Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Alternative splicing controls G protein–dependent inhibition of N-type calcium channels in nociceptors

Abstract

Neurotransmitter release from mammalian sensory neurons is controlled by CaV2.2 N-type calcium channels. N-type channels are a major target of neurotransmitters and drugs that inhibit calcium entry, transmitter release and nociception through their specific G protein–coupled receptors. G protein–coupled receptor inhibition of these channels is typically voltage-dependent and mediated by Gβγ, whereas N-type channels in sensory neurons are sensitive to a second G protein–coupled receptor pathway that inhibits the channel independent of voltage. Here we show that preferential inclusion in nociceptors of exon 37a in rat Cacna1b (encoding CaV2.2) creates, de novo, a C-terminal module that mediates voltage-independent inhibition. This inhibitory pathway requires tyrosine kinase activation but not Gβγ. A tyrosine encoded within exon 37a constitutes a critical part of a molecular switch controlling N-type current density and G protein–mediated voltage-independent inhibition. Our data define the molecular origins of voltage-independent inhibition of N-type channels in the pain pathway.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: G protein activation differentially inhibits CaV2.2e[37b] and CaV2.2e[37a] channels.
Figure 2: Prepulse relieves voltage-dependent inhibition fully.
Figure 3: Differential inhibition of CaV2.2e[37b] and CaV2.2e[37a] channels by GABAB receptor activation.
Figure 4: Differential inhibition of CaV2.2e[37b] and CaV2.2e[37a] channels by μ-opioid receptor activation.
Figure 5: PTX-sensitive G proteins mediate inhibition of CaV2.2 isoforms.
Figure 6: Voltage-dependent but not voltage-independent inhibition requires Gβγ.
Figure 7: pp60c-src tyrosine kinase peptide inhibitor prevents voltage-independent inhibition.
Figure 8: Conservation of exon 37a and essential role of Y1747 in voltage-independent inhibition.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Bourinet, E. & Zamponi, G.W. Voltage gated calcium channels as targets for analgesics. Curr. Top. Med. Chem. 5, 539–546 (2005).

    Article  CAS  Google Scholar 

  2. Dunlap, K. & Fischbach, G.D. Neurotransmitters decrease the calcium conductance activated by depolarization of embryonic chick sensory neurones. J. Physiol. (Lond.) 317, 519–535 (1981).

    Article  CAS  Google Scholar 

  3. Holz, G.G., IV, Rane, S.G. & Dunlap, K. GTP-binding proteins mediate transmitter inhibition of voltage-dependent calcium channels. Nature 319, 670–672 (1986).

    Article  CAS  Google Scholar 

  4. Taddese, A., Nah, S.Y. & McCleskey, E.W. Selective opioid inhibition of small nociceptive neurons. Science 270, 1366–1369 (1995).

    Article  CAS  Google Scholar 

  5. Polo-Parada, L. & Pilar, G. κ- and μ-opioids reverse the somatostatin inhibition of Ca2+ currents in ciliary and dorsal root ganglion neurons. J. Neurosci. 19, 5213–5227 (1999).

    Article  CAS  Google Scholar 

  6. Ossipov, M.H., Lai, J., Malan, T.P., Jr & Porreca, F. Spinal and supraspinal mechanisms of neuropathic pain. Ann. NY Acad. Sci. 909, 12–24 (2000).

    Article  CAS  Google Scholar 

  7. Bean, B.P. Neurotransmitter inhibition of neuronal calcium currents by changes in channel voltage dependence. Nature 340, 153–156 (1989).

    Article  CAS  Google Scholar 

  8. Ikeda, S.R. Voltage-dependent modulation of N-type calcium channels by G-protein βγ subunits. Nature 380, 255–258 (1996).

    Article  CAS  Google Scholar 

  9. Herlitze, S. et al. Modulation of Ca2+ channels by G-protein βγ subunits. Nature 380, 258–262 (1996).

    Article  CAS  Google Scholar 

  10. Ikeda, S.R. & Dunlap, K. Voltage-dependent modulation of N-type calcium channels: role of G protein subunits. Adv. Second Messenger Phosphoprotein Res. 33, 131–151 (1999).

    Article  CAS  Google Scholar 

  11. Diverse-Pierluissi, M. & Dunlap, K. Distinct, convergent second messenger pathways modulate neuronal calcium currents. Neuron 10, 753–760 (1993).

    Article  CAS  Google Scholar 

  12. Elmslie, K.S. Neurotransmitter modulation of neuronal calcium channels. J. Bioenerg. Biomembr. 35, 477–489 (2003).

    Article  CAS  Google Scholar 

  13. Park, D. & Dunlap, K. Dynamic regulation of calcium influx by G-proteins, action potential waveform, and neuronal firing frequency. J. Neurosci. 18, 6757–6766 (1998).

    Article  CAS  Google Scholar 

  14. Delmas, P., Coste, B., Gamper, N. & Shapiro, M.S. Phosphoinositide lipid second messengers: new paradigms for calcium channel modulation. Neuron 47, 179–182 (2005).

    Article  CAS  Google Scholar 

  15. Strock, J. & Diverse-Pierluissi, M.A. Ca2+ channels as integrators of G protein-mediated signaling in neurons. Mol. Pharmacol. 66, 1071–1076 (2004).

    Article  CAS  Google Scholar 

  16. Diverse-Pierluissi, M., Remmers, A.E., Neubig, R.R. & Dunlap, K. Novel form of crosstalk between G protein and tyrosine kinase pathways. Proc. Natl. Acad. Sci. USA 94, 5417–5421 (1997).

    Article  CAS  Google Scholar 

  17. Bell, T.J., Thaler, C., Castiglioni, A.J., Helton, T.D. & Lipscombe, D. Cell-specific alternative splicing increases calcium channel current density in the pain pathway. Neuron 41, 127–138 (2004).

    Article  CAS  Google Scholar 

  18. Castiglioni, A.J., Raingo, J. & Lipscombe, D. Alternative splicing in the C-terminus of CaV2.2 controls expression and gating of N-type calcium channels. J. Physiol. (Lond.) 576, 119–134 (2006).

    Article  CAS  Google Scholar 

  19. Li, B., Zhong, H., Scheuer, T. & Catterall, W.A. Functional role of a C-terminal Gβγ-binding domain of Cav2.2 channels. Mol. Pharmacol. 66, 761–769 (2004).

    CAS  PubMed  Google Scholar 

  20. Hamid, J. et al. Identification of an integration center for cross-talk between protein kinase C and G protein modulation of N-type calcium channels. J. Biol. Chem. 274, 6195–6202 (1999).

    Article  CAS  Google Scholar 

  21. Qin, N., Platano, D., Olcese, R., Stefani, E. & Birnbaumer, L. Direct interaction of Gβγ with a C-terminal Gβγ-binding domain of the Ca2+ channel α1 subunit is responsible for channel inhibition by G protein-coupled receptors. Proc. Natl. Acad. Sci. USA 94, 8866–8871 (1997).

    Article  CAS  Google Scholar 

  22. Hille, B. et al. Multiple G-protein-coupled pathways inhibit N-type Ca channels of neurons. Life Sci. 56, 989–992 (1995).

    Article  CAS  Google Scholar 

  23. Elmslie, K.S., Zhou, W. & Jones, S.W. LHRH and GTP-γ-S modify calcium current activation in bullfrog sympathetic neurons. Neuron 5, 75–80 (1990).

    Article  CAS  Google Scholar 

  24. Luebke, J.I. & Dunlap, K. Sensory neuron N-type calcium currents are inhibited by both voltage-dependent and -independent mechanisms. Pflugers Arch. 428, 499–507 (1994).

    Article  CAS  Google Scholar 

  25. Diverse-Pierluissi, M., Inglese, J., Stoffel, R.H., Lefkowitz, R.J. & Dunlap, K. G protein-coupled receptor kinase mediates desensitization of norepinephrine-induced Ca2+ channel inhibition. Neuron 16, 579–585 (1996).

    Article  CAS  Google Scholar 

  26. Fujikawa, S., Motomura, H., Ito, Y. & Ogata, N. GABAB-mediated upregulation of the high-voltage-activated Ca2+ channels in rat dorsal root ganglia. Pflugers Arch. 434, 84–90 (1997).

    Article  CAS  Google Scholar 

  27. Diverse-Pierluissi, M., Goldsmith, P.K. & Dunlap, K. Transmitter-mediated inhibition of N-type calcium channels in sensory neurons involves multiple GTP-binding proteins and subunits. Neuron 14, 191–200 (1995).

    Article  CAS  Google Scholar 

  28. Kammermeier, P.J. & Ikeda, S.R. Expression of RGS2 alters the coupling of metabotropic glutamate receptor 1a to M-type K+ and N-type Ca2+ channels. Neuron 22, 819–829 (1999).

    Article  CAS  Google Scholar 

  29. Richman, R.W. & Diverse-Pierluissi, M.A. Mapping of RGS12-Cav2.2 channel interaction. Methods Enzymol. 390, 224–239 (2004).

    Article  CAS  Google Scholar 

  30. Brugge, J.S. et al. Neurones express high levels of a structurally modified, activated form of pp60c-src. Nature 316, 554–557 (1985).

    Article  CAS  Google Scholar 

  31. Onofri, F. et al. Synapsin I interacts with c-Src and stimulates its tyrosine kinase activity. Proc. Natl. Acad. Sci. USA 94, 12168–12173 (1997).

    Article  CAS  Google Scholar 

  32. Brody, D.L. & Yue, D.T. Relief of G-protein inhibition of calcium channels and short-term synaptic facilitation in cultured hippocampal neurons. J. Neurosci. 20, 889–898 (2000).

    Article  CAS  Google Scholar 

  33. Altier, C. et al. ORL1 receptor-mediated internalization of N-type calcium channels. Nat. Neurosci. 9, 31–40 (2006).

    Article  CAS  Google Scholar 

  34. Rane, S.G. & Dunlap, K. Kinase C activator 1,2-oleoylacetylglycerol attenuates voltage-dependent calcium current in sensory neurons. Proc. Natl. Acad. Sci. USA 83, 184–188 (1986).

    Article  CAS  Google Scholar 

  35. Tombler, E. et al. G protein-induced trafficking of voltage-dependent calcium channels. J. Biol. Chem. 281, 1827–1839 (2006).

    Article  CAS  Google Scholar 

  36. Richman, R.W. et al. N-type Ca2+ channels as scaffold proteins in the assembly of signaling molecules for GABAB receptor effects. J. Biol. Chem. 279, 24649–24658 (2004).

    Article  CAS  Google Scholar 

  37. Lipscombe, D. & Raingo, J. Internalizing channels: a mechanism to control pain? Nat. Neurosci. 9, 8–10 (2006).

    Article  CAS  Google Scholar 

  38. Bonifacino, J.S. & Traub, L.M. Signals for sorting of transmembrane proteins to endosomes and lysosomes. Annu. Rev. Biochem. 72, 395–447 (2003).

    Article  CAS  Google Scholar 

  39. Roche, K.W. et al. Molecular determinants of NMDA receptor internalization. Nat. Neurosci. 4, 794–802 (2001).

    Article  CAS  Google Scholar 

  40. Lin, Z., Haus, S., Edgerton, J. & Lipscombe, D. Identification of functionally distinct isoforms of the N-type Ca2+ channel in rat sympathetic ganglia and brain. Neuron 18, 153–166 (1997).

    Article  CAS  Google Scholar 

  41. Lin, Y., McDonough, S.I. & Lipscombe, D. Alternative splicing in the voltage-sensing region of N-type CaV2.2 channels modulates channel kinetics. J. Neurophysiol. 92, 2820–2830 (2004).

    Article  CAS  Google Scholar 

  42. Thaler, C., Gray, A.C. & Lipscombe, D. Cumulative inactivation of N-type CaV2.2 calcium channels modified by alternative splicing. Proc. Natl. Acad. Sci. USA 101, 5675–5679 (2004).

    Article  CAS  Google Scholar 

  43. Roussel, R.R., Brodeur, S.R., Shalloway, D. & Laudano, A.P. Selective binding of activated pp60c-src by an immobilized synthetic phosphopeptide modeled on the carboxyl terminus of pp60c-src. Proc. Natl. Acad. Sci. USA 88, 10696–10700 (1991).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to S. Denome for technical assistance, K. Dunlap (Tufts University) for GABABR1a and GABABR2 cDNA clones, L. Devi (New York University) for the μ-opioid receptor cDNA clone and S.R. Ikeda (US National Institutes of Health) for the MAS-GRK-ct cDNA clone. This work was supported by US National Institutes of Health grants NS29967 and NS55251 (D.L.).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to writing the manuscript. D.L. directed the project. J.R. performed experiments and analyses for all figures. A.J.C. originally identified the tyrosine kinase sites in e37a, contributed to the design and construction of the tyrosine mutants, and performed the sequence analysis in Figure 8a.

Corresponding author

Correspondence to Diane Lipscombe.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Time course of μ-opioid receptor? and GABAB receptor–mediated inhibition of CaV2.2 currents. (PDF 18 kb)

Supplementary Fig. 2

Voltage-independent but not voltage-dependent inhibition mediated by GABAB receptor activation is prevented by pp60c-src tyrosine kinase peptide inhibitor. (PDF 47 kb)

Supplementary Table 1

Averaged parameters estimated from Boltzmann linear fits of current-voltage relationships. (PDF 55 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raingo, J., Castiglioni, A. & Lipscombe, D. Alternative splicing controls G protein–dependent inhibition of N-type calcium channels in nociceptors. Nat Neurosci 10, 285–292 (2007). https://doi.org/10.1038/nn1848

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1848

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing