Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dynamics of neuronal responses in macaque MT and VIP during motion detection

Abstract

We examined how the relationship between neuronal activity and behavior evolved over time during a motion-detection task. Recording from two regions of visual cortex that process motion, the middle temporal (MT) and ventral intraparietal (VIP) areas, we used the time it took subjects to detect a motion stimulus to evaluate the dynamics of the underlying neuronal signals. Single-neuron activity was correlated with stimulus detection and reaction time (RT) in both areas. The rising edge of the population response from both areas was highly predictive of RT using a simple threshold-detection model. The time course of the population responses, however, differed between MT and VIP. For MT, the onset of the neuronal response was relatively constant, whereas for VIP the onset of the neuronal responses increased with RT. In contrast to previous studies, we found that single neurons were not reliable detectors of the motion signal when constrained by realistic detection times.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Motion detection task.
Figure 2: Example MT neuron.
Figure 3: Average correlation of neuronal responses with RT and detect probability for MT (a) and VIP (b).
Figure 4: Average correlation of neuronal responses with RT and detect probability when a single stimulus was presented.
Figure 5: Population responses of MT and VIP predict RT.
Figure 6: Neuronal latency of the binned population responses from Fig. 5a versus the average RT associated with each response.
Figure 7: Single-neuron detection performance.
Figure 8: Comparison of single-neuron detection performance with RT.

Similar content being viewed by others

References

  1. Tolhurst, D.J., Movshon, J.A. & Dean, A.F. The statistical reliability of signals in single neurons in cat and monkey visual cortex. Vision Res. 23, 775–785 (1983).

    Article  CAS  Google Scholar 

  2. Parker, A. & Hawken, M. Capabilities of monkey cortical cells in spatial resolution tasks. J. Opt. Soc. Am. A 2, 1101–1114 (1985).

    Article  CAS  Google Scholar 

  3. Geisler, W.S. & Albrecht, D.G. Visual cortex neurons in monkeys and cats: detection, discrimination, and identification. Vis. Neurosci. 14, 897–919 (1997).

    Article  CAS  Google Scholar 

  4. Britten, K.H., Shadlen, M.N., Newsome, W.T. & Movshon, J.A. The analysis of visual motion: a comparison of neuronal and psychophysical performance. J. Neurosci. 12, 4745–4765 (1992).

    Article  CAS  Google Scholar 

  5. Croner, L.J. & Albright, T.D. Segmentation by color influences responses of motion-sensitive neurons in the cortical middle temporal visual area. J. Neurosci. 19, 3935–3951 (1999).

    Article  CAS  Google Scholar 

  6. Prince, S.J.D., Pointon, A.D., Cumming, B.G. & Parker, A.J. The precision of single neuron responses in cortical area V1 during stereoscopic depth judgments. J. Neurosci. 20, 3387–3400 (2000).

    Article  CAS  Google Scholar 

  7. Mountcastle, V.B., Steinmetz, M.A. & Romo, R. Frequency discrimination in the sense of flutter: psychophysical measurements correlated with post-central events in behaving monkeys. J. Neurosci. 10, 3032–3044 (1990).

    Article  CAS  Google Scholar 

  8. Parker, A.J. & Newsome, W.T. Sense and the single neuron: probing the physiology of perception. Annu. Rev. Neurosci. 21, 227–277 (1998).

    Article  CAS  Google Scholar 

  9. Meyer, D.E., Osman, A.M., Irwin, D.E. & Yantis, S. Modern mental chronometry. Biol. Psychol. 26, 3–67 (1988).

    Article  CAS  Google Scholar 

  10. Luce, R.D. Response Times: Their Role in Inferring Elementary Mental Organization (eds. Broadbent, D. E. et al.) (Clarendom Press, Oxford, 1986).

    Google Scholar 

  11. Thompson, K.G., Hanes, D.P., Bichot, N.P. & Schall, J.D. Perceptual and motor processing stages identified in the activity of macaque frontal eye field neurons during visual search. J. Neurophysiol. 76, 4040–4055 (1996).

    Article  CAS  Google Scholar 

  12. Cook, E.P. & Maunsell, J.H.R. Attentional modulation of behavioral performance and neuronal responses in middle temporal and ventral intraparietal areas of macaque monkey. J. Neurosci. 22, 1994–2004 (2002).

    Article  CAS  Google Scholar 

  13. Celebrini, S. & Newsome, W.T. Neuronal and psychophysical sensitivity to motion signals in extrastriate area MST of the macaque monkey. J. Neurosci. 14, 4109–4124 (1994).

    Article  CAS  Google Scholar 

  14. Britten, K.H., Newsome, W.T., Shadlen, M.N., Celebrini, S. & Movshon, J.A. A relationship between behavioral choice and the visual responses of neurons in macaque MT. Vis. Neurosci. 13, 87–100 (1996).

    Article  CAS  Google Scholar 

  15. Dodd, J.V., Krug, K., Cumming, B.G. & Parker, A.J. Perceptually bistable three-dimensional figures evoke high choice probabilities in cortical area MT. J. Neurosci. 21, 4809–4821 (2001).

    Article  CAS  Google Scholar 

  16. Shadlen, M.N. & Newsome, W.T. Neural basis of a perceptual decision in the parietal cortex (area LIP) of the rhesus monkey. J. Neurophysiol. 86, 1916–1936 (2001).

    Article  CAS  Google Scholar 

  17. Britten, K.H., Shadlen, M.N., Newsome, W.T. & Movshon, J.A. Responses of neurons in macaque MT to stochastic motion signals. Vis. Neurosci. 10, 1157–1169 (1993).

    Article  CAS  Google Scholar 

  18. Bair, W. & Koch, C. Temporal precision of spike trains in extrastriate cortex of the behaving macaque monkey. Neural Comput. 8, 1185–1202 (1996).

    Article  CAS  Google Scholar 

  19. Buracas, G.T., Zador, A.M., DeWeese, M.R. & Albright, T.D. Efficient discrimination of temporal patterns by motion-sensitive neurons in primate visual cortex. Neuron 20, 959–969 (1998).

    Article  CAS  Google Scholar 

  20. Hanes, D.P. & Schall, J.D. Neural control of voluntary movement initiation. Science 274, 427–430 (1996).

    Article  CAS  Google Scholar 

  21. Reddi, B.A. & Carpenter, R.H. The influence of urgency on decision time. Nat. Neurosci. 3, 827–830 (2000).

    Article  CAS  Google Scholar 

  22. Schall, J.D. & Thompson, K.G. Neural selection and control of visually guided eye movements. Annu. Rev. Neurosci. 22, 241–259 (1999).

    Article  CAS  Google Scholar 

  23. Felleman, D.J. & Van Essen, D.C. Distributed hierarchical processing in the primate cerebral cortex. Cereb. Cortex 1, 1–47 (1991).

    Article  CAS  Google Scholar 

  24. Shadlen, M.N. & Newsome, W.T. Motion perception: seeing and deciding. Proc. Natl. Acad. Sci. USA 93, 628–633 (1996).

    Article  CAS  Google Scholar 

  25. Gratton, G., Coles, M.G., Sirevaag, E.J., Eriksen, C.W. & Donchin, E. Pre- and post-stimulus activation of response channels: a psychophysiological analysis. J. Exp. Psychol. Hum. Percept. Perform. 14, 331–344 (1988).

    Article  CAS  Google Scholar 

  26. Schmolesky, M.T. et al. Signal timing across the macaque visual system. J. Neurophysiol. 79, 3272–3278 (1998).

    Article  CAS  Google Scholar 

  27. Raiguel, S.E., Lagae, L., Gulyas, B. & Orban, G.A. Response latencies of visual cells in macaque areas V1, V2 and V5. Brain Res. 493, 155–159 (1989).

    Article  CAS  Google Scholar 

  28. Shadlen, M.N., Britten, K.H., Newsome, W.T. & Movshon, J.A. A computational analysis of the relationship between neuronal and behavioral responses to visual motion. J. Neurosci. 16, 1486–1510 (1996).

    Article  CAS  Google Scholar 

  29. Bair, W., Zohary, E. & Newsome, W.T. Correlated firing in macaque visual area MT: time scales and relationship to behavior. J. Neurosci. 21, 1676–1697 (2001).

    Article  CAS  Google Scholar 

  30. Mazurek, M.E. & Shadlen, M.N. Limits to the temporal fidelity of cortical spike rate signals. Nat. Neurosci. 5, 463–471 (2002).

    Article  CAS  Google Scholar 

  31. Lamarre, Y., Spidalieri, G. & Lund, J.P. Patterns of muscular and motor cortical activity during a simple arm movement in the monkey. Can. J. Physiol. Pharmacol. 59, 748–756 (1981).

    Article  CAS  Google Scholar 

  32. Townsend, J.T. & Ashby, F.G. The Stochastic Modeling of Elementary Psychological Processes (Cambridge University Press, Cambridge, 1983).

    Google Scholar 

  33. Usher, M. & McClelland, J.L. The time course of perceptual choice: the leaky, competing accumulator model. Psychol. Rev. 108, 550–592 (2001).

    Article  CAS  Google Scholar 

  34. Maunsell, J.H.R. & Van Essen, D.C. The connections of the middle temporal visual area (MT) and their relationship to a cortical hierarchy in the macaque monkey. J. Neurosci. 3, 2563–2586 (1983).

    Article  CAS  Google Scholar 

  35. Colby, C.L., Duhamel, J.R. & Goldberg, M.E. Ventral intraparietal area of the macaque: anatomic location and visual response properties. J. Neurophysiol. 69, 902–914 (1993).

    Article  CAS  Google Scholar 

  36. Gibson, J.R. & Maunsell, J.H.R. Sensory modality specificity of neural activity related to memory in visual cortex. J. Neurophysiol. 78, 1263–1275 (1997).

    Article  CAS  Google Scholar 

  37. Robinson, D.A. A method of measuring eye movement using a scleral search coil in a magnetic field. IEEE Trans. Biomed. Eng. 10, 137–145 (1963).

    CAS  Google Scholar 

  38. Judge, S.J., Richmond, B.J. & Chu, F.C. Implantation of magnetic search coils for measurement of eye position: an improved method. Vision. Res. 20, 535–538 (1980).

    Article  CAS  Google Scholar 

  39. Van Essen, D.C., Maunsell, J.H.R. & Bixby, J.L. The middle temporal visual area in the macaque: myeloarchitecture, connections, functional properties and topographic organization. J. Comp. Neurol. 199, 293–326 (1981).

    Article  CAS  Google Scholar 

  40. Efron, B. & Tibshirani, R. An Introduction to the Bootstrap (Chapman and Hall, New York, 1993).

    Book  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Institutes of Health Grant R01 EY05911. J.H.R.M. is an Investigator with the Howard Hughes Medical Institute. We thank W. Bosking, C. Boudreau, J. DiCarlo, G. Ghose, C. Hocker and T. Yang for helpful discussions on all aspects of this project, and D. Murray and T. Williford for expert technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik P. Cook.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cook, E., Maunsell, J. Dynamics of neuronal responses in macaque MT and VIP during motion detection. Nat Neurosci 5, 985–994 (2002). https://doi.org/10.1038/nn924

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn924

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing