Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Astrocytes expressing ALS-linked mutated SOD1 release factors selectively toxic to motor neurons

Abstract

Mutations in superoxide dismutase-1 (SOD1) cause a form of the fatal paralytic disorder amyotrophic lateral sclerosis (ALS), presumably by a combination of cell-autonomous and non–cell-autonomous processes. Here, we show that expression of mutated human SOD1 in primary mouse spinal motor neurons does not provoke motor neuron degeneration. Conversely, rodent astrocytes expressing mutated SOD1 kill spinal primary and embryonic mouse stem cell–derived motor neurons. This is triggered by soluble toxic factor(s) through a Bax-dependent mechanism. However, mutant astrocytes do not cause the death of spinal GABAergic or dorsal root ganglion neurons or of embryonic stem cell–derived interneurons. In contrast to astrocytes, fibroblasts, microglia, cortical neurons and myocytes expressing mutated SOD1 do not cause overt neurotoxicity. These findings indicate that astrocytes may play a role in the specific degeneration of spinal motor neurons in ALS. Identification of the astrocyte-derived soluble factor(s) may have far-reaching implications for ALS from both a pathogenic and therapeutic standpoint.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Our two culture systems show well defined spinal motor neurons.
Figure 2: Mutated SOD1 expressed in primary spinal-cord motor neurons provokes a mild cell-autonomous phenotype.
Figure 3: Marked toxicity of mutated SOD1–expressing astrocytes to motor neurons.
Figure 4: Media conditioned specifically by astrocytes expressing mutated SOD1 kill primary spinal cord and embryonic stem cell–derived motor neurons.
Figure 5: Neither mutant SOD1 AMLs nor conditioned media impair survival of neurons other than motor neurons.
Figure 6: ESMNs die in response to mutant AMLs through a Bax-dependent mechanism.

Similar content being viewed by others

References

  1. Rosen, D.R. et al. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362, 59–62 (1993).

    Article  CAS  Google Scholar 

  2. Deng, H.-X. et al. Amyotrophic lateral sclerosis and structural defects in Cu,Zn superoxide dismutase. Science 261, 1047–1051 (1993).

    Article  CAS  Google Scholar 

  3. Gurney, M.E. et al. Motor neuron degeneration in mice that express a human Cu, Zn superoxide dismutase mutation. Science 264, 1772–1775 (1994).

    Article  CAS  Google Scholar 

  4. Wong, P.C. et al. An adverse property of a familial ALS-linked SOD1 mutation causes motor neuron disease characterized by vacuolar degeneration of mitochondria. Neuron 14, 1105–1116 (1995).

    Article  CAS  Google Scholar 

  5. Bruijn, L.I. et al. ALS-linked SOD1 mutant G85R mediated damage to astrocytes and promotes rapidly progressive disease with SOD1-containing inclusions. Neuron 18, 327–338 (1997).

    Article  CAS  Google Scholar 

  6. Clement, A.M. et al. Wild-type nonneuronal cells extend survival of SOD1 mutant motor neurons in ALS mice. Science 302, 113–117 (2003).

    Article  CAS  Google Scholar 

  7. Beers, D.R. et al. Wild-type microglia extend survival in PU.1 knockout mice with familial amyotrophic lateral sclerosis. Proc. Natl. Acad. Sci. USA 103, 16021–16026 (2006).

    Article  CAS  Google Scholar 

  8. Boillee, S. et al. Onset and progression in inherited ALS determined by motor neurons and microglia. Science 312, 1389–1392 (2006).

    Article  CAS  Google Scholar 

  9. Kostic, V., Jackson-Lewis, V., De Bilbao, F., Dubois-Dauphin, M. & Przedborski, S. Bcl-2: prolonging life in a transgenic mouse model of familial amyotrophic lateral sclerosis. Science 277, 559–562 (1997).

    Article  CAS  Google Scholar 

  10. Custer, S.K. et al. Bergmann glia expression of polyglutamine-expanded ataxin-7 produces neurodegeneration by impairing glutamate transport. Nat. Neurosci. 9, 1302–1311 (2006).

    Article  CAS  Google Scholar 

  11. Das, S. & Potter, H. Expression of the Alzheimer amyloid-promoting factor antichymotrypsin is induced in human astrocytes by IL-1. Neuron 14, 447–456 (1995).

    Article  CAS  Google Scholar 

  12. Raoul, C. et al. Motoneuron death triggered by a specific pathway downstream of Fas. Potentiation by ALS-linked SOD1 mutations. Neuron 35, 1067–1083 (2002).

    Article  CAS  Google Scholar 

  13. Wichterle, H., Lieberam, I., Porter, J.A. & Jessell, T.M. Directed differentiation of embryonic stem cells into motor neurons. Cell 110, 385–397 (2002).

    Article  CAS  Google Scholar 

  14. Miles, G.B. et al. Functional properties of motoneurons derived from mouse embryonic stem cells. J. Neurosci. 24, 7848–7858 (2004).

    Article  CAS  Google Scholar 

  15. Raoul, C. et al. Lentiviral-mediated silencing of SOD1 through RNA interference retards disease onset and progression in a mouse model of ALS. Nat. Med. 11, 423–428 (2005).

    Article  CAS  Google Scholar 

  16. Nagai, M. et al. Rats expressing human cytosolic copper-zinc superoxide dismutase transgenes with amyotrophic lateral sclerosis: associated mutations develop motor neuron disease. J. Neurosci. 21, 9246–9254 (2001).

    Article  CAS  Google Scholar 

  17. Lee, K.J., Mendelsohn, M. & Jessell, T.M. Neuronal patterning by BMPs: a requirement for GDF7 in the generation of a discrete class of commissural interneurons in the mouse spinal cord. Genes Dev. 12, 3394–3407 (1998).

    Article  CAS  Google Scholar 

  18. Suurmeijer, A.J., van der Wijk, J., van Veldhuisen, D.J., Yang, F. & Cole, G.M. Fractin immunostaining for the detection of apoptotic cells and apoptotic bodies in formalin-fixed and paraffin-embedded tissue. Lab. Invest. 79, 619–620 (1999).

    CAS  PubMed  Google Scholar 

  19. Sawada, M., Hayes, P. & Matsuyama, S. Cytoprotective membrane-permeable peptides designed from the Bax-binding domain of Ku70. Nat. Cell Biol. 5, 352–357 (2003).

    Article  CAS  Google Scholar 

  20. Di Giorgio, F.P., Carrasco, M., Siao, M., Maniatis, T. & Eggan, K. Non–cell autonomous effect of glia on motor neurons in an embryonic stem cell–based ALS model. Nat. Neurosci. advance online publication, 15 April 2007 (doi:10.1038/nn1885).

    Article  CAS  Google Scholar 

  21. Gong, Y.H., Parsadanian, A.S., Andreeva, A., Snider, W.D. & Elliott, J.L. Restricted expression of G86R Cu/Zn superoxide dismutase in astrocytes results in astrocytosis but does not cause motoneuron degeneration. J. Neurosci. 20, 660–665 (2000).

    Article  CAS  Google Scholar 

  22. Wang, J. et al. Coincident thresholds of mutant protein for paralytic disease and protein aggregation caused by restrictively expressed superoxide dismutase cDNA. Neurobiol. Dis. 20, 943–952 (2005).

    Article  CAS  Google Scholar 

  23. Kuo, J.J., Siddique, T., Fu, R. & Heckman, C.J. Increased persistent Na+ current and its effect on excitability in motoneurones cultured from mutant SOD1 mice. J. Physiol. (Lond.) 563, 843–854 (2005).

    Article  CAS  Google Scholar 

  24. Zona, C., Pieri, M. & Carunchio, I. Voltage-dependent sodium channels in spinal cord motor neurons display rapid recovery from fast inactivation in a mouse model of amyotrophic lateral sclerosis. J. Neurophysiol. 96, 3314–3322 (2006).

    Article  Google Scholar 

  25. Ricart, K. et al. Interactions between β-neuregulin and neurotrophins in motor neuron apoptosis. J. Neurochem. 97, 222–233 (2006).

    Article  CAS  Google Scholar 

  26. Gould, T.W. et al. Complete dissociation of motor neuron death from motor dysfunction by Bax deletion in a mouse model of ALS. J. Neurosci. 26, 8774–8786 (2006).

    Article  CAS  Google Scholar 

  27. Shin, J.Y. et al. Expression of mutant huntingtin in glial cells contributes to neuronal excitotoxicity. J. Cell Biol. 171, 1001–1012 (2005).

    Article  CAS  Google Scholar 

  28. Howland, D.S. et al. Focal loss of the glutamate transporter EAAT2 in a transgenic rat model of SOD1 mutant-mediated amyotrophic lateral sclerosis (ALS). Proc. Natl. Acad. Sci. USA 99, 1604–1609 (2002).

    Article  CAS  Google Scholar 

  29. Scheffler, B. et al. Functional network integration of embryonic stem cell-derived astrocytes in hippocampal slice cultures. Development 130, 5533–5541 (2003).

    Article  CAS  Google Scholar 

  30. Lukas, T.J., Luo, W.W., Mao, H., Cole, N. & Siddique, T. Informatics-assisted protein profiling in a transgenic mouse model of amyotrophic lateral sclerosis. Mol. Cell. Proteomics 5, 1233–1244 (2006).

    Article  CAS  Google Scholar 

  31. Silva, G.A., Feeney, C., Mills, L.R. & Theriault, E. A novel and rapid method for culturing pure rat spinal cord astrocytes on untreated glass. J. Neurosci. Methods 80, 75–79 (1998).

    Article  CAS  Google Scholar 

  32. Chalazonitis, A., Kessler, J.A., Twardzik, D.R. & Morrison, R.S. Transforming growth factor α, but not epidermal growth factor, promotes the survival of sensory neurons in vitro. J. Neurosci. 12, 583–594 (1992).

    Article  CAS  Google Scholar 

  33. Chalazonitis, A., Crain, S.M. & Kessler, J.A. Preferential cholinergic projections by embryonic spinal cord neurons within cocultured mouse superior cervical ganglia. Brain Res. 458, 231–248 (1988).

    Article  CAS  Google Scholar 

  34. Rideout, H.J., Dietrich, P., Wang, Q., Dauer, W.T. & Stefanis, L. α-Synuclein is required for the fibrillar nature of ubiquitinated inclusions induced by proteasomal inhibition in primary neurons. J. Biol. Chem. 279, 46915–46920 (2004).

    Article  CAS  Google Scholar 

  35. Kaji, K. & Matsuo, M. Aging of chick embryo fibroblasts in vitro. III. Polyploid cell accumulation. Exp. Cell Res. 119, 231–236 (1979).

    Article  CAS  Google Scholar 

  36. Przedborski, S. et al. Increased superoxide dismutase activity improves survival of cultured postnatal midbrain neurons. J. Neurochem. 67, 1383–1392 (1996).

    Article  CAS  Google Scholar 

  37. Pfaff, S.L., Mendelsohn, M., Stewart, C.L., Edlund, T. & Jessell, T.M. Requirement for LIM homeobox gene Isl 1 in motor neuron generation reveals a motor neuron-dependent step in interneuron differentiation. Cell 84, 309–320 (1996).

    Article  CAS  Google Scholar 

  38. Ericson, J. et al. Pax 6 controls progenitor cell identity and neuronal fate in response to graded Shh signaling. Cell 90, 169–180 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank H. Mitsumoto for his support, C. Henderson, W. Dauer, E. Schon and J. Krakauer for their comments and advice, and J. Jeon for assistance in preparing this manuscript. We thank T. Maniatis and K. Eggan for communicating their results before publication and for insightful discussions about the study. This study is supported by Muscular Dystrophy Association/Wings-over-Wall Street, the ALS Association, Project-ALS, US National Institutes of Health NS42269, NS38370, NS11766, AG 21617, ES013177 and DK58056, US Department of Defense Grant DAMD 17-03-1, the Parkinson's Disease Foundation and the Bernard and Anne Spitzer Fund. M.N. is the recipient of the Gardner's fellowship from the Muscular Dystrophy Association. T.M.J. is an investigator of the Howard Hughes Medical Institute. D.B.R. is the recipient of a Philippe Foundation grant for exchange programs between France and the United States.

Author information

Authors and Affiliations

Authors

Contributions

M.N., D.B.R. and T.N. conducted all experiments and participated in designing them and writing the manuscript; H.W. and A.C. assisted in the experiments and in writing the manuscript; T.M.J. and S.P. conducted the data analyses and wrote the manuscript; and S.P. supervised the project. H.W. and T.M.J. also provided critical reagents.

Corresponding author

Correspondence to Serge Przedborski.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Human SOD1 transgene expression is stable in both primary neuronal and astrocyte cultures over time and is harmless to astrocytes. (PDF 526 kb)

Supplementary Fig. 2

Mutant SOD1 astrocytes kill to the same extent NTg and mutated SOD1–expressing motor neurons. (PDF 453 kb)

Supplementary Fig. 3

Mutated SOD1 expression by astrocytes, motor neurons or both alters to the same extent motor neuron morphometry. (PDF 383 kb)

Supplementary Fig. 4

GABAergic interneuron morphometry is not affected by mutated SOD1-expressing astrocytes. (PDF 308 kb)

Supplementary Fig. 5

Glutamate, Fas ligand and several major cytokines and chemokines are not involved in the toxicity of mutant SOD1 astrocytes to motor neurons. (PDF 645 kb)

Supplementary Fig. 6

Mutated SOD1–expressing astrocytes kill motor neurons through a programmed cell death that can be caspase–independent. (PDF 424 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagai, M., Re, D., Nagata, T. et al. Astrocytes expressing ALS-linked mutated SOD1 release factors selectively toxic to motor neurons. Nat Neurosci 10, 615–622 (2007). https://doi.org/10.1038/nn1876

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1876

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing