Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

cAMP oscillations and retinal activity are permissive for ephrin signaling during the establishment of the retinotopic map

Abstract

Spontaneous activity generated in the retina is necessary to establish a precise retinotopic map, but the underlying mechanisms are poorly understood. We demonstrate here that neural activity controls ephrin-A–mediated responses. In the mouse retinotectal system, we show that spontaneous activity of the retinal ganglion cells (RGCs) is needed, independently of synaptic transmission, for the ordering of the retinotopic map and the elimination of exuberant retinal axons. Activity blockade suppressed the repellent action of ephrin-A on RGC growth cones by cyclic AMP (cAMP)-dependent pathways. Unexpectedly, the ephrin-A5–induced retraction required cAMP oscillations rather than sustained increases in intracellular cAMP concentrations. Periodic photo-induced release of caged cAMP in growth cones rescued the response to ephrin-A5 when activity was blocked. These results provide a direct molecular link between spontaneous neural activity and axon guidance mechanisms during the refinement of neural maps.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Spontaneous population activity in the retina is required for the elimination of exuberant retinal axons in the SC.
Figure 2: Spontaneous activity in the retina acts on map refinement independently of synaptic transmission.
Figure 3: TTX does not modify the expression of ephrin-A5 and ephrin receptor EphA5 in the cocultures.
Figure 4: TTX alters the collapse response of retinal growth cones to ephrin-A5, but not to lysophosphatidic acid (LPA).
Figure 5: Requirement of cAMP oscillations to rescue the effects of neural activity blockade.
Figure 6: Sustained increases or decreases of cAMP-PKA signaling prevent the ephrin-A5–mediated response and perturb the topographic ordering of retinal axons in the SC.

Similar content being viewed by others

References

  1. Feldheim, D.A. et al. Genetic analysis of ephrin-A2 and ephrin-A5 shows their requirement in multiple aspects of retinocollicular mapping. Neuron 25, 563–574 (2000).

    Article  CAS  Google Scholar 

  2. Brunet, I. et al. The transcription factor Engrailed-2 guides retinal axons. Nature 438, 94–98 (2005).

    Article  CAS  Google Scholar 

  3. Sretavan, D.W., Shatz, C.J. & Stryker, M.P. Modification of retinal ganglion cell axon morphology by prenatal infusion of tetrodotoxin. Nature 336, 468–471 (1988).

    Article  CAS  Google Scholar 

  4. McLaughlin, T., Torborg, C.L., Feller, M.B. & O'Leary, D.D. Retinotopic map refinement requires spontaneous retinal waves during a brief critical period of development. Neuron 40, 1147–1160 (2003).

    Article  CAS  Google Scholar 

  5. Torborg, C.L. & Feller, M.B. Spontaneous patterned retinal activity and the refinement of retinal projections. Prog. Neurobiol. 76, 213–235 (2005).

    Article  Google Scholar 

  6. Pfeiffenberger, C. et al. Ephrin-As and neural activity are required for eye-specific patterning during retinogeniculate mapping. Nat. Neurosci. 8, 1022–1027 (2005).

    Article  CAS  Google Scholar 

  7. Fields, R.D. Regulation of neurite outgrowth and immediate early gene expression by patterned electrical stimulation 44. Prog. Brain Res. 103, 127–136 (1994).

    Article  CAS  Google Scholar 

  8. Ming, G., Henley, J., Tessier-Lavigne, M., Song, H. & Poo, M. Electrical activity modulates growth cone guidance by diffusible factors. Neuron 29, 441–452 (2001).

    Article  CAS  Google Scholar 

  9. Hanson, M.G. & Landmesser, L.T. Normal patterns of spontaneous activity are required for correct motor axon guidance and the expression of specific guidance molecules. Neuron 43, 687–701 (2004).

    Article  CAS  Google Scholar 

  10. Cline, H. Sperry and Hebb: oil and vinegar? Trends Neurosci. 26, 655–661 (2003).

    Article  CAS  Google Scholar 

  11. Wong, R.O., Meister, M. & Shatz, C.J. Transient period of correlated bursting activity during development of the mammalian retina. Neuron 11, 923–938 (1993).

    Article  CAS  Google Scholar 

  12. Huberman, A.D. et al. Eye-specific retinogeniculate segregation independent of normal neuronal activity. Science 300, 994–998 (2003).

    Article  CAS  Google Scholar 

  13. Kolls, B.J. & Meyer, R.L. Spontaneous retinal activity is tonic and does not drive tectal activity during activity-dependent refinement in regeneration. J. Neurosci. 22, 2626–2636 (2002).

    Article  CAS  Google Scholar 

  14. Drescher, U. et al. In vitro guidance of retinal ganglion cell axons by RAGS, a 25 kDa tectal protein related to ligands for Eph receptor tyrosine kinases. Cell 82, 359–370 (1995).

    Article  CAS  Google Scholar 

  15. Feldheim, D.A. et al. Topographic guidance labels in a sensory projection to the forebrain. Neuron 21, 1303–1313 (1998).

    Article  CAS  Google Scholar 

  16. Simon, D.K. & O'Leary, D.D. Development of topographic order in the mammalian retinocollicular projection. J. Neurosci. 12, 1212–1232 (1992).

    Article  CAS  Google Scholar 

  17. Nicol, X., Muzerelle, A., Rio, J.P., Metin, C. & Gaspar, P. Requirement of adenylate cyclase 1 for the ephrin-A5–dependent retraction of exuberant retinal axons. J. Neurosci. 26, 862–872 (2006).

    Article  CAS  Google Scholar 

  18. Fagan, K.A., Graf, R.A., Tolman, S., Schaack, J. & Cooper, D.M. Regulation of a Ca2+-sensitive adenylyl cyclase in an excitable cell. Role of voltage-gated versus capacitative Ca2+ entry. J. Biol. Chem. 275, 40187–40194 (2000).

    Article  CAS  Google Scholar 

  19. Bansal, A. et al. Mice lacking specific nicotinic acetylcholine receptor subunits exhibit dramatically altered spontaneous activity patterns and reveal a limited role for retinal waves in forming ON and OFF circuits in the inner retina. J. Neurosci. 20, 7672–7681 (2000).

    Article  CAS  Google Scholar 

  20. Verhage, M. et al. Synaptic assembly of the brain in the absence of neurotransmitter secretion. Science 287, 864–869 (2000).

    Article  CAS  Google Scholar 

  21. Simon, D.K., Prusky, G.T., O'Leary, D.D. & Constantine-Paton, M. N-methyl-D-aspartate receptor antagonists disrupt the formation of a mammalian neural map. Proc. Natl. Acad. Sci. USA 89, 10593–10597 (1992).

    Article  CAS  Google Scholar 

  22. Ruthazer, E.S., Akerman, C.J. & Cline, H.T. Control of axon branch dynamics by correlated activity in vivo. Science 301, 66–70 (2003).

    Article  CAS  Google Scholar 

  23. Demarque, M. et al. Paracrine intercellular communication by a Ca2+- and SNARE-independent release of GABA and glutamate prior to synapse formation. Neuron 36, 1051–1061 (2002).

    Article  CAS  Google Scholar 

  24. Colonnese, M.T. & Constantine-Paton, M. Chronic NMDA receptor blockade from birth increases the sprouting capacity of ipsilateral retinocollicular axons without disrupting their early segregation. J. Neurosci. 21, 1557–1568 (2001).

    Article  CAS  Google Scholar 

  25. Spitzer, N.C., Lautermilch, N.J., Smith, R.D. & Gomez, T.M. Coding of neuronal differentiation by calcium transients. Bioessays 22, 811–817 (2000).

    Article  CAS  Google Scholar 

  26. Goldberg, J.L. et al. Retinal ganglion cells do not extend axons by default: promotion by neurotrophic signaling and electrical activity. Neuron 33, 689–702 (2002).

    Article  CAS  Google Scholar 

  27. Thies, E. & Davenport, R.W. Independent roles of Rho-GTPases in growth cone and axonal behavior. J. Neurobiol. 54, 358–369 (2003).

    Article  CAS  Google Scholar 

  28. Jalink, K. et al. Inhibition of lysophosphatidate- and thrombin-induced neurite retraction and neuronal cell rounding by ADP ribosylation of the small GTP-binding protein Rho. J. Cell Biol. 126, 801–810 (1994).

    Article  CAS  Google Scholar 

  29. Song, H. et al. Conversion of neuronal growth cone responses from repulsion to attraction by cyclic nucleotides. Science 281, 1515–1518 (1998).

    Article  CAS  Google Scholar 

  30. Ravary, A. et al. Adenylate cyclase 1 as a key actor in the refinement of retinal projection maps. J. Neurosci. 23, 2228–2238 (2003).

    Article  CAS  Google Scholar 

  31. Gorbunova, Y.V. & Spitzer, N.C. Dynamic interactions of cyclic AMP transients and spontaneous Ca(2+) spikes. Nature 418, 93–96 (2002).

    Article  CAS  Google Scholar 

  32. Dunn, T.A. et al. Imaging of cAMP levels and protein kinase a activity reveals that retinal waves drive oscillations in second-messenger cascades 1. J. Neurosci. 26, 12807–12815 (2006).

    Article  CAS  Google Scholar 

  33. Luo, L. & O'Leary, D.D. Axon retraction and degeneration in development and disease. Annu. Rev. Neurosci. 28, 127–156 (2005).

    Article  CAS  Google Scholar 

  34. Hooks, B.M. & Chen, C. Distinct roles for spontaneous and visual activity in remodeling of the retinogeniculate synapse. Neuron 52, 281–291 (2006).

    Article  CAS  Google Scholar 

  35. Sachs, G.M., Jacobson, M. & Caviness, V.S., Jr. Postnatal changes in arborization patterns of murine retinocollicular axons. J. Comp. Neurol. 246, 395–408 (1986).

    Article  CAS  Google Scholar 

  36. Stellwagen, D. & Shatz, C.J. An instructive role for retinal waves in the development of retinogeniculate connectivity. Neuron 33, 357–367 (2002).

    Article  CAS  Google Scholar 

  37. Cook, P.M., Prusky, G.T. & Ramoa, A.S. The role of spontaneous retinal activity before eye opening in the maturation of form and function in the retinogeniculate pathway of the ferret. Vis. Neurosci. 16, 491–501 (1999).

    Article  CAS  Google Scholar 

  38. Hua, J.Y., Smear, M.C., Baier, H. & Smith, S.J. Regulation of axon growth in vivo by activity-based competition. Nature 434, 1022–1026 (2005).

    Article  CAS  Google Scholar 

  39. Uesaka, N., Hirai, S., Maruyama, T., Ruthazer, E.S. & Yamamoto, N. Activity dependence of cortical axon branch formation: a morphological and electrophysiological study using organotypic slice cultures. J. Neurosci. 25, 1–9 (2005).

    Article  CAS  Google Scholar 

  40. Fields, R.D., Neale, E.A. & Nelson, P.G. Effects of patterned electrical activity on neurite outgrowth from mouse sensory neurons. J. Neurosci. 10, 2950–2964 (1990).

    Article  CAS  Google Scholar 

  41. Gomez, T.M. & Spitzer, N.C. In vivo regulation of axon extension and pathfinding by growth-cone calcium transients. Nature 397, 350–355 (1999).

    Article  CAS  Google Scholar 

  42. Willoughby, D. & Cooper, D.M. Ca2+ stimulation of adenylyl cyclase generates dynamic oscillations in cyclic AMP. J. Cell Sci. 119, 828–836 (2006).

    Article  CAS  Google Scholar 

  43. Cooper, D.M., Mons, N. & Karpen, J.W. Adenylyl cyclases and the interaction between calcium and cAMP signalling. Nature 374, 421–424 (1995).

    Article  CAS  Google Scholar 

  44. Nicol, X. et al. Role of the calcium modulated cyclases in the development of the retinal projections. Eur. J. Neurosci. 24, 3401–3414 (2006).

    Article  Google Scholar 

  45. Howe, A.K. Regulation of actin-based cell migration by cAMP/PKA. Biochim. Biophys. Acta 1692, 159–174 (2004).

    Article  CAS  Google Scholar 

  46. Yuan, X.B. et al. Signalling and crosstalk of Rho GTPases in mediating axon guidance. Nat. Cell Biol. 5, 38–45 (2003).

    Article  CAS  Google Scholar 

  47. Sahin, M. et al. Eph-dependent tyrosine phosphorylation of ephexin1 modulates growth cone collapse. Neuron 46, 191–204 (2005).

    Article  CAS  Google Scholar 

  48. Ooashi, N. et al. Cell adhesion molecules regulate Ca2+-mediated steering of growth cones via cyclic AMP and ryanodine receptor type 3. J. Cell Biol. 170, 1159–1167 (2005).

    Article  CAS  Google Scholar 

  49. Gomez, T.M., Robles, E., Poo, M. & Spitzer, N.C. Filopodial calcium transients promote substrate-dependent growth cone turning. Science 291, 1983–1987 (2001).

    Article  CAS  Google Scholar 

  50. Hadjantonakis, A.K., Gertsenstein, M., Ikawa, M., Okabe, M. & Nagy, A. Generating green fluorescent mice by germline transmission of green fluorescent ES cells. Mech. Dev. 76, 79–90 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank P. Vanderhaeghen for his help and advice concerning the ephrins, E. Welker for the gift of the brl mice and J.A. Girault, L. Maroteaux, C. Métin and V. Setola for discussions and suggestions. Part of this work was done at the Imaging core facility of Institut Fédératif de Recherche de Neurosciences de la Salpêtrière, with the expert help of C.M. Bachelet. This work was supported by grants from the Institut National de la Santé et de la Recherche Médicale, Agence Nationale de la Recherche (APV05187DSA), and Retina France. X.N. was supported by a grant from the Délégation Générale pour l'Armement. N.N.-N. was supported by a grant from Ligue Française Contre l'Epilepsie.

Author information

Authors and Affiliations

Authors

Contributions

X.N. participated in the design of the project, the writing of the manuscript and conducted the experiments; S.V., A.M. and N.N.-N. conducted crucial experiments with the cocultures and the collapse assays; T.C.S. generated the munc18-1−/− mice and helped in the design of the project and the writing of the manuscript; R.M. contributed to the electrophysiological experiments and helped to write the manuscript; P.G. supervised the project and wrote the manuscript.

Corresponding author

Correspondence to Patricia Gaspar.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Calculation of a refinement index of the retinal projections. (PDF 273 kb)

Supplementary Fig. 2

TTX does not increase cell death in the SC and in the retina. (PDF 60 kb)

Supplementary Fig. 3

Summary of results and proposed mechanisms. (PDF 242 kb)

Supplementary Video 1

TTX blocks the rearward movement of growth cone in response to ephrin-A5. (AVI 5423 kb)

Supplementary Video 2

Ephrin-A5 induced axon retraction, blocked by TTX, is rescued by periodic cAMP uncaging. (AVI 8159 kb)

Supplementary Video 3

cAMP oscillations do not induce modifications in axon growth or retraction by themselves. (AVI 2953 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nicol, X., Voyatzis, S., Muzerelle, A. et al. cAMP oscillations and retinal activity are permissive for ephrin signaling during the establishment of the retinotopic map. Nat Neurosci 10, 340–347 (2007). https://doi.org/10.1038/nn1842

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1842

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing