Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Spectrally enhanced acoustic environment disrupts frequency representation in cat auditory cortex

A Corrigendum to this article was published on 01 September 2006

This article has been updated

Abstract

Sensory environments are known to shape nervous system organization. Here we show that passive long-term exposure to a spectrally enhanced acoustic environment (EAE) causes reorganization of the tonotopic map in juvenile cat auditory cortex without inducing any hearing loss. The EAE consisted of tone pips of 32 different frequencies (5–20 kHz), presented in random order at an average rate of 96 Hz. The EAE caused a strong reduction of the representation of EAE frequencies and an over-representation of frequencies neighboring those of the EAE. This is in sharp contrast with earlier developmental studies showing an enlargement of the cortical representation of EAEs consisting of a narrow frequency band. We observed fewer than normal appropriately tuned short-latency responses to EAE frequencies, together with more common long-latency responses tuned to EAE-neighboring frequencies.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Spatial distribution of cortical recording sites in 15 control and 4 EAE cats.
Figure 2: Waveform and spectrogram of the EAE for a 2-s-long sequence.
Figure 3: Peripheral threshold shift and distribution of cortical multiunit responses as a function of frequency and intensity for individual cats.
Figure 4: Averaged poststimulus time histograms across all control and EAE cats.
Figure 5: Firing rate as a percentage of the maximum firing rate per recording, averaged across three intensities (35, 45 and 55 dB SPL), as a function of electrode location along the postero-anterior axis (abscissa) and stimulus frequency (ordinate).
Figure 6: Raster plots and tuning curves of selected individual recordings.
Figure 7: Averaged group multiunit firing rates and LFP amplitude as a function of frequency and intensity.
Figure 8: Neural synchrony maps in primary auditory cortex.

Similar content being viewed by others

Change history

  • 03 August 2006

    added eacute

References

  1. Buonomano, D.V. & Merzenich, M.M. Cortical plasticity: from synapses to maps. Annu. Rev. Neurosci. 21, 149–186 (1998).

    Article  CAS  PubMed  Google Scholar 

  2. Doupe, A.J. & Kuhl, P.K. Birdsong and human speech: common themes and mechanisms. Annu. Rev. Neurosci. 22, 567–631 (1999).

    Article  CAS  PubMed  Google Scholar 

  3. Kanwal, J.S. Processing species-specific calls by combination-sensitive neurons in an echolocating bat. in The Design of Animal Communication (eds. Hauser, M. & Konishi, M.) 133–157 (MIT Press, Cambridge, Massachusetts, 1999).

    Google Scholar 

  4. Feng, A.S. & Ratnam, R. Neural basis of hearing in real-world situations. Annu. Rev. Psychol. 51, 699–725 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Krishnan, A., Xu, Y., Gandour, J. & Cariani, P. Encoding of pitch in the human brainstem is sensitive to language experience. Brain Res. Cogn. Brain Res. 25, 161–168 (2005).

    Article  PubMed  Google Scholar 

  6. Kilgard, M.P. & Merzenich, M.M. Plasticity of temporal information processing in the primary auditory cortex. Nat. Neurosci. 1, 727–731 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kilgard, M.P., Pandya, P.K., Engineer, N.D. & Moucha, R. Cortical network reorganization guided by sensory input features. Biol. Cybern. 87, 333–343 (2002).

    Article  PubMed  Google Scholar 

  8. Zhang, L.I., Bao, S. & Merzenich, M.M. Persistent and specific influences of early acoustic environments on primary auditory cortex. Nat. Neurosci. 4, 1123–1130 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Weinberger, N.M. Dynamic regulation of receptive fields and maps in the adult sensory cortex. Annu. Rev. Neurosci. 18, 129–158 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Edeline, J.M. Learning-induced physiological plasticity in the thalamo-cortical sensory systems: a critical evaluation of receptive field plasticity, map changes and their potential mechanisms. Prog. Neurobiol. 57, 165–224 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Weinberger, N.M., Javid, R. & Lepan, B. Long-term retention of learning-induced receptive-field plasticity in the auditory cortex. Proc. Natl. Acad. Sci. USA 90, 2394–2398 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bakin, J.S. & Weinberger, N.M. Induction of physiological memory in the cerebral cortex by stimulation of the nucleus basalis. Proc. Natl. Acad. Sci. USA 93, 11219–11224 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bao, S., Chan, V.T. & Merzenich, M.M. Cortical remodelling induced by activity of ventral tegmental dopamine neurons. Nature 412, 79–83 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Sanes, D.H. & Constantine-Paton, M. The sharpening of frequency tuning curves requires patterned activity during development in the mouse, Mus musculus. J. Neurosci. 5, 1152–1166 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhang, L.I., Bao, S. & Merzenich, M.M. Disruption of primary auditory cortex by synchronous auditory inputs during a critical period. Proc. Natl. Acad. Sci. USA 99, 2309–2314 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bao, S., Chang, E.F., Davis, J.D., Gobeske, K.T. & Merzenich, M.M. Progressive degradation and subsequent refinement of acoustic representations in the adult auditory cortex. J. Neurosci. 23, 10765–10775 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Robertson, D. & Irvine, D.R. Plasticity of frequency organization in auditory cortex of guinea pigs with partial unilateral deafness. J. Comp. Neurol. 282, 456–471 (1989).

    Article  CAS  PubMed  Google Scholar 

  18. Rajan, R., Irvine, D.R., Wise, L.Z. & Heil, P. Effect of unilateral partial cochlear lesions in adult cats on the representation of lesioned and unlesioned cochleas in primary auditory cortex. J. Comp. Neurol. 338, 17–49 (1993).

    Article  CAS  PubMed  Google Scholar 

  19. Noreña, A.J. & Eggermont, J.J. Enriched acoustic environment after noise trauma reduces hearing loss and prevents cortical map reorganization. J. Neurosci. 25, 699–705 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Kamke, M.R., Brown, M. & Irvine, D.R. Basal forebrain cholinergic input is not essential for lesion-induced plasticity in mature auditory cortex. Neuron 48, 675–686 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Liberman, M.C. Auditory-nerve response from cats raised in a low-noise chamber. J. Acoust. Soc. Am. 63, 442–455 (1978).

    Article  CAS  PubMed  Google Scholar 

  22. Noreña, A. & Eggermont, J.J. Comparison between local field potentials and unit cluster activity in primary auditory cortex and anterior auditory field in the cat. Hear. Res. 166, 202–213 (2002).

    Article  PubMed  Google Scholar 

  23. Stanton, S.G. & Harrison, R.V. Abnormal cochleotopic organization in the auditory cortex of cats reared in a frequency augmented environment. Aud. Neurosci. 2, 97–107 (1996).

    Google Scholar 

  24. Eggermont, J.J. & Komiya, H. Moderate noise trauma in juvenile cats results in profound cortical topographic map changes in adulthood. Hear. Res. 142, 89–101 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Brosch, M. & Schreiner, C.E. Time course of forward masking tuning curves in cat primary auditory cortex. J. Neurophysiol. 77, 923–943 (1997).

    Article  CAS  PubMed  Google Scholar 

  26. Kadia, S.C. & Wang, X. Spectral integration in A1 of awake primates: neurons with single- and multipeaked tuning characteristics. J. Neurophysiol. 89, 1603–1622 (2003).

    Article  PubMed  Google Scholar 

  27. Wehr, M. & Zador, A.M. Synaptic mechanisms of forward suppression in rat auditory cortex. Neuron 47, 437–445 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Eggermont, J.J. The magnitude and phase of temporal modulation transfer functions in cat auditory cortex. J. Neurosci. 19, 2780–2788 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Noreña, A.J., Tomita, M. & Eggermont, J.J. Neural changes in cat auditory cortex after a transient pure-tone trauma. J. Neurophysiol. 90, 2387–2401 (2003).

    Article  PubMed  Google Scholar 

  30. Abbott, L.F. & Nelson, S.B. Synaptic plasticity: taming the beast. Nat. Neurosci. suppl. Suppl, 1178–1183 (2000).

  31. Feldman, D.E. Inhibition and plasticity. Nat. Neurosci. 3, 303–304 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Shamma, S.A. & Symmes, D. Patterns of inhibition in auditory cortical cells in awake squirrel monkeys. Hear. Res. 19, 1–13 (1985).

    Article  CAS  PubMed  Google Scholar 

  33. Volkov, I.O. & Galazjuk, A.V. Formation of spike response to sound tones in cat auditory cortex neurons: interaction of excitatory and inhibitory effects. Neuroscience 43, 307–321 (1991).

    Article  CAS  PubMed  Google Scholar 

  34. Nakahara, H., Zhang, L.I. & Merzenich, M.M. Specialization of primary auditory cortex processing by sound exposure in the “critical period”. Proc. Natl. Acad. Sci. USA 101, 7170–7174 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Romand, R. Modification of tonotopic representation in the auditory system during development. Prog. Neurobiol. 51, 1–17 (1997).

    Article  CAS  PubMed  Google Scholar 

  36. Eggermont, J.J. Differential maturation rates for response parameters in cat primary auditory cortex. Aud. Neurosci. 2, 309–327 (1996).

    Google Scholar 

  37. Bonham, B.H., Cheung, S.W., Godey, B. & Schreiner, C.E. Spatial organization of frequency response areas and rate/level functions in the developing AI. J. Neurophysiol. 91, 841–854 (2004).

    Article  PubMed  Google Scholar 

  38. Cragg, B.G. The development of synapses in the visual system of the cat. J. Comp. Neurol. 160, 147–166 (1975).

    Article  CAS  PubMed  Google Scholar 

  39. Tsumoto, T. & Suda, K. Laminar differences in development of afferent innervation to striate cortex neurones in kittens. Exp. Brain Res. 45, 433–446 (1982).

    Article  CAS  PubMed  Google Scholar 

  40. Winfield, D.A. The postnatal development of synapses in the different laminae of the visual cortex in the normal kitten and in kittens with eyelid suture. Brain Res. 285, 155–169 (1983).

    Article  CAS  PubMed  Google Scholar 

  41. Mitzdorf, U. Current source-density method and application in cat cerebral cortex: investigation of evoked potentials and EEG phenomena. Physiol. Rev. 65, 37–100 (1985).

    Article  CAS  PubMed  Google Scholar 

  42. Nowak, L.G. & Bullier, J. Axons, but not cell bodies, are activated by electrical stimulation in cortical gray matter. I. Evidence from chronaxie measurements. Exp. Brain Res. 118, 477–488 (1988).

    Article  Google Scholar 

  43. Darian-Smith, C. & Gilbert, C.D. Topographic reorganization in the striate cortex of the adult cat and monkey is cortically mediated. J. Neurosci. 15, 1631–1647 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Fox, K. Anatomical pathways and molecular mechanisms for plasticity in the barrel cortex. Neuroscience 111, 799–814 (2002).

    Article  CAS  PubMed  Google Scholar 

  45. Blake, D.T. & Merzenich, M.M. Changes of AI receptive fields with sound density. J. Neurophysiol. 88, 3409–3420 (2002).

    Article  PubMed  Google Scholar 

  46. Ngan, E.M. & May, B.J. Relationship between the auditory brainstem response and auditory nerve thresholds in cats with hearing loss. Hear. Res. 156, 44–52 (2001).

    Article  CAS  PubMed  Google Scholar 

  47. Eggermont, J.J. Neural interaction in cat primary auditory cortex. Dependence on recording depth, electrode separation, and age. J. Neurophysiol. 68, 1216–1228 (1992).

    Article  CAS  PubMed  Google Scholar 

  48. Tomita, M. & Eggermont, J.J. Cross-correlation and joint spectro-temporal receptive field properties in auditory cortex. J. Neurophysiol. 93, 378–392 (2005).

    Article  PubMed  Google Scholar 

  49. Eggermont, J.J. & Smith, G.M. Separating local from global effects in neural pair correlograms. Neuroreport 6, 2121–2124 (1995).

    Article  CAS  PubMed  Google Scholar 

  50. Eggermont, J.J. & Smith, G.M. Neural connectivity only accounts for a small part of neural correlation in auditory cortex. Exp. Brain Res. 110, 379–391 (1996).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Alberta Heritage Foundation for Medical Research, the National Sciences and Engineering Research Council, a Canadian Institutes of Health–New Emerging Team grant, and the Campbell McLaurin Chair for Hearing Deficiencies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jos J Eggermont.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Noreña, A., Gourévitch, B., Aizawa, N. et al. Spectrally enhanced acoustic environment disrupts frequency representation in cat auditory cortex. Nat Neurosci 9, 932–939 (2006). https://doi.org/10.1038/nn1720

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1720

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing