic brain. Dev. Biol. 216, 98–113 (1999).

    Article  CAS  PubMed  Google Scholar 

  23. Spassky, N. et al. Multiple restricted origin of oligodendrocytes. J. Neurosci. 18, 8331–8343 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wichterle, H., Turnbull, D.H., Nery, S., Fishell, G. & Alvarez-Buylla, A. In utero fate mapping reveals distinct migratory pathways and fates of neurons born in the mammalian basal forebrain. Development 128, 3759–3771 (2001).

    CAS  PubMed  Google Scholar 

  25. Olsson, M., Bjorklund, A. & Campbell, K. Early specification of striatal projection neurons and interneuronal subtypes in the lateral and medial ganglionic eminence. Neuroscience 84, 867–876 (1998).

    Article  CAS  PubMed  Google Scholar 

  26. Kim, A.S., Anderson, S.A., Rubenstein, J.L., Lowenstein, D.H. & Pleasure, S.J. Pax-6 regulates expression of SFRP-2 and Wnt-7b in the developing CNS. J. Neurosci. 21, RC132 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Toresson, H., Mata de Urquiza, A., Fagerstrom, C., Perlmann, T. & Campbell, K. Retinoids are produced by glia in the lateral ganglionic eminence and regulate striatal neuron differentiation. Development 126, 1317–1326 (1999).

    CAS  PubMed  Google Scholar 

  28. Szucsik, J.C. et al. Altered forebrain and hindbrain development in mice mutant for the Gsh-2 homeobox gene. Dev. Biol. 191, 230–242 (1997).

    Article  CAS  PubMed  Google Scholar 

  29. Garel, S., Marin, F., Grosschedl, R. & Charnay, P. Ebf1 controls early cell differentiation in the embryonic striatum. Development 126, 5285–5294 (1999).

    CAS  PubMed  Google Scholar 

  30. Wichterle, H., Garcia-Verdugo, J.M., Herrera, D.G. & Alvarez-Buylla, A. Young neurons from medial ganglionic eminence disperse in adult and embryonic brain. Nat. Neurosci. 2, 461–466 (1999).

    Article  CAS  PubMed  Google Scholar 

  31. DeFelipe, J. Neocortical neuronal diversity: chemical heterogeneity revealed by colocalization studies of classic neurotransmitters, neuropeptides, calcium-binding proteins and cell surface molecules. Cereb. Cortex 3, 273–289 (1993).

    Article  CAS  PubMed  Google Scholar 

  32. Gonchar, Y. & Burkhalter, A. Three distinct families of GABAergic neurons in rat visual cortex. Cereb. Cortex 7, 347–358 (1997).

    Article  CAS  PubMed  Google Scholar 

  33. Kubota, Y., Hattori, R. & Yui, Y. Three distinct subpopulations of GABAergic neurons in rat frontal agranular cortex. Brain Res. 649, 159–173 (1994).

    Article  CAS  PubMed  Google Scholar 

  34. Ouimet, C.C., Miller, P.E., Hemmings, H.C. Jr., Walaas, S.I. & Greengard, P. DARPP-32, a dopamine- and adenosine 3':5′-monophosphate-regulated phosphoprotein enriched in dopamine-innervated brain regions. III. Immunocytochemical localization. J. Neurosci. 4, 111–124 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hevner, R.F. et al. Tbr1 regulates differentiation of the preplate and layer 6. Neuron 29, 353–366 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Olsson, M., Campbell, K., Wictorin, K. & Bjorklund, A. Projection neurons in fetal striatal transplants are predominantly derived from the lateral ganglionic eminence. Neuroscience 69, 1169–1182 (1995).

    Article  CAS  PubMed  Google Scholar 

  37. Marin, O. & Rubenstein, J.L. A long, remarkable journey: tangential migration in the telencephalon. Nat. Rev. Neurosci. 2, 780–790 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Schuurmans, C. & Guillemot, F. Molecular mechanisms underlying cell fate specification in the developing telencephalon. Curr. Opin. Neurobiol. 12, 26–34 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. Angevine, J.B. Jr. & Sidman, R.L. Autoradiographic study of cell migration during histogenesis of cerebral cortex in the mouse. Nature 192, 766–768 (1961).

    Article  PubMed  Google Scholar 

  40. McConnell, S.K. & Kaznowski, C.E. Cell cycle dependence of laminar determination in developing neocortex. Science 254, 282–285 (1991).

    Article  CAS  PubMed  Google Scholar 

  41. Liu, A., Joyner, A.L. & Turnbull, D.H. Alteration of limb and brain patterning in early mouse embryos by ultrasound-guided injection of Shh-expressing cells. Mech. Dev. 75, 107–115 (1998).

    Article  CAS  PubMed  Google Scholar 

  42. Martin, J.H. Neuroanatomy: Text and Atlas (Elsevier, New York, 1989).

  43. Paxinos, G. The Rat Nervous System (Academic, New York, 1995).

  44. Schaeren-Wiemers, N. & Gerfin-Moser, A. A single protocol to detect transcripts of various types and expression levels in neural tissue and cultured cells: in situ hybridization using digoxigenin-labelled cRNA probes. Histochemistry 100, 431–440 (1993).

    Article  CAS  PubMed  Google Scholar 

  45. Wilkinson, D.G. & Nieto, M.A. Detection of messenger RNA by in situ hybridization to tissue sections and whole mounts. Methods Enzymol. 225, 361–373 (1993).

    Article  CAS  PubMed  Google Scholar 

  46. Gaiano, N., Kohtz, J.D., Turnbull, D.H. & Fishell, G. A method for rapid gain-of-function studies in the mouse embryonic nervous system [see comments]. Nat. Neurosci. 2, 812–819 (1999).

    Article  CAS  PubMed  Google Scholar 

  47. DePrimo, S.E., Stambrook, P.J. & Stringer, J.R. Human placental alkaline phosphatase as a histochemical marker of gene expression in transgenic mice. Transgenic Res. 5, 459–466 (1996).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Fishell lab, H. Wichterle, J. Goldman and I. Zohn for critical reading and M. Rutlin and Y.Y. Huang for technical assistance. We thank A. Langston and E. Na for generating the Dlx2-tau-lacZ transgenic line and the following for their gifts of reagents: J.R. Stringer, A. Joyner, F. Guillemot, J. Rubenstein, J. Nathans, S. Arber, P. Charnay, U. Eriksson and M. Sheng. S.N. is supported by PRAXIS XXI through the Gulbenkian Ph.D. program and J.C. is a recipient of a NIH postdoctoral fellowship NS10962-03. This work was supported by a National Institutes of Health grant (RO1 NS39007-03) and a March of Dimes basic research grant to G.F.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gord Fishell.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

41593_2002_BFnn971_MOESM1_ESM.jpg

Supplementary Fig. 1. Comparison of LGE and CGE migration to the olfactory bulb and striatum. Coronal PLAP stained sections from P21 animals that received either (a, b, e-h) LGE or (c, d, i-l) CGE homotopic transplants. (a and b) LGE-derived cells migrate extensively to the olfactory bulb, but are not observed in the anterior cortex. (c and d) In contrast, CGE-derived cells migrated to the anterior cortex and anterior olfactory nucleus (arrowhead in c) but only a few cells are observed in the olfactory bulb (arrowheads in d). Within the mature striatum (asterick) (e-h) LGE-derived cells mainly populate the anterior portion, while (i-l) CGE-derived cells migrate mainly to posterior regions. AntCtx, anterior cortex; AON, anterior olfactory nucleus; Gl, glomerular cell layer; Gcl, granule cell layer; OB, Olfactory bulb; RMS, rostral migratory stream. (JPG 38 kb)

Supplementary Table 1 (PDF 17 kb)

Supplementary Results (PDF 14 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nery, S., Fishell, G. & Corbin, J. The caudal ganglionic eminence is a source of distinct cortical and subcortical cell populations. Nat Neurosci 5, 1279–1287 (2002). https://doi.org/10.1038/nn971

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn971

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing