Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

TrkB receptor signaling is required for establishment of GABAergic synapses in the cerebellum

Abstract

Neurotrophins are essential to the normal development and maintenance of the nervous system. Neurotrophin signaling is mediated by Trk family tyrosine kinases such as TrkA, TrkB and TrkC, as well as by the pan-neurotrophin receptor p75NTR. Here we have deleted the trkB gene in cerebellar precursors by Wnt1-driven Cre–mediated recombination to study the function of the TrkB in the cerebellum. Despite the absence of TrkB, the mature cerebellum of mutant mice appears similar to that of wild type, with all types of cell present in normal numbers and positions. Granule and Purkinje cell dendrites appear normal and the former have typical numbers of excitatory synapses. By contrast, inhibitory interneurons are strongly affected: although present in normal numbers, they express reduced amounts of GABAergic markers and develop reduced numbers of GABAergic boutons and synaptic specializations. Thus, TrkB is essential to the development of GABAergic neurons and regulates synapse formation in addition to its role in the development of axon terminals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Wnt1-driven Cre-mediated deletion of the R26R and trkB alleles, identified by expression of the reporters lacZ and tau-lacZ, respectively.
Figure 2: Loss of TrkB receptor in the cerebellum of trkB conditional-mutant mice.
Figure 3: Cerebellar architecture in trkB conditional-mutant mice at P50–P80.
Figure 4: Granular and Purkinje cell morphologies in trkB conditional-mutant mice at P50–P80.
Figure 5: Loss of GABAergic markers in the cerebellum of trkB conditional mutant at P50–P80.
Figure 6: Quantitative analysis of the loss of GABAergic markers in lobule IV and in the fastigial nucleus of trkB conditional-mutant mice at P50–P80.
Figure 7: Reduction in the number of symmetric synapses in the granule-cell layer of trkB conditional-mutant mice at P50–P80.

Similar content being viewed by others

References

  1. Huang, E. J. & Reichardt, L. F. Neurotrophins: roles in neuronal development and function. Annu. Rev. Neurosci. 24, 677–736 (2001).

    Article  CAS  Google Scholar 

  2. Lohof, A. M., Ip, N. Y. & Poo, M. M. Potentiation of developing neuromuscular synapses by the neurotrophins NT-3 and BDNF. Nature 363, 350–353 (1993).

    Article  CAS  Google Scholar 

  3. Cohen-Cory, S. & Fraser, S. E. Effects of brain-derived neurotrophic factor on optic axon branching and remodelling in vivo. Nature 378, 192–196 (1995).

    Article  CAS  Google Scholar 

  4. Schwartz, P. M., Borghesani, P. R., Levy, R. L., Pomeroy, S. L. & Segal, R. A. Abnormal cerebellar development and foliation in BDNF−/− mice reveals a role for neurotrophins in CNS patterning. Neuron 19, 269–281 (1997).

    Article  CAS  Google Scholar 

  5. Martínez, A. et al. TrkB and TrkC signaling are required for maturation and synaptogenesis of hippocampal connections. J. Neurosci. 18, 7336–7350 (1998).

    Article  Google Scholar 

  6. McAllister, A. K., Katz, L. C. & Lo, D. C. Neurotrophins and synaptic plasticity. Annu. Rev. Neurosci. 22, 295–318 (1999).

    Article  CAS  Google Scholar 

  7. Xu, B. et al. Cortical degeneration in the absence of neurotrophin signaling: dendritic retraction and neuronal loss after removal of the receptor TrkB. Neuron 26, 233–245 (2000).

    Article  CAS  Google Scholar 

  8. Xu, B. et al. The role of brain-derived neurotrophic factor receptors in the mature hippocampus: modulation of long-term potentiation through a presynaptic mechanism involving TrkB. J. Neurosci. 20, 6888–6897 (2000).

    Article  CAS  Google Scholar 

  9. Mizuno, K., Carnahan, J. & Nawa, H. Brain-derived neurotrophic factor promotes differentiation of striatal gabaergic neurons. Dev. Biol. 165, 243–256 (1994).

    Article  CAS  Google Scholar 

  10. Widmer, H. R. & Hefti, F. Stimulation of GABAergic neuron differentiation by NT-4/5 in cultures of rat cerebral cortex. Dev. Brain Res. 80, 279–284 (1994).

    Article  CAS  Google Scholar 

  11. Vicario-Abejón, C., Collín, C., McKay, R. D. G. & Segal, M. Neurotrophins induce formation of functional excitatory and inhibitory synapses between cultured hippocampal neurons. J. Neurosci. 18, 7256–7271 (1998).

    Article  Google Scholar 

  12. Seil, F. J. & Drake-Baumann, R. TrkB receptor ligands promote activity-dependent inhibitory synaptogenesis. J. Neurosci. 20, 5367–5373 (2000).

    Article  CAS  Google Scholar 

  13. Marty, S., Wehrle, R. & Sotelo, C. Neuronal activity and brain-derived neurotrophic factor regulate the density of inhibitory synapses in organotypic slice cultures of postnatal hippocampus. J. Neurosci. 20, 8087–8095 (2000).

    Article  CAS  Google Scholar 

  14. Bao, S. W., Chen, L., Qiao, X. X. & Thompson, R. F. Transgenic brain-derived neurotrophic factor modulates a developing cerebellar inhibitory synapse. Learn. Memory 6, 276–283 (1999).

    CAS  Google Scholar 

  15. Huang, Z. J. et al. BDNF regulates the maturation of inhibition and the critical period of plasticity in mouse visual cortex. Cell 98, 739–755 (1999).

    Article  CAS  Google Scholar 

  16. Lindholm, D., Hamnér, S. & Zirrgiebel, U. Neurotrophins and cerebellar development. Persp. Dev. Neurol. 5, 83–94 (1997).

    CAS  Google Scholar 

  17. Rocamora, N., Garcialadona, F. J., Palacios, J. M. & Mengod, G. Differential expression of brain-derived neurotrophic factor, Neurotrophin-3, and low-affinity nerve growth factor receptor during the postnatal development of the rat cerebellar system. Mol. Brain Res. 17, 1–8 (1993).

    Article  CAS  Google Scholar 

  18. Klein, R. et al. Targeted disruption of the TrkB neurotrophin receptor gene results in nervous system lesions and neonatal death. Cell 75, 113–122 (1993).

    Article  CAS  Google Scholar 

  19. Yan, Q. et al. Immunocytochemical localization of TrkB in the central nervous system of the adult rat. J. Comp. Neurol. 378, 135–157 (1997).

    Article  CAS  Google Scholar 

  20. Segal, R. A., Takahashi, H. & McKay, R. D. G. Changes in neurotrophin responsiveness during the development of cerebellar granule neurons. Neuron 9, 1041–1052 (1992).

    Article  CAS  Google Scholar 

  21. Gao, W. Q., Zheng, J. L. & Karihaloo, M. Neurotrophin-4/5 (NT-4/5) and brain-derived neurotrophic factor (BDNF) act at later stages of cerebellar granule cell differentiation. J. Neurosci. 15, 2656–2667 (1995).

    Article  CAS  Google Scholar 

  22. Jones, K. R., Fariñas, I., Backus, C. & Reichardt, L. F. Targeted disruption of the BDNF gene perturbs brain and sensory neuron development but not motor neuron development. Cell 76, 989–999 (1994).

    Article  CAS  Google Scholar 

  23. Minichiello, L. & Klein, R. TrkB and TrkC neurotrophin receptors cooperate in promoting survival of hippocampal and cerebellar granule neurons. Genes Dev. 10, 2849–2858 (1996).

    Article  CAS  Google Scholar 

  24. Shimada, A., Mason, C. A. & Morrison, M. E. TrkB signaling modulates spine density and morphology independent of dendrite structure in cultured neonatal Purkinje cells. J. Neurosci. 18, 8559–8570 (1998).

    Article  CAS  Google Scholar 

  25. Rabacchi, S. A. et al. BDNF and NT4/5 promote survival and neurite outgrowth of pontocerebellar mossy fiber neurons. J. Neurobiol. 40, 254–269 (1999).

    Article  CAS  Google Scholar 

  26. Altman, J. & Bayer, S. A. Development of the Cerebellar System. In Relation to its Evolution, Structure, and Functions (CRC, Boca Raton, Florida, 1997).

    Google Scholar 

  27. Minichiello, L. et al. Essential role for TrkB receptors in hippocampus-mediated learning. Neuron 24, 401–414 (1999).

    Article  CAS  Google Scholar 

  28. Danielian, P. S., Muccino, D., Rowitch, D. H., Michael, S. K. & McMahon, A. P. Modification of gene activity in mouse embryos in utero by a tamoxifen-inducible form of Cre recombinase. Curr. Biol. 8, 1323–1326 (1998).

    Article  CAS  Google Scholar 

  29. Chai, Y. et al. Fate of the mammalian cranial neural crest during tooth and mandibular morphogenesis. Development 127, 1671–1679 (2000).

    CAS  PubMed  Google Scholar 

  30. Rodriguez, C. I. & Dymecki, S. M. Origin of the precerebellar system. Neuron 27, 475–486 (2000).

    Article  CAS  Google Scholar 

  31. Callahan, C. A. & Thomas, J. B. Tau–β-galactosidase, an axon-targeted fusion protein. Proc. Natl. Acad. Sci. USA 91, 5972–5976 (1994).

    Article  CAS  Google Scholar 

  32. Huang, E. J. et al. Expression of Trk receptors in the developing mouse trigeminal ganglion: in vivo evidence for NT-3 activation of TrkA and TrkB in addition to TrkC. Development 126, 2191–2203 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Tojo, H. et al. Neurotrophin-3 is expressed in the posterior lobe of mouse cerebellum, but does not affect the cerebellar development. Neurosci. Lett. 192, 169–172 (1995).

    Article  CAS  Google Scholar 

  34. Esclapez, M., Tillakaratne, N. J. K., Kaufman, D. L., Tobin, A. J. & Houser, C. R. Comparative localization of two forms of glutamic acid decarboxylase and their mRNAs in rat brain supports the concept of functional differences between the forms. J. Neurosci. 14, 1834–1855 (1994).

    Article  CAS  Google Scholar 

  35. Greif, K. F., Erlander, M. G., Tillakaratne, N. J. K. & Tobin, A. J. Postnatal expression of glutamate decarboxylases in developing rat cerebellum. Neurochem. Res. 16, 235–242 (1991).

    Article  CAS  Google Scholar 

  36. Morara, S., Brecha, N. C., Marcotti, W., Provini, L. & Rosina, A. Neuronal and glial localization of the GABA transporter GAT-1 in the cerebellar cortex. Neuroreport 7, 2993–2996 (1996).

    Article  CAS  Google Scholar 

  37. Balkowiec, A. & Katz, D. M. Brain-derived neurotrophic factor is required for normal development of the central respiratory rhythm in mice. J. Physiol. (Lond.) 510, 527–533 (1998).

    Article  CAS  Google Scholar 

  38. Donovan, M. J. et al. Brain derived neurotrophic factor is an endothelial cell survival factor required for intramyocardial vessel stabilization. Development 127, 4531–4540 (2000).

    CAS  Google Scholar 

  39. Ito, M. The Cerebellum and Neural Control (Raven, New York, 1984).

    Google Scholar 

  40. Altman, J. Experimental reorganization of the cerebellar cortex. VI. Effects of X-irradiation schedules that allow or prevent cell acquisition after basket cells are formed. J. Comp. Neurol. 165, 49–64 (1976).

    Article  CAS  Google Scholar 

  41. Altman, J. Experimental reorganization of the cerebellar cortex. VII. Effects of late X-irradiation schedules that interfere with cell acquisition after stellate cells are formed. J. Comp. Neurol. 165, 65–76 (1976).

    Article  CAS  Google Scholar 

  42. Alsina, B., Vu, T. & Cohen-Cory, S. Visualizing synapse formation in arborizing optic axons in vivo: dynamics and modulation by BDNF. Nat. Neurosci. 4, 1093–1101 (2001).

    Article  CAS  Google Scholar 

  43. Soriano, P. Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat. Genet. 21, 70–71 (1999).

    Article  CAS  Google Scholar 

  44. Fukuda, T., Aika, Y., Heizmann, C. W. & Kosaka, T. GABAergic axon terminals at perisomatic and dendritic inhibitory sites show different immunoreactivities against two GAD isoforms, GAD67 and GAD65, in the mouse hippocampus: a digitized quantitative analysis. J. Comp. Neurol. 399, 424–426 (1998).

    Article  Google Scholar 

  45. Valverde, F. The rapid Golgi technique for staining CNS neurons. Light microscopy. Neurosci. Protocols 1, 1–9 (1993).

    Google Scholar 

  46. Nieto, M. A., Patel, K. & Wilkinson, D. G. In situ hybridisation analysis of chick embryos in whole mount and in tissue sections. Methods Cell Biol. 51, 219–235 (1996).

    Article  CAS  Google Scholar 

  47. Palay, S. L. & Chan-Palay, V. Cerebellar Cortex: Cytology and Organization (Springer, New York, 1974).

    Book  Google Scholar 

Download references

Acknowledgements

We thank A. P. McMahon and P. Soriano for the Wnt1Cre and R26R transgenic mice; O. Marín, M. Stryker, S. Bamji, L. Elia, T. Elul, U. Fünfschilling and J. Zhu for comments on the manuscript; S. Huling, and I. Hsie for assistance with electron microscopy; N. Brecha for the antibody against GAT-1; and A. Stephenson for the antibody against the α6 subunit of the GABAA receptor. This work was supported by a grant from the USPH and by the HHMI. B.R. was supported by a postdoctoral fellowship from the Ministerio de Educación, Spain. L.F.R. is an Investigator of the HHMI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Louis F. Reichardt.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rico, B., Xu, B. & Reichardt, L. TrkB receptor signaling is required for establishment of GABAergic synapses in the cerebellum. Nat Neurosci 5, 225–233 (2002). https://doi.org/10.1038/nn808

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn808

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing