Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Multiple origins of Cajal-Retzius cells at the borders of the developing pallium

Abstract

Cajal-Retzius cells are critical in cortical lamination, but very little is known about their origin and development. The homeodomain transcription factor Dbx1 is expressed in restricted progenitor domains of the developing pallium: the ventral pallium (VP) and the septum. Using genetic tracing and ablation experiments in mice, we show that two subpopulations of Reelin+ Cajal-Retzius cells are generated from Dbx1-expressing progenitors. VP- and septum-derived Reelin+ neurons differ in their onset of appearance, migration routes, destination and expression of molecular markers. Together with reported data supporting the generation of Reelin+ cells in the cortical hem, our results show that Cajal-Retzius cells are generated at least at three focal sites at the borders of the developing pallium and are redistributed by tangential migration. Our data also strongly suggest that distinct Cajal-Retzius subtypes exist and that their presence in different territories of the developing cortex might contribute to region-specific properties.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Dbx1 expression at dorsoventral boundaries in the telencephalon: septum and ventral pallium.
Figure 2: Dbx1Cre;TauGFP cells migrate dorsally and ventrally from the PSB and the septum in vitro.
Figure 3: Early-born Dbx1-derived cells in the preplate/marginal zone express Reelin.
Figure 6: Dbx1-derived Reelin+ cells from the PSB express calretinin, but those from the septum do not.
Figure 4: Populations of Cajal-Retzius neurons in layer I are derived from Dbx1+ progenitors.
Figure 5: Ablation of Dbx1-derived cells results in loss of Reelin+ cells in different cortical regions and in cortical defects.

Similar content being viewed by others

References

  1. Marin-Padilla, M. Cajal-Retzius cells and the development of the neocortex. Trends Neurosci. 21, 64–71 (1998).

    Article  CAS  PubMed  Google Scholar 

  2. Kriegstein, A.R. & Noctor, S.C. Patterns of neuronal migration in the embryonic cortex. Trends Neurosci. 27, 392–399 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Marin, O. & Rubenstein, J.L. Cell migration in the forebrain. Annu. Rev. Neurosci. 26, 441–483 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Meyer, G., Goffinet, A.M. & Fairen, A. What is a Cajal-Retzius cell? A reassessment of a classical cell type based on recent observations in the developing neocortex. Cereb. Cortex 9, 765–775 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. Zecevic, N. & Rakic, P. Development of layer I neurons in the primate cerebral cortex. J. Neurosci. 21, 5607–5619 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. D'Arcangelo, G. et al. A protein related to extracellular matrix proteins deleted in the mouse mutant reeler. Nature 374, 719–723 (1995).

    Article  CAS  PubMed  Google Scholar 

  7. Ogawa, M. et al. The reeler gene-associated antigen on Cajal-Retzius neurons is a crucial molecule for laminar organization of cortical neurons. Neuron 14, 899–912 (1995).

    Article  CAS  PubMed  Google Scholar 

  8. Super, H., Del Rio, J.A., Martinez, A., Perez-Sust, P. & Soriano, E. Disruption of neuronal migration and radial glia in the developing cerebral cortex following ablation of Cajal-Retzius cells. Cereb. Cortex 10, 602–613 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Del Rio, J.A. et al. A role for Cajal-Retzius cells and reelin in the development of hippocampal connections. Nature 385, 70–74 (1997).

    Article  CAS  PubMed  Google Scholar 

  10. Alcantara, S. et al. Regional and cellular patterns of reelin mRNA expression in the forebrain of the developing and adult mouse. J. Neurosci. 18, 7779–7799 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hevner, R.F., Neogi, T., Englund, C., Daza, R.A. & Fink, A. Cajal-Retzius cells in the mouse: transcription factors, neurotransmitters, and birthdays suggest a pallial origin. Brain Res. Dev. Brain Res. 141, 39–53 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Gorski, J.A. et al. Cortical excitatory neurons and glia, but not GABAergic neurons, are produced in the Emx1-expressing lineage. J. Neurosci. 22, 6309–6314 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Shinozaki, K. et al. Absence of Cajal-Retzius cells and subplate neurons associated with defects of tangential cell migration from ganglionic eminence in Emx1/2 double mutant cerebral cortex. Development 129, 3479–3492 (2002).

    CAS  PubMed  Google Scholar 

  14. Meyer, G. & Wahle, P. The paleocortical ventricle is the origin of reelin-expressing neurons in the marginal zone of the foetal human neocortex. Eur. J. Neurosci. 11, 3937–3944 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Meyer, G., Perez-Garcia, C.G., Abraham, H. & Caput, D. Expression of p73 and Reelin in the developing human cortex. J. Neurosci. 22, 4973–4986 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lavdas, A.A., Grigoriou, M., Pachnis, V. & Parnavelas, J.G. The medial ganglionic eminence gives rise to a population of early neurons in the developing cerebral cortex. J. Neurosci. 19, 7881–7888 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Takiguchi-Hayashi, K. et al. Generation of reelin-positive marginal zone cells from the caudomedial wall of telencephalic vesicles. J. Neurosci. 24, 2286–2295 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jessell, T.M. Neuronal specification in the spinal cord: inductive signals and transcriptional codes. Nat. Rev. Genet. 1, 20–29 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Schuurmans, C. & Guillemot, F. Molecular mechanisms underlying cell fate specification in the developing telencephalon. Curr. Opin. Neurobiol. 12, 26–34 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Campbell, K. Dorsal-ventral patterning in the mammalian telencephalon. Curr. Opin. Neurobiol. 13, 50–56 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Lu, S., Bogarad, L.D., Murtha, M.T. & Ruddle, F.H. Expression pattern of a murine homeobox gene, Dbx, displays extreme spatial restriction in embryonic forebrain and spinal cord. Proc. Natl. Acad. Sci. USA 89, 8053–8057 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Shoji, H. et al. Regionalized expression of the Dbx family homeobox genes in the embryonic CNS of the mouse. Mech. Dev. 56, 25–39 (1996).

    Article  CAS  PubMed  Google Scholar 

  23. Pierani, A., Brenner-Morton, S., Chiang, C. & Jessell, T.M. A sonic hedgehog-independent, retinoid-activated pathway of neurogenesis in the ventral spinal cord. Cell 97, 903–915 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Pierani, A. et al. Control of interneuron fate in the developing spinal cord by the progenitor homeodomain protein Dbx1. Neuron 29, 367–384 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Lanuza, G.M., Gosgnach, S., Pierani, A., Jessell, T.M. & Goulding, M. Genetic identification of spinal interneurons that coordinate left-right locomotor activity necessary for walking movements. Neuron 42, 375–386 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Yun, K., Potter, S. & Rubenstein, J.L. Gsh2 and Pax6 play complementary roles in dorsoventral patterning of the mammalian telencephalon. Development 128, 193–205 (2001).

    CAS  PubMed  Google Scholar 

  27. Medina, L. et al. Expression of Dbx1, Neurogenin 2, Semaphorin 5A, Cadherin 8, and Emx1 distinguish ventral and lateral pallial histogenetic divisions in the developing mouse claustroamygdaloid complex. J. Comp. Neurol. 474, 504–523 (2004).

    Article  PubMed  Google Scholar 

  28. Zinyk, D.L., Mercer, E.H., Harris, E., Anderson, D.J. & Joyner, A.L. Fate mapping of the mouse midbrain-hindbrain constriction using a site-specific recombination system. Curr. Biol. 8, 665–668 (1998).

    Article  CAS  PubMed  Google Scholar 

  29. de Carlos, J.A., Lopez-Mascaraque, L. & Valverde, F. Dynamics of cell migration from the lateral ganglionic eminence in the rat. J. Neurosci. 16, 6146–6156 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Corbin, J.G., Nery, S. & Fishell, G. Telencephalic cells take a tangent: non-radial migration in the mammalian forebrain. Nat. Neurosci. 4, 1177–1182 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Marin, O. & Rubenstein, J.L. A long, remarkable journey: tangential migration in the telencephalon. Nat. Rev. Neurosci. 2, 780–790 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Tronche, F. et al. Disruption of the glucocorticoid receptor gene in the nervous system results in reduced anxiety. Nat. Genet. 23, 99–103 (1999).

    Article  CAS  PubMed  Google Scholar 

  33. Tamamaki, N., Fujimori, K.E. & Takauji, R. Origin and route of tangentially migrating neurons in the developing neocortical intermediate zone. J. Neurosci. 17, 8313–8323 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ang, E.S., Jr ., Haydar, T.F., Gluncic, V. & Rakic, P. Four-dimensional migratory coordinates of GABAergic interneurons in the developing mouse cortex. J. Neurosci. 23, 5805–5815 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hevner, R.F. et al. Tbr1 regulates differentiation of the preplate and layer 6. Neuron 29, 353–366 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Mallamaci, A. et al. The lack of Emx2 causes impairment of Reelin signaling and defects of neuronal migration in the developing cerebral cortex. J. Neurosci. 20, 1109–1118 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mallamaci, A., Muzio, L., Chan, C.H., Parnavelas, J. & Boncinelli, E. Area identity shifts in the early cerebral cortex of Emx2−/− mutant mice. Nat. Neurosci. 3, 679–686 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. Borrell, V. et al. Reelin regulates the development and synaptogenesis of the layer-specific entorhino-hippocampal connections. J. Neurosci. 19, 1345–1358 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Meyer, G., Soria, J.M., Martinez-Galan, J.R., Martin-Clemente, B. & Fairen, A. Different origins and developmental histories of transient neurons in the marginal zone of the fetal and neonatal rat cortex. J. Comp. Neurol. 397, 493–518 (1998).

    Article  CAS  PubMed  Google Scholar 

  40. Meyer, G. et al. Developmental roles of p73 in Cajal-Retzius cells and cortical patterning. J. Neurosci. 24, 9878–9887 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Aboitiz, F., Montiel, J. & Lopez, J. Critical steps in the early evolution of the isocortex: insights from developmental biology. Braz. J. Med. Biol. Res. 35, 1455–1472 (2002).

    Article  CAS  PubMed  Google Scholar 

  42. Palmiter, R.D. et al. Cell lineage ablation in transgenic mice by cell-specific expression of a toxin gene. Cell 50, 435–443 (1987).

    Article  CAS  PubMed  Google Scholar 

  43. Lee, K.J., Dietrich, P. & Jessell, T.M. Genetic ablation reveals that the roof plate is essential for dorsal interneuron specification. Nature 403, 734–740 (2000).

    Article  CAS  PubMed  Google Scholar 

  44. Cohen-Tannoudji, M. et al. I-SceI-induced gene replacement at a natural locus in embryonic stem cells. Mol. Cell. Biol. 18, 1444–1448 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hippenmeyer, S. et al. A developmental switch in the response of DRG neurons to ETS transcription factor signaling. PLoS Biol. 3, e159 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Schiffmann, S.N., Bernier, B. & Goffinet, A.M. Reelin mRNA expression during mouse brain development. Eur. J. Neurosci. 9, 1055–1071 (1997).

    Article  CAS  PubMed  Google Scholar 

  47. Lu, S., Wise, T.L. & Ruddle, F.H. Mouse homeobox gene Dbx: sequence, gene structure and expression pattern during mid-gestation. Mech. Dev. 47, 187–195 (1994).

    Article  CAS  PubMed  Google Scholar 

  48. Wilkinson, D.G., Bhatt, S., Ryseck, R.P. & Bravo, R. Tissue-specific expression of c-jun and junB during organogenesis in the mouse. Development 106, 465–471 (1989).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are indebted to T.M. Jessell for having made this work possible. We thank K. Campbell for suggesting that Dbx1 progenitors give rise to Cajal-Retzius cells; M. Sunshine and D. Littman for helping in the generation of the Dbx1loxP-stop-loxP-DTA mouse line; A. Nemes and M. Mendelsohn for embryonic stem cell transfection and injection of the Dbx1Cre line; F. Tronche for providing the Nes:CRE mouse line, D. Anderson for the βactin:loxP-stop-loxP-lacZ mice and A. Goffinet for the G10 anti-Reelin monoclonal antibodies; M. Cohen-Tannoudji and F. Jaisser for the I-SceI-induced gene replacement system; P. Alexandre and R. Goiame for technical help and advice and M. Ensini, S. Garel, C. Goridis, T.M. Jessell and O. Marin for comments on the manuscript. F.B. was the recipient of a fellowship from the Académie Nationale de Médecine (France). S.A. and M.S. were supported by a grant from the Swiss National Science Foundation, by the Kanton of Basel-Stadt and by the Novartis Research Foundation. A.P. and M.W. are CNRS (Centre National de la Recherche Scientifique) Investigators. This work was supported by the Ministère de la Recherche (ACI grant # 0220575) and the Association pour la Recherche sur le Cancer (grant # 4679) to A.P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandra Pierani.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Dbx1-derived cells are highly motile and populate preferentially rostral and caudo-ventral regions of the developing cortex up to E12.5. (PDF 19163 kb)

Supplementary Fig. 2

Temporal and spatial distribution of cell death in Dbx1DTA;Nes:Cre embryos. (PDF 27191 kb)

Supplementary Fig. 3

Novel sources of Cajal-Retzius cells and their different distribution in cortical regions. (PDF 4289 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bielle, F., Griveau, A., Narboux-Nême, N. et al. Multiple origins of Cajal-Retzius cells at the borders of the developing pallium. Nat Neurosci 8, 1002–1012 (2005). https://doi.org/10.1038/nn1511

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1511

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing